
D. GRISCHKOWSKY AND J. A. ARMSTRONG

ture and input-beam intensity. Experiments with-
out the aperture and with beams with irregular
transverse intensity distributions showed that the
self-defocusing tends to smooth out the transverse
intensity profile of the propagating beams. Self-
defocusing always increased the beam divergence
in our results. There was no evidence of absorp-
tion of light by the vapor, and at 124'C for o ].ight
an upper limit for the absorption coefficient n is
given by the low-level steady-state result n = 0. 9
x 10 ' cm '. When multimode dye-laser output was
obtained, strong third-order mixing occurred in
the rubidium vapor and indicated that the response

time of the resonant electronic nonlinearity was
much faster than 1 nsec, the period of the beat note
between adjacent longitudinal modes of the dye
laser.
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This paper is concerned with the behavior of the autocorrelation and memory functions of
statistical mechanics as t ~. A simple calculation shows that for a large class of models
leading to power-law behavior, the two functions have opposite sign and common functional
behavior in the limit t

INTRODUCTION

The calculation of a typical autocorrelation func-
tion (acf) 4 (t) via an integrodifferential equation

—c (t) = — d 7 K(t T)c (T), c'(0) = 1

whose kernel is the appropriate "memory function

(mf), " is of great utility in modern statistical
mechanics. ' However, little is known, in general,
about the quantities 4 (t) and K(t). It is the purpose
of this paper to point out simple relations which
must exist between these functions when the long-
time behavior of the acf is of certain nonexponen-
tial varieties. These relations are summarized in
Eqs. (13). Since there has been considerable in-
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terest in the power-law behavior of acf's, perhaps
these results will prove valuable.

Our discussion makes use of 4(s) and K(s), the
Laplace transform functions of the acf and the
mf. The long- time behavior will be extracted from
the behavior of these functions in the neighborhood
of their dominant singularities. We begin by noting
that Eq. (1) implies

4 (s) = 1/[s +K(s)],
K(s) = 1/4 (s) —s .

(2)

(3)

would seem "physical" enough, and leads to
4(s) = (1/s)e '~'. The K(s) which follows also has
an essential singularity at s = 0. However, its in-
verse transform K(t) is - [I/(4w)'t2] exp(2t' )/t' 4

and is not acceptable.

ANALYSIS

We begin with the simplest case, when the asymp-
totic behavior is described by a single branch point
at s =0. A simple example is provided by the trans-
form pair

O, (t) = Z a t "«+O(e "),
@=0

Next, we list some of the assumptions necessary
to secure our results:

(i) The acf and the mf are real integrable func-
tions of t, 0 & t & ~.

(ii) The long-time behavior of the acf is "slower
than exponential" (e. g. , is power law). That is,
4(t)e"- ~ for all e & 0 as t- ~. The divergence may
be oscillatory. Thus, 4 (s) and K(s) are analytic in
the half-plane o = Res & 0. Neither may possess
poles at points on the imaginary axis. 4(s), which
must be singular on the axis, may have isolated
branch points there. Such points will be common to
4(s) and K(s). On the other hand, 4(s) may also
have essential singularities upon the axis. We also
make the following assumption:

(iii) The only singularities of 4(s), and, there-.
fore, of K(s), upon the imaginary axis are branch
points. All other singularities s„ in the left (cut)
plane have ~s„l& &3~ 0.

An example of the type of function that is accept-
able is as follows: Let 4(t) have an asymptotic ex-
pansion, as t- , such that the error after n terms
is exjonentially small. (The individual "terms"
may consist of sums of powers, multiplied by ex-
ponentials; see Doetsch. ') Then, the sole singular-
ities on the imaginary axis are branch points.
It is not easy to find an example of a 4 (t) satisfying
(1) and (2) but leading to a 4 (s) whose dominant
singularity is an essential singularity. Thus,

( ) (2 g(,
)

1 cos(2t' '--,'o')

4'o(s)= 2 a I'(1 —y )s "m +g(s),
Pl

(5)

4 (ne'") = 4 o(n) ~ iC g(n) (6)

on the edges of the branch cut. In case A we must
have C,(7!)- 0 as q -0. Now we deform the inver-
sion contour around the singularity and along a
portion of the cut. The contribution from the por-
tion encircling the branch point vanishes (in cases
A, Ao, and B) and a simple calculation gives

4'(t)- —(l/v) J 'd7!4,(q)e "', (I)

with e~& ~e, ~, t-~. In cases A and 8, a, similar
treatment gives

K(t)- —(I/~) J, dye, (q)e-"',

with

K(qe'") = K, (q) + iK, (q)

1
kift +~ ~

4(ge )

Thus,

4 i(n)K(t)- — dq - -(
)

'-

( )
e "'

Under case A (the "normal" case) the principa].
contribution to K(t) is

where g(s) is analytic in a neighborhood of the ori-
gin. If some

y. =p 9 =1, 2, ".)
the corresponding term in Eq. (5) is to be replaced
by

a [(-) /Q —I)!]s ' lns.

If the y„(and a ) are complex they occur in pairs.
We shall not make use of a specific form of 4 (s) in
the following.

By hypothesis, the transform 4 (s), originally de-
fined in a right half-plane may be continued into
a (cut) half-plane Res &&~& 0. The asymptotic be-
havior in t is determined by the behavior of 4(s) in
the neighborhood of the branch point. We shall dis-
tinguish the case A in which 4(s) approaches a
unique, finite limit as s -0 along any ray in the cut
plane. [If 4 (0) is zero and 4 (s) = O(s), special dif-
ficulties arise. This unusual case will be denoted
Ao. ] Case A is somewhat of a generalization of the
requirement that 4 (0) exist as s - 0 along the posi-
tive real axis, i.e. , that the "diffusion coefficient"
exists. To illustrate via our simple example, Eq.
(5), let the y be ordered so that Reyo + Re y~ &

Then, if Redo~ 1, the case A behavior holds. If
1& Reyo& 0, the acf approaches zero, but 4(0) does
not exist. We call this case B.

Since 4 (s) is real for real s, the continuation pro-
duces a function which assumes boundary values:
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1
K(t) - -

2(0) dye, (g)e ", (12) r(i —n —ig), r(1 —n+ia)
(18b)

from which we deduce

case A: e(f) - —e' (0) K(f), (13)

which, along with the trivial relation [see Eq. 2]

[j K(t)dt][J e(t)dt]= I =K(0)e(0), (13a)

are our most important results. Thus, the acf and
the mf have opposite sign and common functional
behavior at long times. Their areas are related
simply. In the specific case of the velocity acf,
we have

provide an illustration. Note that eo(t) describes
an oscillatory approach to zero (equilibrium), as
opposed to the damped approach of example (4a).
We return to the general case where, for t-~, we
have

K(i) d, -ni;~i .(n) — (n)
2wi„o e,(g)e (g)

, ;., e,(n) —e (n)
e.(n)e (n)

4 (f) -[(m/ksT)D, ] K(t), t- ~ (14) where

eo(f) =at- +O(e-")
(0& n& I)

to(s) =, +g(s)

(4a)

(sa)

in conventional notation. In case Ao [vanishing
e(0)] we expect 4 to vanish more rapidly than K,
while in case 8 [infinite e(0)] we expect the reverse
We shall consider the latter through a special ex-
ample.

Suppose that

Since e(s) is real when s is real, we infer that
e,*('g)-=e (g), and e~(n)—= e, (q). Then

r~
K(i)- 1 dq, -, , (@(n)—@ (,n))

& e.(n)e (n)

io)t f
e.(0)e (o) „,&~ ~ "lc(n) - e (n)],),

e(»+ Re"') = e,(q), e(-i+ + ge'") = e, (il) (20)

with n real and g(0)o 0. Then, the estimate in Eq.
(11) continues to hold for K(t), with while

(21)

One computes, using Eq. (1S),

1 —n sinai(1 —n)
K(t) -—

ma t

1 —n sinai(1 —n)

(is)

(18)

e(i)- ——Im(e'"'J
o danie "'[e,(g) —e (q)]} . (22)

Since

the relation between K(t) and C (t) is not as simple
as before; the asymptotic functional forms, though
similar, differ in phase as well as amplitude.

As a final point, let us compare the mf

i i (1 P&I-
"faster, " as expected. Also, Eq. (13a) does not

apply. The requirement that & be real can be re-
laxed [though C (t) remains real] a,nd leads to a
longer calculation. The long-time behavior of 4
and E is oscillatory,

e(t)-c,t ocos(P lont+c )o,

with the related acf
2

k(t) = (u e'"«) = , e(f)-,-—
where

e(t) = (ue" u) .

(24)

(2s)

by hypothesis, and one can show easily that
~K(i) ~

&i o .
We have dealt so far only with the case of the

dominant singularity lying at s = 0. Suppose, in-
stead, that the t- ~ behavior is regulated by a
pair of branch points lying at s = +ioi and that e(s)
has case A behavior near the singularities. The
function pair

Our analysis makes it possible to compare the long-
time behaviors of k(t) and K(t). One sees that in
the (normal) case A these functions differ by two
powers oi' f, k(t) falling to zero more rapidly. This
result is of some interest in the theory of Brown-
ian motion. 5
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Four approximate formulas, due to Wannier, Kihara, Frost, and Patterson, for the field
dependence of ion mobility are tested by comparison with special cases for which accurate
theoretical results can be found. The Kihara result, an expansion in {E/N), has only limited
range. The Frost-Patterson formulas at high fields apply only to rigid-sphere cross sections.
The Wannier free-flight theory yields a formula with one parameter that can be chosen once
and for all to fit the zero-field Chapman-Enskog result; without further adjustable constants
the formula gives reasonable results at medium and high fields (largest deviations less than
20lo in the special cases tested), and is applicable to any ion-neutral mass ratio and force
law, including the case of resonant charge transfer.

I. INTRODUCTION A. Wannier Free-Flight Theory

It is well known that the drift velocity of an ion
in a neutral gas depends on field strength. No

general expression for the field dependence is
known, although several approximate formulas
have been suggested. The purpose of this payer
is to test these approximate formulas by compari-
son with several accurate theoretical results for
special cases, and to suggest a connection formula
that can be used at all fields for all ion-neutral
interactions. The most extensive test occurs for
the case of light ions and heavy neutrals (I orentz-
ian mixture), for which the drift velocity can be
found at all fields by numerical integration.

Dimensional arguments suffice to show that the
drift velocity v& depends on the electric field
strength E and on the number density of the gas N
only through the ratio E/N. At low fields, v, is
directly proportional to E/N for all ion-neutral
interactions, and is given by the Chapman-Enskog
kinetic theory. At high fields the nature of the
ion-neutral interaction determines the dependence
of v~ on E/¹ for example, it is known that v„
varies directly as E/N for an r interaction po-
tential and as (E/N)'~2 for a rigid-sphere interac-
tion. '

In 1953 Wannier indicated how to obtain a sim-
ple interpolation formula for v„. Since his result
has been almost universally overlooked, we in-
dicate the line of argum nts leading to it. An ion
of mass m and charge e undergoes an acceleration
eE/m between collisions. If the ion lost all its
momentum on every collision, the drift velocity
would be (eE/m) v, where r is the mean time be-
tween collisions; but the ion loses only a fraction
of its momentum on each collision. The mass de-
pendence of the momentum loss on collision can be
calculated from the equations of momentum and
energy conservation; if we average this momentum
loss over all collisions and ignore subtleties about
the average of a product and the product of the
averages, we obtain

where I is the mass of a neutral molecule and ]
is a factor of order unity that may depend in a
complicated way on the ion-neutral force law and
the masses m and M. The mean free time is given
by

v = I/Nv„Q,

II. APPROXIMATE FORMULAS

In this section we briefly outline four formulas
which give v„as a function of E/N.

where v„ is the mean relative speed of ions and
neutrals and Q is the average momentum-transfer
cross section. It is reasonable to take v„as the
root-mean-square speed,


