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A compressibility-consistent integral equation for the radial distribution function g similar
to a previously proposed pressure-consistent integral equation is applied to a (b/r) effective
potential. The results compare well with those obtained by a molecular-dynamics calculation
and are superior to the results of Percus-Yevick 2 and Percus-Yevick 2 XS calculations.
The g obtained from this integral equation can be used to compute )he sum of the bridge dia-
grams. These bridge-diagram sums are used in an Euler-Lagrange equation to compute the
ground-state Bijl-Jastrow wave function for liquid He . An interatomicpotential of the Lennard-
Jones 6-12 type is used. The ground-state energy is found to be —6.63'K/atom (experiment:
—7.14'K). The equilibrium density is 0. 0205 atom/A~ (experiment: 0. 02185 atom/A ). The
structure factor and radial distribution function obtained are compared with experimental re-
sults.

This approximation allows the energy per atom to
be written in terms of the radial distribution func-
t&on as

V= —,'p f g(~) v(r) dr,

7= —(pj's /aM) f g(r) V u(~) dr,
where

g(r) = N(N- 1) p f g ~ (d r~ ~ ~ d r~/

(1.4)

f Pgdr, dr„(1.5)

and v(r) is the interatomic potential, often taken to
be the Lennard-Jones potential

v(r) = 4s[(o'/r)" —(a'/x)'] (1.6)

with' & = 10.22 'K and o = 2. 556 A .
Some authors'-' used a simple parametric form

for u and obtained g by various methods. One
advantage of varying u is that the relatively ac-
curate Monte Carlo (MC) or molecular-dynamics
(MD) methods may be used. ' 4 Because of the
machine time needed, only a small number of pa-
rameters are feasible. Another drawback is that
these methods cannot handle the long-range 1/xa
behavior predicted' ' for u, but can only include
it as a perturbation in an unsatisfactory manner.
The alternative of obtaining g from u by means of
Born-Green, hypernetted-chain (HNC), Percus-
Yevick (PY), or other integral equations avoids

I. INTRODUCTION

Several authors'-" have made variational cal-
culations to obtain the ground-state energy of liq-
uid He4 assuming a Bijl-Jastrow-type trial wave
function:

the latter drawback and largely alleviates the
former. Unfortunately, these are approximate
equations which sometimes give poor results.

Another approach is to vary g and use an ap-
proximate relation to obtain u. A considerable
advantage is that if the PY or HNC approximation
is used, then u may be obtained from g by a direct
calculation instead of the iteration procedures nec-
essary to obtain g from u, The machine time thus
saved may be used to consider more complicated
parametr ic forms. If the Born-Gr een equation is
used, ' an iterative process is still necessary,
but the machine time needed is far less than that
required for a MC or MD calculation. The pri-
mary disadvantage of varying g is the uncertainty
in the u because of approximations made in deriv-
ing the integral equation. Another drawback is
that g has more structure than u and more param-
eters are needed to obtain a good approximation to
the function. Also, g must be restricted to those
functions which can be generated by a boson wave
function by forcing g to satisfy various necessary
conditions. "" The problem of determining suf-
ficient conditions has not been solved.

The best approach is to consider the variation
of E when u(r) is allowed to vary arbitrarily and
solve the resulting Euler-Lagrange equation.
Campbell and Feenberg (CF) have done this' "
using the HNC and PY approximations. The
method employed in this paper is an attempt to
solve the Euler-Lagrange equation by using an ap-
proximation superior to the HNC or PY approxima-
tions.

II. DERIVATION OF EULER-LAGRANGE EQUATION

In this section the variational principle will be
used to derive an integral equation for the radial
distribution function for liquid He'. This equation
will be an extension of the one previously derived
by CF. Their notation will be used as much as
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possible. From Eqs. (1.2)-(1.4) the energy is

E=-,'p jg(r) V"(r)dr

where

V( (r) = ( (r) ——,
' o.v'u(r), o(= 5'/2m.

(2. i)

(2. 2)

QE

6u(r) (2. 3)

With the use of Eq. (2. 1) this condition becomes~a

The variational principle states that the best en-
ergy will be obtained when

Eq. (2.4) can be replaced by Q(r). This will be the
case only if the functional derivative is symmetric
in r and r . Both the exact functional derivative
and the HNC approximation to it have this prop-
erty"; the PY approximation does not.

To obtain an equation for Q(r), multiply Eq.
(2. 8) by V*(r ) and integrate over dr . Identify
a factor Q(r ) inside the integrals on the right-
hand side of the resulting equation. The use of
Fourier transforms then reduces the equation to

e()=g() V*() g(r)[(S'- l)i/S']', (2. 1o)

«I

5u r (2. 4)
where the superscript E denotes the Fourier trans-
form. This equation may be rearranged to give

The methods of classical statistical mechanics
which were developed to obtain the radial distribu-
tion function give us a relationship between g and

(0/S')'= gV'+ G[(S'- I) 0/S']'. (2. »)

(2. i2)

In order to obtain a form which may be easily
solved numerically, we define

L(k) = W(k)/S'(k)
eiV (r )+ B(r)+u(r ) (2. 8) and

where N and B are the sums of the nodal and bridge
diagrams, respectively. N(r) can be expressed as
a function of the structure factor

N= (S-1) /ps, S= 1+pG, (2. 6)

where (2. 7)

where the tilde denotes the Fourier transform and
G =g —1. Multiplying Eq. (2. 2) by g and eliminating
u with the aid of Eq. (2. 5), we obtain

gV*(r) = gv+ 2 n (vg ~ vg/g+ gv B+ Gv N- v C),

Vg (pgVg)F (2. ia)
These definitions allow Eq. (2. 11) to be rewrit-

ten

L (k) = Vf + (G [(S —1)L] I (2. 14)

which is the same as Eq. (71) of CF. 'o

Now, the minimization condition, Eq. (2. 4), in
terms of Q is

q(r) = —,
' o.v'g(r) (2. iS)

or, equivalently, using the definition in Eq. (2. 12),
C(r) = G(r) —N(r), C = (S —1)/pS. L(k) = ——,

' o.k'(S- I)/S'. (2. ie)
To obtain the quantity on the right-hand side of

Eq. (2. 4), start by taking the functional derivative
of Eq. (2. 5). With the use of Eq. (2. 6) this gives

5g(r)
( ) 6(,),-„.(-„.,„, S'(k) —

11~

5g(r ) «is dk 5B(r)
(2~)"6u(r') ~' ( ' )

Q(r)= V*(r), dr . (2. 8)

This wi11 be useful only if the right-hand side of

In this investigation, the last term will be ne-
glected; this is equivalent to using the HNC func-
tional derivative. B(r) will be assumed to be a
function which does not change when u(r) changes;
this is not equivalent to the HNC approximation
unless B(r) =0. Even with this simplification, the
resulting integral equation cannot be solved analyt-
ically and would be extremely difficult to solve on
a computer. However, as suggested by CF, we
define a new function

s = s/(s+ 2LS'/~k')'" (2. 17)

and repeat the entire procedure until successive
structure factors are equal to the desired degree
of accuracy.

One may also combine Eqs. (2. 7), (2. 14), and
(2. 16) to obtain a single equation rather than two
coupled equations:

vg vg k'(S'- I)&'
g pS )

—gv+2Gv'g+ +g (. ~
+gv'B=0.

(2. 18)
Except for the last term, this is the same as CF's
Eq. (82) (which should have a factor of g on the
right-hand side).

The problem is now reduced to solving Eqs.
(2. 14) and (2. 16) simultaneously using the defini-
tions in Eqs. (2. 7) and (2. 13) plus some approxi-
mation for V~B(r). If we set V~B(r) =0, then these
equations are equivalent to those obtained by CF.

The procedure for obtaining a solution is to guess
an S and obtain L by solving Eq. (2. 14) by iteration
using Eq. (2. 16) as an initial guess. Then we
use CF's suggestion for the new trial function
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I'ABLE I. Comparison of kinetic, potential, and total
energies (in K/atom) obtained by molecular dynamics
and compressibility-consistent method for u = —(l.170/y) '.

Schiff and Verlet Compressibility-consistent. methocl
Pl P0 T $' E V 1)l

mechanics can be used to calculate g. Therefore,
m will be determined by requiring that the deriva-
tive of the classical pressure divided by kT with
respect to the density obtained from the virial re-
lation

0.90 11.87 —17.79 —5, 92 11.80
0.95 12.95 —18.81 —5.86 12.89
1.00 14.10 —19.78 —5. 68 14.01

-17.76
—18.84
—19.89

—~. 96 —0. 161
—0. 1;i2

—G. 88 —0. 143

OO

SP& ~ alp+z+p rg(r)u (r)4nr ch) (3 8)
I 3

~P ~P .0

Data computed from Table I in Ref. 2.

It is interesting to note that the same equation
could have been derived by setting

5g(r)
(2. 19)

This can be seen in CF's Eq. (85) or by setting

5B(r)
&u(r') (2. 20)

in Eq. (13) of Lee and Broyles. ~0 This is a con-
sequence of the fact that we have employed an
approximation which provides a direct relation-
ship between g and u, and which leads to a func-
tional derivative of g(r) with respect to u(r ) which
is symmetric in r and r .

III. METHOD FOR OBTAINING 8(r)

It would be desirable to obtain &3B(r) from a
relatively accurate calculation, i. e. , a MD or
MC calculation. We will consider the MD calcu-
lation of Schiff and tII"erlet. ~ They used

u(r) = —(bo/r)' (3. 1)

B(r) =m(ge "-1-lnge ), (3.2)

where m is a parameter to be determined. The
HNC approximation is given by m=0, while m=1
yields the PY approximation. Howlinson ' and
Lado~4 further suggested that the condition of pres-
sure consistency be used to determine m. Calcu-
lations using this and slightly different procedures
have given mixed results. ~' We will use the simi-
lar method of compressibility consistency.

The idea behind introducing the pair approxi-
mation to the wave function in Eq. (1.1) is to re-
gard u as an effective classical potential divided
by AT so that the methods of classical statistical

and determined that b= 1.17 gave the best energy
at the experimental density of liquid He, p0
= 0.02185 t ao/mA' Since.g(r) is tabulated, one
can use Eqs. (2. 5) and (2. 6) to determine B(r).
Unfortunately, the data points are not smooth
enough to obtain a useful ~ B.

Carley and Lado~a and Rowlinson~3 have suggested
the appr oximation

eN-N+u -u

and the change in u is approximated by

u-u=C —C,

(4. 1)

(4. 2)

be equal to the same quantity obtained from the
compressibility relation

spp = 1 —p i C(r) 4m dr.2 (S.4)
ep

These compressibility- consistent equations are
easier to solve than the pressure-consistent method
which requires integrating Eq. (3.4) over the den-
sity starting from a reference density at which the
pressure is known.

The calculation was done for the u(r) given by
Eq. (3.1) with 5 fixed at 1.1V. To obtain a solu-
tion, we guessed m, computed g, calculated the
pressure from the virial relation for three den-
sities, and took the numerical derivative of the
pressure. The results of Eqs. (S. 3) and (3.4)
were then compared. This was repeated until
an m was found for which the two quantities dif-
fered by less than 0. 1%. This procedure deter-
mined m with an estimated error of +2%. The
method of calculating the derivative of the pressure
with respect to the density was checked on a sample
calculation by varying the density increment and by
using five densities instead of three. B(r) was then
obtained from Eq. (S.2). This calculation was re-
peated for each density considered. The energies
are compared with those obtained by Schiff and
Verlet in Table I. Tables II and III compare g(r)
and S(k) at p= po. The energies calculated by this
method may be seen to be clearly superior to re-
sults of Percus-Yevick 2 and Percus- Yevick 2 XS'
methods by comparing the numbers in Table I with
Figs. 1 and 10 of Ref. 5.

IV. METHOD OF CALCULATION

In solving Eqs. (2. 14) and (2. 16) simultaneously,
a problem arises in calculating the improved radial
distribution function g, The straightf orward meth-
od would be to simply calculate it from S. How-
ever, it is impossible to obtain sufficient numerical
accuracy to have g vanish at the origin properly.
CF suggested using a different method of calculat-
ing g. Their method is equivalent to using Lado's
perturbation formula, a rn which the bridge dia-

gramss

are assumed to remain unchanged,
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where N and C are defined in terms of S. Then

&0 s-s)/a3 (4. 3)

TABLE II. Comparison of radial distribution functions
of Schiff and Verlet (SV) with compressibility-consistent
(cc) result at p = po, m = —0. 143, & = 1.17.

r/o.

0.72
0.76
0.80
0.84
0.88
0. 92
0. 96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
l. 28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2. 04
2. 08
2.12
2.16
2.20

gsv

0
0.002
0.010
0.037
0. 099
0. 209
0.347
0.512
0.680
0.841
0.976
1.095
1.174
1.232
1.255
1.268
1.264
1.251
1.233
1.206
l. 162
1.129
1.099
1.069
1.041
1.020
1.004
0.986
0.975
0.966
0.955
0.953
0.950
0.948
0.950
0.952
0.953
0.961

0
0.001
0.009
0.036
0.097
0.201
0.347
0.517
0.694
0.859
0.999
1.109
l.188
1.237
1.262
1.268
1.259
1.240
1.214
1.184
l.153
l.122
1.092
1.065
1.040
1.018
0. 999
0. 983
0.970
0.961
0.955
0.951
0.950
0.951
0.954
0.958
0.964
0.970

2. 24
2. 28
2.32
2. 36
2.40
2.44
2.48
2. 52
2. 56
2.60
2. 64
2. 68
2.72
2. 76
2. 80
2. 84
2. 88
2. 92
2. 96
3.00
3.04
3.08
3.12
3.16
3.20
3.24
3.28
3 ~ 32
3.36
3.40
3.44
3.48
3.52
3.56
3.60
3.64
3.68

8'sv

0.976
0.985
0.986
0.987
0.992
l.003
1.008
1.009
1.010
1.012
1.012
1.013
1.012
l.011
1.010
1.010
1.007
1.006
1.004
1.003
1.001
1.000

0.976
0.982
0.988
0.994
0.999
1.003
1.006
1.009
1.010
1.011
1.012
1.012
1.011
1.010
1.009
1.007
1.006
1.004
1.003
1.002
1.001
1.000
0.999
0.998
0.998
0.997
0.997
0.997
0.997
0.997
0.998
0.998
0.998
0.999
0.999
0.999
l.000

Now, if g vanishes properly, so will g. Although
the two methods of calculating g differ only at
small r, an additional problem has now arisen in
that g and S are no longer completely consistent.
There are several terms in Eqs. (2. 7) and (2. 14)
which may be written as functions of either g or
S. CF used g in Eq. (2. 7) and S in Eq. (2. 14).
We have used g in those places where g or G is
shown explicitly and S everywhere else; i. e. , S
has been used wherever possible and g has been
used when it appears that its small-r properties
might be important.

For an initial guess, we used the S obtained in
Sec. III with some alterations to obtain linear be-

TABLE III. Comparison of structure factor of Schiff
and Verlet with compressibility-consistent result at
p = po, m = —0.143, 5 = 1.17.

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8
5.1
5.4
5.7
6.0
6.3
6.6
6.9
7.2
7.5
7.8
8.1
8.4

Ssv

0.085
0.094
0.105
0.120
0.135
0.157
0. 186
0. 224
0.275
0.345
0.430
0.540
0.680
0.840
0.980
l.115
1.201
1.236
l.219
l.174
1.122
1.075
1.031
1.001
0.975
0.956
0.948
0.946

0.083
0.086
0.093
0.103
0.117
0.135
0.159
0.189
0.229
0.281
0.349
0.437
0. 547
0.680
0.830
0. 980
1.108
l.192
1.226
1.217
1.180
1 ~ 132
1.083
1.039
1.003
0.977
0.959
0.949
0.946

8.7
9. 0
9.3
9.6
9.S

10.2
10.5
10.8
11.1
11.4
11.7
12.0
12. 3
12.6
12.9
13.2
13,5

14.1
14.4
14.7
15.0
15.3
15.6
15.9
16.2
16.5
16.8

Ssv

0.950
0.958
0.968
0.S78
0.988
1.000
1.008
1.012
1.014
1.013
1.012
1.011
1.008
1.006
l.003
1.001
1.000

0.948
0.955
0.964
0.975
0.985
0.995
1.004
1.010
1.014
1.016
1.016
1.015
1.013
1.010
1.007
1.003
1.001
0.998
0.996
0.995
0.995
0.995
0.995
0. 996
0. 997
0.998
0.999
1.000

(4.4)

was l.ess than 10~. About seven iterations were
usually necessary. Sixteen significant figures
were carried throughout the calculations. Up to
1024 points mere employed. The adequacy of the
range in r was checked by varying the range while
holding the increment constant and comparing
various quantities, including the energy. Results
of a typical calculation are illustrated in Fig. 1.
Figure 2 shows the change when the increment was
varied while the range was fixed.

V. RESULTS

We first solved Eqs. (2. 14) and (2. 16) in the
HNC approximation (8=0) in order to compare
with CF's result. CF computed the energy in
several different ways at the experimental density.

havior at the origin. The variational calculation
was first performed neglecting the bridge diagrams
and then repeated using the results of the previous
section for V~8. Eqs. (2. 14) and (2. 16) were iter-
ated until S, , defined by
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-5.08-

E( K)

-5.I 0-

-5. I 2-

TABLE IV. Comparison of energies (in 'K/atom) and
speed of sound (in m/sec) in the HNC approximation.

Campbell and Feenberg 16.64 -20.69 -4.04 219
Present calculation {HNC) 14.80 —19.89 —5.09 183

-5. I4-

-S.I6-

0
I

0.02,
I

0.04
R-' (K")

0.06 0.08

FIG. l. Energy as a function of inverse range 8 ' for
a fixed increment d'r.

First, their paired-phonon analysis predicted a
perturbation of the energy due to the change of
the structure factor from their initial guess
(- 0. 73 'K). They added this to the starting ener-
gy calculated by Massey and Woo' using the Kirk-
wood superposition approximation in the Bogoliubov
Born-Green-Kirkwood- Yvon (BBGKY) equation
(- 5.97'K) to obtain a total energy of —6.70'K.
CF evidently considered this to be their primary
result. When they calculated the energy directly
from their final structure factor using the Kirk-
wood superposition and the BBGKY equation, an
energy of - 5. 91 'K was obtained, This discrep-
ancy is due to the fact that the optimization pro-
cedure minimizes the HNC energy rather than the

Massey-Woo energy. CF also calculated both the
starting energy and the final energy directly, using
only the HNC approximation, and obtained —3.40
and —4. 04 'K, respectively. The energy shift is
in reasonable agreement with that predicted by
their perturbation calculation. Since we used only
the HNC approximation, we should compare with
the final result of CF which contains only the HNC
approximation (-4.04 'K). As illustrated in Table
IV and Fig. 3 the energies disagree by more than
1 'K. The structure factors and radial distribu-
tion functions differed by a small but significant
amount. This must be due either to a numerical.
error or the different use of the inconsistent g and
S in the various parts of the calculation. Use of
different starting functions might also cause a dis-
crepancy because of the inconsistency of g and

It would seem that the initial guess with the
lowest energy should be preferred.

Support for the validity of the present calcula-
tion is obtained from a comparison with a calcula-

-40-

-4 5-

-5 08-

-5 0-

-5.09-

-5 5-

-5. IO-
R

0.90 0.95
P/PO

I .00

0
I

0.050
dK (A)

I

0. IOO

FIG. 2. Energy as a function of increment d& for a
fixed range B.

FIG. 3. Ground-state energy of liquid He4 as a func-
tion of density in the HNC approximation: triangle,
Campbell and Feenberg {Ref. 10); crosses, Murphy and
Watts (Ref. 3); circles, initial guess for present cal-
culation; plus signs, final result for present calculation
in the HNC approxirn. ation.
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~ 1.841
1.943
2. 045
2. 147
2.249
2.352
2.454
2. 556
2.658
2. 760
2.863
2. 965
3.067
3.169
3.272
3.374
3.476
3.578
3.681
3.783
3.885
3.987
4.090
4.192
4. 294
4.396
4.499
4.601
4.703

0
0.001
0. 009
0. 037
0.099
0.206
0.353
0.525
0.703
0.870
l.014
l. 125
1.207
l.260
l.287
l.293
l.283
1.262
1 ~ 233
1.199
1.162
l.124
1.087
1.054
1.023
0.996
0.974
0.956
0.942

4. 805
4. 908
5.010
5. 112
5.214
5.316
5.419
5.521
5.623
5.725
5.828
5.930
6.032
6.134
6.237
6.339
6.441
6.543
6. 646
6.748
6.850
6. 952
7.055
7.157
7.259
7.361
7.464
7.566

0.933
0.927
0.925
0.926
0.930
0.936
0.944
0.953
0.964
0.974
0.984
0.994
1.002
1.010
1.016
1.020
1.023
1.024
1.024
1.023
1.021
1.019
1.016
1.012
1.009
1.005
1.002
0.999

TABLE VII. Radial distribution function of liquid He4

when the Approximation to the bridge diagrams is included
at p= po.

not directly comparable, however, since CF used
Massey and Woo's value for the initial energy and
used the HNC approximation to minimize the energy
and compute the energy shift. On the other hand,
we have included the approximation to the bridge
diagrams both in the minimization procedure and
in the calculation of the energy. Table VI compares
the energy and equilibrium density computed here
with the quantities calculated by other authors using
MC or MD methodsandaparametrized g(r). The
contribution of the triple-dipole three-body inter-
action to the energy ' has been removed from Mur-
phy's tabulated results to make all of the energies
comparable. Inclusion of the triple-dipole three-
body interaction would raise all of the energies
slightly and lower the equilibrium density by a
small amount. Since other many-body terms are
neglected and there is considerable uncertainty in
the Lennard-Jones potential, this alteration is only
a small part of the total error. Tables VII and
VIII list the radial distribution function and the
structure factor, respectively, at the experimen-
tal density.

The structure factor of liquid He' has been mea-
sured by x-ray scattering ' s' and by neutron scat-
tering'~ at various temperatures. The lowest tem-

TABLE VIII. Structure factor of liquid He4 when the
approximation to the bridge diagrams is included at
p= po ~

a (A-') 5 u (A-') S

l.2

I.O

0.9

0.6

0.4

0.2

0'
0 2

k (k')

FIG. 5. Structure factor of liquid He4 (p= po): solid
line, x-ray scattering at 0.79'K {Hef. 29); dashed line,
present calculation.

0
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96
l. 08
1.20
1.32
1.44
l. 56
1.68
l.80
l. 92
2.04
2.16
2.28
2.40
2. 52
2.64
2.76
2.88
3.00
3.12

0
0.056
0.098
0.130
0.158
0.186
0.216
0.251
0.291
0.340
0.400
0.476
0.571
0.689
0.832
0.991
1.140
1.236
l. 260
1.226
1.167
1.105
l.052
1.010
0.980
0.960
0. 949

3.24
3.36
3.48
3.60
3.72
3.84
3.96
4. 08
4. 20
4. 32
4.44
4. 56
4. 68
4. 80
4. 92
5.04
5.16
5.28
5.40
5.52
5.64
5.76
6.00
6.24
6.48
6.72

0.945
0.947
0.953
0. 962
0.973
0.984
0.995
l.004
l.011
l.015
1.016
1.016
1.015
l.012
1.009
1.006
1.003
1.000
0.998
0.996
0.995
0.995
0.996
0.997
0.999
1.000
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perature studied where a large range of 0 was
covered was 0.79 'K by Achter and Meyer. ~' The
g(r) and S(k) determined by the variational method
are compared with their results in Figs. 4 and 5.
As is characteristic of most theoretical calcula-
tions done to date, the peaks and valleys of both

g and S show rather poor agreement with experi-
ment. However, the various experimental re-
sults at different temperatures also vary consider-
ably. Hallockso'~' has recently measured S(k) for
small k at a temperature of 0.38'K. Our results
are compared with his smoothed results extrapo-
lated to 0 'K in Fig. 6.

FIG. 6. Small k structure factor of liquid He (p = po):
solid line, Feynman prediction; circles, x-ray scattering
(Ref. 31}; dashed line, present calculation.

VI. CONCLUSIONS

The compressibility- consistent method for com-
puting radial distribution functions was found to
give very good agreement with the MD calculations
for a I/r ' effective potential in the particular case
studied. In addition, the bridge diagrams from this
calculation can be used to significantly improve
variational calculations of the ground-state ener-
gy. If me allow arbitrary variations of the wave
functions, as opposed to single-parameter varia-
tipns, the discrepancy between theoretical and ex-
perimental determinations of the energy is approxi-
mately halved.

It has been noted by other authors -"'"that
altering the constants in the Lennard- Jones poten-
tial or replacing it by other reasonable potentials
can give drastically different results for the ener-
gies. Hence, use of a superior potential might
yield far better agreement with experiment. Un-
fortunately, other potentials which have been pro-
posed have too much uncertainty to be very use-
ful at this time. '

There are several obvious mays in which the
present calculation could be improved. One way
would be to calculate the u(x) from the final result,
and use it to solve the compressibility-consistent
integral equation for a new B(~) Then .solve the
Euler-Lagrange equation and iterate. A better
method might be to approximate 58(r)/6g(r ) in
Eq. (2. 8) using Eq. (3.2) as a guide.
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The two three-body correlation terms occurring in the equation of motion for the density re-
sponse function are expressed in terms of three-point vertex functions. By neglecting re-
tardation effects in the latter, this leads to frequency-dependent effective kinetic and potential
energies K«(q, ~) and Vyf f (q Q)) ~ Kef f is expressed by the one-particle correlation functions
and V@f by the density correlation function. E~f and V,ff determine the density response func-
tion X(j, ~), the poles of which define the phonon-roton spectrum ~ . In addition, an eigen-
value equation is derived which is shown to have two distinct eigenvalues. While the first, is
again &, the second is identified with the diffuse second branch recently found by Cowley and
Woods. It is shown that in the limit q- ~ the two eigenvalues both merge into the free-parti-
cle spectrum. The limit q-0 of the two eigenvalues as well as the end-point singularity of
the phonon-roton branch are discussed in a second paper.

I. INTRODUCTION

The latest very detailed neutron-scattering re-
sults of Cowley and Moods' for superfluid He4

clearly show that the excitation spectrum con-
sists of two branches, the well-known sharp pho-
non. -roton branch and a very diffuse branch at
about twice the energy of the latter, which at
wave numbers q —3 A ' oscillates slightly below
the free-particle energy e, =h q'/2m (see Figs. 6
and 21 of Ref. 1). While it was already well
known that at large q the spectrum follows the
free-particle excitation curve' this second branch
has not before been followed down into the q re-
gion of the phonon-roton branch (see, however,
Ref. 3).

Another striking feature established in Ref. 1
but known already from earlier results of the
same authors' is the flattening of the phonon-ro-
ton branch at twice the roton gap, and its sudden
disappearance at q- 3. 5 A . This behavior is an
impressive confirmation of a prediction made by
Pitaevskii. 4

In this and a subsequent paper' we propose to
analyze the features mentioned as well as the be-
havior of the two branches in the long-wavelength
limit from an atomic point of view. This task is
essentially the same as that of the recent work of

Iwamoto who, starting from the atomic Hamil-
tonian, first eliminates the condensate variables
by a canonical transformation and then applies a
Bogoliubov transformation. His approximation
consists in a Tamm-Dancoff cutoff of states con-
taining more than two Bogoliubov quasiparticles.
Not surprisingly this leads to a two-branch spec-
trum which, for separable interactions, is ar-
gued to have the qualitative features of the spec-
trum found by Cowley and VYoods. Of course, a
higher-order Tamm-Dancoff cutoff would lead to
more than two branches, and the question may be
asked whether further experiments should not be
expected to reveal such higher branches, too.

Our analysis is based on the equation of motion
for the density response function. Similar equa-
tion-of-motion techniques have been previously
applied to superfluid helium by Etters and by
Tserkovnikov. ' Both these works are generalized
random-phase approximations (RPA) in the sense
that they apply RPA to certain generalized den-
sity operators. In this way Etters obtained a
generalization of the Bogoliubov approximation
and calculated the temperature dependence of the
sound velocity. Taking two essentially canonical-
ly conjugate densities, Tserkovnikov obtained
two poles of the corresponding Green's functions
which in the long-wavelength limit describe first


