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We calculate the roton-limited mobility of ions in superfluid He? for temperatures below
~1,7°K. Taking, asa first approximation, a constant ion-roton transition-matrix element,
which we treat as an adjustable parameter, we find good agreement with experiment for both
positive and negative ions. This model calculation indicates that the most mobile of the re-
cently discovered “‘exotic’ negative carriers is a very light ion.

INTRODUCTION

The mobility of a slowly moving ion in super-
fluid helium is limited by collisions with the ele-
mentary excitations of the liquid. Positive and
negative ions have been studied extensively in the
last ten years. !~® The negative ion is an electron
which creates around itself a large spherical bub-
ble of radius ~ 16 A at zero pressure; in contrast,
a positive ion forms a solid helium sphere of about
6A radius, surrounded by high-density liquid (the
“snowball” model). Very recently Ihas and San-
ders” have produced new types of “exotic” negative
carriers in superfluid helium, but their structure
is still unknown.

At temperatures below ~0. 6 °K the mobility of
ions is limited mainly by collisions with thermal
phonons. At those temperatures mobility mea-
surements have been successfully explained by
considering the phonon-ion collision as the scatter-
ing of a classical sound wave by an elastic bubble
in the case of negative ions, ® and by a hard sphere
in the case of positive ions.®

At higher temperatures, above ~0. 8 °K, the
ionic mobility is limited primarily by collisions of

the ions with rotons. In the “kinetic” regime 0. 8
£TZ£1.7°K roton-roton scattering can be ne- -
glected, while above ~2°K, roton-roton scatter-
ing is so frequent that the rotons appear to the ions
as a viscous fluid. Several mobility experi-
mentsi®~*2 have been performed in the kinetic re-
gime, and they all show a temperature dependence
of the mobility u significantly different for positive
and negative ions. The experimental results have
been put in the form

IJ.;IOCE-A*/T , (1)

where the subscripts + refer to positive and nega-
tive ions. The values found for A, are around
8.65-8.8°K and for A_around 7.7-8.1°K. Mea-
surements of exotic negative carriers in this tem-
perature region show that the mobility tempera-
ture dependence for the “fastest” carrier is of the
form (1), but with an exponent A* =9, 6 °K. Ihas
and Sanders have suggested that this carrier might
represent a negative helium ion He" inside a bub-
ble.

The exponential behavior of (1) is characteristic
of the roton-dominated regime and is primarily a
reflection of the temperature dependence of the
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density of thermal rotons. The most simple ki-
netic arguments give a mobility formula in this re-
gime

e/“=pnovrel~e-A/Tc ’ (2)

where p, is the roton normal mass density, ~7°!/?
xe™/T, A is the roton-gap parameter, v,o,~ T/ % is
the average relative velocity between rotons and
ions, and ¢ is a mean roton-ion cross section.
While this simple picture gives a first account of
the mobility, it fails to explain the differences in
temperature dependence observed for positive and
negative ions. These differences arise, as we
shall see, when one takes into account the detailed
roton-ion scattering kinematics allowing for recoil
of the ions due to their finite mass.

The effective mass of the negative ion is essen-
tially the hard-sphere hydrodynamic value 3p,

x (4 7ma®), where a_ is the bubble radius, and p, is
the mass density of liquid He*; this mass is
~170m,, where m, is the He* atomic mass. The
effective mass of the positive ion is a sum of the
mass of the core, 3 ~ 1.7 p,(4na’/3) (where a, is the
core radius), plus the hydrodynamic mass due to
the backflow of the fluid surrounding the ion. As
shown in Appendix A this mass, calculated clas-
sically, is just slightly less than the classical hy-
drodynamic mass 5(3ma®)p, of a hard sphere. The
net effective mass is ~40m,. The excess mass of
liquid outside the core, arising from electrostric-
tion of the liquid by the ion, does not directly enter
the effective mass needed to calculate the ionic
mobility.

The problem of the roton-limited mobility of
ions in He!, including effects of ionic recoil, has
been considered by Bowley, 13 in a general formula-
tion of the problem in terms of the van Hove scat-
tering function of the impurities and the ion-roton
scattering amplitudes. The basic problem in cal-
culating the mobility explicitly is a lack of knowl-
edge of the matrix elements for ion-roton scatter-
ing.- Microscopic theory has not yet cast much
light on this problem, though Iguchi' has given a
model for scattering of rotons by fixed nonrecoil -
ing ions via an assumed two-body potential. Two
simple phenomenological approximations have been
used previously: One'’ is to take the matrix ele-
ment to be constant, while the second® is to take
the square of the matrix element to be inversely
proportional to the densities of initial and final
roton states, so that an effective roton-ion scat-
tering cross section is constant. For both these
cases Bowley presents an expression for the mo-
bility.

The primary purpose of this paper is to compare
the predictions of simple theoretical models for
the matrix elements for ion-roton scattering with
the recent experiments™!*!% on the mobilities of

positive, negative, and exotic ions in superfluid
He. To do this we first, in Sec. II, present the
derivation, starting from the variational principle
for the ionic Boltzmann equation, of the ion mobili-
ty in the kinetic regime, in terms of the transition
matrix elements for ion-roton scattering. We then
discuss some considerations on the form of the
matrix element and try to make contact between the
several phenomenological approximations for it.
Finally, in Sec. II, we give the explicit calculation
of the mobility for the case of a constant s-wave
transition amplitude for ion-roton scattering, and
consider in a simple model the effects of momen-
tum dependence of the transition-matrix element.
The results, which for the case of a constant ma-
trix element are mathematically the same as Bow-
ley’s, are applied to a detailed comparison with
experiment in Sec. IIL

II. CALCULATION OF IONIC MOBILITY

To calculate the ionic mobility, we assume the
ions to be drifting, with a mean velocity ;D, in
response to an externally applied electric field g
Through collisions of the ions with the excitations
of the helium, the ions remain in a steady state
transferring to the excitations the momentum
gained from the field. The ionic distribution func-
tion f; is determined from the steady-state lin-
earized Boltzmann equation

eé'ﬁ,,f‘;: —*E" [ fome (Lt mye) = fpo 1y (14m,)]
p'kk’

X r(i;; E"ﬁ,’ EI) ) (3)
where e is the ionic charge;
*
£3= e, @an®p/m*) @)

is the equilibrium ionic distribution function,
where n; is the density of ions per unit volume, m*
is the ionic effective mass, and f=1/kT; n, is the
helium excitation distribution function; and
2 2
I'(p, k~p’, k')=27” b (2—7%; + Wy 'ZPW - ww)
x|(3,F |7|5 B ©
is the rate of transitions in which an ion of mo-
mentum ﬁ scatters to momentum i)" from an exci-
tation of initial momentum K and energy w,, and
final momentum K’ and energy w,. .

For sufficiently low temperatures the mean free
path [,_, of the excitations against collisions with
other excitations is > R, the effective radius of
interaction between an excitation and an ion. In
this kinetic regime, the modification of the exci-
tation distribution function in the neighborhood of

an ion can be neglected. The roton-roton collision
time is given by!®

-1 ~ 18 p1/2 ,-A/T
Troterot = 1. 3X 107 T/ %e sec ,
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while the mean relative roton-roton thermal ve-
locity v, = (2«T/u,)" % where u, is the roton
mass parameter. As we shall discuss later, the
radius of interaction R is on the order of the ionic
radius aq, =6 A for positive ions and =16 A for
negative ions. At T'=1.2°K, the roton mean free
Path L. o4rot = Trot-rot Ure1 iS ON the order of 170 A,
> R. However, by T=1.8°K, I ... becomes
~18 A, which is on the order of the bubble radius.
The assumption I, _... > R is well satisfied below
1.7 °K, but it breaks down at higher temperatures
where the system enters the hydrodynamic regime.
For sufficiently small densities of ions, excita-
tion-excitation frequencies 7!, are greater than ex-
citation-ion collision frequencies 77!,. Thus ex-
citation-excitation collisions bring the excitations
back into thermal equilibrium, after an excitation-
ion collision, before another excitation-ion colli-
sion takes place. The excitation gas dissipates the
momentum gained from the ions to the walls in a
characteristic time 7,. At sufficiently low ion
densities 7, < 7., so that the excitations are not
dragged by the drifting ions, but rather are in
equilibrium with the walls. For excitation mean
free paths < L, the characteristic dimension of
the system, 7, is given by the diffusion result

TD"N" To-e (L./le-e)z . (6)
Thus for
Te-e (L/le-e)z < Te-l ’ (7)

ng in Eq. (3) can be taken to be the equilibrium dis-
tribution function

)= (eB* - 1)1, (8)

Now in the roton-ion problem we can use the esti-
mate

-1 ~
Trot-1~ Urot Oy »

where o~7R? is a mean roton-ion cross section.
Condition (7) is therefore equivalent to

ny < lrot-rot /ch . (9)

Since L~1 cm, the condition for taking the exci-
tations to be in equilibrium with the walls is #n,
<108 cm™ at T=1.2°K; usual experimental ion
densities' are ~ 10% cm™.

If we now write

f3= L+ &;/k7) £3 (10)

and use the detailed balancing condition 9 ng(1 +nxj.)
=£% #2,(1+#2), the Boltzmann equation (3) becomes

(8 -5/m*) == T (@;-8;) Fm)(1+nd)T .

Dk’ (11)
The mobility is given in terms of <I>; by
€D=u§=Z); P& fY/N, m* kT, (12)

R. BARRERA AND G. BAYM 6

where N, is the total number of ions present.

The explicit solution of (11) for ®; is nontrivial;
in order to calculate u, we turn to the variational
principle for the Boltzmann equation. As is well
known, !" the positive structure of the kernel on the
right side of (11) implies that for any trial func-
tion ¥,

(Z} éaeg-f)—fg/m*)J: (uN,kTe8%™
»

st (Vg = W )?F 0n0(1 +nd) T
< =0 *\2 . (13)
(3 ¥3e & bS5 /m*)
The right side of the inequality, evaluated for
any ¥, is thus an upper bound on (uN; kTe8?)™.
We choose the simplest trial function

\1'5-:50 ‘—;D 3 (14)

corresponding to the ions being in a drifting equi-
librium, and find from (13) an expression (actual-
ly a lower bound) for the mobility

e 1
u 6N kT Z

PP kk

® -0 fomA+m) T, K~ P, K) .
(15)

How close is the trial function (14) to the true
&, ? At low temperatures where the mobility is
phonon limited, this trial function becomes exact
as m*~ <, The mobility expression (15) reduces
in this case to that derived in Ref. 8. In the roton
regime, as a consequence of the roton-ion scatter-
ing kinematics, (14) will not, for general scatter-
ing amplitude (p,K|T|p’,k ), be the exact solution
in the limit m* = «, Furthermore, this limit is
not realized in practice; since thermal ion mo-
menta (m*kT)' 2 are on the order of typical roton
momenta, ion recoil cannot be neglected. The
true solution &; will be of the form vp-pa(p); the
mobility expression (15) will be good to the extent
that the correction factor a(p) is slowly varying
over the range of thermal ionic momenta.

The difficulty in evaluating the mobility (15) in
the roton-limited regime is the lack of knowledge
of the scattering amplitude (p,K|TIp’,k’). To
understand the expected structure of the matrix
element, it is instructive for us to consider first
the calculation of the cross section for a roton
scattering from an ion of mass m* initially at rest,
i. e, ﬁ= 0. Let us assume that the matrix element
t(%) for this process depends only on &, the initial
roton momentum. Since the incident roton velocity
is 18w/8k| = |k —kyl/u,, where k, is the momen-
tum at the roton minimum, the total cross section
is given by

o=(u,/| b =kol) [tR)|?p(w) , (16)

where w = (k - ky)?/211,, and the density of states
p(w) is given by



|

| ar 2n _[(k-ky)®
P GF & ( zu,o

(# -k)? (& -K)
- Zuro T 2mx ) ()

Carrying out the integral we find, in the limits
Ik =Ryl <Ry and m*>> ., that

m* |k - k|

‘nﬁ‘ (w$2kg/m*)

plw)=

* -
= 2Rkl - - 208 /e )Y

(w> 2k§/m*) . (18)

The density of states peaks at the energy w= Zko/
m*. For @< 2k0/m* the cross section is given by

o=(m* p,/m*) | t(kR)|?. (19)

We thus expect that for o << 2k%/m* the matrix
element approaches a constant value

|t(®)| = 7 %R/ (m* u, )V ?; (20)

then o= 7R% and the effective scattering length R
is expected to be on the order of the ionic radius.

On the other hand, for w> 2kE/m* correspond-
ing to extremely massive ions, we have

o=(u, B/t w) | tk)|? . (21)

If the cross section is constant in this regime,
say o=7R% then one would expect

7R, |k -yl
=2 2o (22)
2172,

[t(r)]

This limit is that considered by Iguchi!*; in his
model for scattering of rotons by fixed (m* — )
ions via a two-body potential V(r), the |k -k,| de-
pendence of #(k) arises from the fact that the den-
sity of intermediate states in the roton-ion potential
scattering behaves as |k —ky|", as in (18) when
m* -, One cannot infer, however, from his cal-
culation how to generalize the matrix element to
the case of recoiling ions (m* finite).

Generally, one might expect the matrix element
to have a structure similar to

h‘ |k =kyl® m*
|t(k)|2 LI (Rz R? —ng—%) (23)

A first-principles calculation of the complete ma-
trix element (pK|T|p'K ) represents a challenging
theoretical problem. In the following we shall ex-
plicitly calculate the mobility assuming that the
matrix element is given simply by the constant val-
ue (20) or, equivalently,

méR

(p, K| T|p’,K')= mm?zc

p (24)

;,,‘i’ ek’ ?
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where § is the volume of the system; R shall be
fitted to experiment. As we shall see from this
fitting, R~9. 81 A for positive ions and 18. 65 A for
negative ions (values close to the ionic radii). We
shall also consider more qualitatively the effects
of a momentum-dependent term in 7, such as the
Réterm in (23). We turn then to the calculation
of the mobility using (24) and (15).

Rotons can be described by Boltzmann statistics,
and thus ng. in (15) can be neglected and ng re-
placed by e®“¢, where

wp= A(T) + (& — ko) 2/21,

is the roton energy. The roton-gap parameter A
depends on 7T, as do ky and u,. The mobility (15)
then becomes

d”k ase’

3p2
e TR )3(kk

w 3kTm*p, 0 ) @n)° @n

S(k K);

(25)
following Bowley'® and Josephson and Lekner'® we
have introduced the function

(5+E—E')2
Tamr 9%

S (k,k') ———Z‘f, ( + Wy -

(26)
S is readily calculated by first gxponentiating the
energy delta function; then the p summation gives

T _ m*ﬁ )1/2
S(k’k)—<27r|k—k7la

Bm* (1‘;_1‘{'/)2 2
Xexp['—m (wk_wk'——ZF . (@m)

The calculation of the mobility is reduced to a
straightforward integration:

5 a3\1/2 2

e _ ™ B R 3 3p e _ %!

u_<2m*> 3ﬁ3u,(2w)6fdkdk |E-K|
m(wk—w,,

_ Wt Wp (E—EI)Z i .
XeXP[ B( 2 2E-k2 | Bm*

(28)
We carry out the explicit integration in Appendix
B and find the final result

f=%— (2m)Y % p, veoy RPF ( BRE /4m*) ; (29)
here
Ky B B e FAM
Pn= 317%5( 2n ) (30)

is the roton normal mass density, v, = (8u,)™/?
is the mean roton velocity, and

(1+2)K,(2)], (31)

where K,,(z) is the Bessel function of imaginary
argument of order % (and K= — 8K, /9z).

The temperature dependence of (e/u)e is
contained entirely in the function F(gkZ/2m*) in

F(z)=2z" +e % [2Ky(2) -

BA(T)
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this model calculation. As a consequence, the
temperature dependence of the mobility (29) de-
pends, as observed experimentally, on the ionic
effective mass. The function F(z) has a single
maximum at z=0. 60, while for small z,

F(z)==-z(} —2) (y+logybz) + 32+ .. , (32)

where y=0, 5772157 is Euler’s constant. This
latter expression for F is accurate over the range
of experimental interest for positive and negative
ions (z=11.1/m* T, where m* is measured in He*
masses and 7T in °K). In the temperature range
1.0<T<1.7°K, F(z)decreases with T in the case
of heavy ions (m* > 15m,) and increases with T for
light ions (m* < 15m,). As will be seen in Fig. 1,
the slope of log o[ (e/ 1n)e® ], as afunctionof T, de-
creases with increasing effective mass.

As z~0, F(z)~0 as - $zlog;gsz. Thiswouldim-
ply an infinite mobility in the case of infinitely
massive ions. The problem here is the neglect of
momentum dependent terms in the matrix element.
The source of the logarithm can be seen in the den-
sity-of-states factor p(w) [Eq. (18)] in the limit
m* = «; there p(w)~1/1k —ky!. The integration of
this density of states times a constant matrix ele-
ment (squared) has a logarithmic singularity at %
=ky. In order to study the effect of momentum-
dependent terms in [(pK|TIp'k’)|? we calculate
with a simple model expression, analogous to (23),

2,4
-y 7
K| T|pE)| 2= ——
l<liv l [? >| m* 11,9
1 ! 2
2 o2 [z(k+E) —k)® m*
X (R + Ry zko —“r 5;&’;,&, . (33)

This approximation is symmetric in Kand k. The
calculation of e/u proceeds as before, with the re-
sult

e/u=+@mY%p, 0.4 [R®*F(z)+R3F(2)],  (34)
where
Fiz)=%z2%-%e?[Bz+3)K,-(Bz-1-2NK,].
(35)
The calculation of F, is analogous to that of F given
in Appendix B; the integration involves simply an

extra factor »? in the integrand in (B4). For small
z we find
Fie)=—kF@)+3-Fz+ee- . (36)

The mobility then approaches a finite limit ~ R;® as
m* - o

e/lJ- Ing (%")“ aR? PnUrot » (37)
similar to the simple form (2).
III. COMPARISON WITH EXPERIMENT

In evaluating the mobility we parametrize the
temperature dependence of the roton minimum
A(T) as follows. The temperature dependence of

the roton energy arises as a consequence of both
the thermal expansion of the medium as well as the
interaction of the given roton with the thermal ro-
tons. This latter interaction gives rise to an en-
ergy, in the sense of the Landau—-Fermi liquid
theory, equal to fn,(T), where f is the effective s-
wave roton-roton interaction and n, o« TV 2" ig
the number of thermal rotons per unit volume, '°
The thermal expansion changes the roton energy
by an amount

o8\ s 3p

KaT)e“' 8p 8T’

where p is the density. To a first approximation,
8p/8T in the roton region is given by —p(84/3p)

X (8m, /8T)/my s%, where s is the first sound ve-
locity. Thus the roton energy can be written in the
approximate form

A(T):A(0)+[ P (E—A-)z]n,. (38)

my Sz ap

Since n, depends on A(#) this is actually an equa-
tion for A(T). Fitting this form to recent neutron
scattering data of Woods® we find

A(T)=8.68 = 35,63 T/ 22T/ T (39)

where A and T are in °K. We generate A(T) for
T<2.05°K from this equation; at higher tempera-
tures we take A(T), when used, directly from the
neutron scattering data of Henshaw and Woods. !

In the actual computation of the integrals in (28)
used here, we have taken into account the asym-
metry of the roton spectrum about the minimum
ko by writing

wp= g+ (B = ko) /20, + Ay (B —kg)® + By (B — Ry)*
(40)

in the neighborhood of 2,. The values of u,, A;,
and A, have been calculated®® using a least-squares
fit to the recent Woods data®: p,=0.154m,, A,
=(19.73/7%) (°K A%), and 5, = - (80.34/7*%) °K A%).
For thermal rotons at 7'=1. 5 °K the corrections
to the parabolic spectrum are ~10%; the correc-
tions here to F(z) are ~+ 8. 2% for negative ions and
~+13.5% for positive ions; the corrections in-

_crease with increasing 7. To calculate these cor-

rections it is only necessary to expand (28) to first
order in A4 and second order in Aj.

To compare the calculated roton mobility with
experiment we must first estimate the contribution
of the phonons in limiting the mobility. Phonons
and rotons contribute additively to u~!. The pho-
non contribution to the inverse mobility is given

by®
(£> -
M /on

where #, = (®* - 1)"! and o, (k) is the momentum-

© drk' om,
&rth® o T “n
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transfer cross section. For positive ions we take
the cross section to be given by the mean value 240
A% ® while for negative ions we use the more de-
tailed cross section given in Ref. 8, taking as pa-
rameters there a=17.0 A, y,=4.26, and y,=1. 10;
these parameters fit the recent low-temperature
mobility data of Schwarz!? to within 5%. Compari-
son of the calculated phonon mobilities with experi-
ment shows that for negative ions the contribution
of u;,‘l to the total inverse mobility ! is about 8%
at 0. 8 °K dropping to 2% at 1.0 °K; for tempera-
tures as high as 1.7 °K, it is only 0. 5%.

We show in Fig. 1 the experimental inverse mo-
bility, times ¢®* ), as taken from the most recent
data of Schwarz, ! Brody, !! and Kuchnir, ? as well
as the data of Ihas and Sanders” for their fastest
negative exotic carrier; A(T) is taken from Eq.
(39). The inverse mobility data with the phonon
contribution subtracted out (when the correction is
noticeable) are shown as black dots immediately
below the corresponding data points of Schwarz.

The solid lines in the figure are calculated from
Eq. (31), taking m* = 170m, for negative ions and
40m, for positive ions, and fitting the scattering
length R by making the theoretical and experimental
values coincide at 7= 1.2°K. This gives the val-
ues R,=9. 18 A for positive ions and R_=18.65 A
for negative ions, values quite close to the
geometric size of the ions. In the kinetic regime
T<1.7°K, the agreement between theory and ex-
periment is better than 10%. The model gives the
observed steeper slope for negative ions, com-
pared with positive ions.

The discrepancies between the model and experi-
ment can in part be attributed to momentum-de-
pendent terms in the scattering-matrix element.
As can be seen from the sample form [Eq. (33)] for
|T12 the momentum-dependent terms should in-
crease the scattering at larger roton energies,
i.e., higher T. This tends to flatten out the m*
=170 and 40 curves towards higher 7. We have
from (34) and (36) in this case

e 11.1
-~ (R -§R)) F(m*T) +§R} (1

6. 17
m*T

). @

with 7 in °K and m* measured in He* masses. We
have not attempted to do a precise fit to the data
using this form, since the uncertainties in the ro-
ton-limited-mobility data points in Fig. 1, together
with the uncertainties in the structure of the mo-
mentum-dependent terms in the matrix element,
makes an accurate fitting lose its significance.
Such a fit awaits a better theoretical model for the
roton-ion scattering-matrix elements.

At higher temperatures the kinetic theory is no
longer valid because hydrodynamic-collision ef-
fects begin to be important; the calculation of the
ionic mobility between ~ 1.7 and 2.0 °K would re-
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FIG. 1. Calculated roton-limited mobilities. The
solid curve labeled 170 is for negative ions with m*
=170m, and R=18.65 4; the solid curve labeled 40 is for
positive ions with m* =40m, and R=9,81 A; the solid
curve labeled 2 corresponds to m*=2m, and R=8.86 A;
and the solid curve labeled 10 corresponds to m*=10m,
and R=4,65A. The broken curves represent the Stokes
mobilities as calculated in Ref. 24; the dashed curve is
for the positive ion and the dash-dot curve is for the nega-
tive ion. With the exception of the black dots the restof
the symbols correspond to data points. As discussed in
the text the black dots are the result of subtracting the
phonon contribution from the data of Schwarz (Ref. 12);
they lie directly below their corresponding data points.

quire a more general solution of the Boltzmann
equation. At 2.0°K the system reaches the Stokes
regime; we show as dotted curves in the figure the
Stokes-law mobility calculation of Dahm and San-
ders. %

We consider briefly the possible errors in the
data points as shown in the figure. The accuracy
of the mobility measurements of Schwarz, Brody,
and Thas and Sanders is ~3%, while that of Kuchnir
is accurate to within 10%. The neutron scattering
data from which A(T) is determined is accurate,
for example, to 4% at T~1.5°K. The total error
in uef ) can thus be ~6% at 1. 5°K; similarly
one finds a cumulative error ~4% at T=1°K. The
deviations between theory and experiment go the
same way with temperature for both positive and
negative ions; this could arise from an error in
A(T).

The error in the determination of the phonon-
limited mobility is important only for negative ions
at T<1°K. For example, at T=0. 8 °K the phonon
contribution to the mobility is ~40%; thus even an
error as big as 10% in u;}, will produce an error of
~4%in p;l,. At higher temperatures, say 1°K,
the phonon contributions drop down to 15%; thus a
10% error in p.;,l, will produce an error of only 1. 5%
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The temperature dependence of the ionic radius
and hence m* (for T< 1.7 °K) gives rise to changes
in the calculated mobility of less than 1% for both
kinds of ions. A choice of a smaller ionic mass
gives a better fit to experiment for both types of
ions; however, this seems inconsistent with pres-
ently accepted ionic models.

There is still no model for the structure of the
exotic negative carriers. The mobility measure-
ments cover only a small temperature region (0. 95
<T<1.2°K) and show that p~!ef*™ increases with
temperature. This is consistent with the behavior
of the calculated mobility in the case of very light
ions (m* < 15m,). In Fig. 1 we show a nlot of the
calculated (e/p) &** ™ for effective ionic masses
of 2 and 10m, with corresponding values of R of
8.86 and 4. 65 A. The results are in agreement
with the experiment within the measured tempera-
ture region. Extension of the measurements to a
wider temperature range are clearly needed.
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APPENDIX A: CALCULATION OF HYDRODYNAMIC
MASS OF POSITIVE He* ION

In this appendix we calculate classically the hy-
drodynamic mass of the positive helium-ion snow-
ball moving in superfluid helium with slow velocity
U. We characterize the snowball as a solid core
of radius a plus a polarization potential &(r), which
exerts an attractive force in the fluid producing an
increase in density in the surrounding liquid.

The snowball hydrodynamic mass m}is given by
one-half the coefficient of %2 in the expansion of
the total fluid energy E in the presence of the mov-
ing snowball. By symmetry the linear term van-
ishes and we have

E=Ey+smiub+... , (A1)

where E, is the fluid energy with the snowball at
rest. The total energy of the liquid can be written
as

E=[ d®r[smn’ @)o@)?+8' @) +n'(r)2(T)],

(A2)

where m is the He! mass, n'(i:) is the fluid number
density, v(r) is the fluid velocity field, and &’(7) is
the fluid internal energy in the presence of the
moving snowball; »' & is the electrical contribution
to the fluid energy due to the polarization potential.
We denote by #(r) and & (r) the number and internal
energy density of the fluid were the snowball at
rest at its instantaneous position at time ¢#. Then

6
to second order
E-E,- f d31f<% mn Eo@)?
+Hu@) +2@)] [2' () - n)]
+§ %‘i— @ [n' @) —n(F)F) , (A3)

where u=088/6n is the fluid chemical potential.
However, in thermodynamic equilibrium the
total chemical potential u(r)+@(r)= u. is constant
everywhere in space; thus the term ~ ., in (A3)
vanishes since the integrals of n(T) and #’ () over
all space both equal the total number of particles
in the system.

The fluid hydrodynamic equations are

on (T, £)

o +V.[n @ 1T, 0)]=0, (A4)

(P0G 0. 9156, 1)
=T, ) +o(@, )] . (A5)

For uniform motion of the snowball, »(r,)=v(r
—ut, 0); thus the left side of (A5) is second order
in u. To first order inu,

T[u'@, t)+o(r, 1)]
=% (42 @I G, 0 =05 0]) =0

This means that (81/6n) (n’ —») must be constant
everywhere in space; but since at infinity »’ = n,
this constant must be zero. The change in density
n' —n is therefore second order in # (as is apparent
from symmetry considerations) and it can there-
fore be neglected in (A3). The second-order con-
tribution to E — E, is simply [ immn(r) v(r)%

To calculate \7(;) to first order in # we observe
that for uniform motion n'(T, ) =n'(r —=u ¢, 0), so
that (A4) becomes

V. {n(, ) [o(T, t) -u]}=0. (A6)

The boundary conditions on this equation are that
at the surface of the hard core of the snowball at
radius g, the component of v — U normal to the sur-
face vanishes, while v(r)~0 at =, The solution to
(A6) is given in terms of the classical hard-sphere
solution by

n(®) [V(T) = 1] =0 [vess (T) - 1], (A7)
where
Vs = (a¥/273) (37 @- 7)-1) (r=a) (A8)

is the flow produced by a hard sphere (when instan-
taneously at the origin) and ng is the fluid density
at infinity. Thus, from (A7),
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V(E)= T V() + (1 —“"l"‘> u. (a9)  the range of x is Bk —&')%/8m* < x < Ble+k)?/8m*.
n(7) n(r) Then we introduce the variables X and v by writing

Substituting (A9) into 2m[n(») v(#)2d3» and doing
the angular average, we find the result for the hy-
drodynamic mass of the ion:

s o[y o 1-33)

(A10)

In order to estimate m}, we note that to a first

approximation the density profile () for a snow-
ball at rest! is given by

n(¥) —ng = (n, =) (a/7)* = angla/7)* (A11)

where n,,=n(a) is the equilibrium density of liquid
He! at the solidification pressure. With (All), the
expression for the hydrodynamic mass becomes

my g, [T (1 xz)
m_"nolxl+>\ 27%%)"

While the integration is straightforward, it is suf-
ficient to expand (A12) for small ); then

- SCPR
» (A13)
where mys=2ma®ny,m is the hydrodynamic mass of
a hard sphere of radius ¢. Taking x=0. 186, % we
find my=0.97Tmyg, a reduction of about 0. 3m.
The total effective mass of the positive ion is
then the mass of the hard core plus the hydrody -
namic term my. One should note that the mass
excess

(A12)

my/m=(mysg/m) (1 -3 x+8

m f; d3v[n(r) —ng] ~ 6 gs

outside the hard core does not contribute directly
to the effective mass, since the excess He! parti-
cles outside the core do not travel with the core at
velocity u. The hydrodynamic mass is reduced
from its hard-sphere value, since the increased
fluid density near the ion causes the flow velocity,
and hence the fluid kinetic energy, to be reduced.

APPENDIX B: INTEGRATION OF ROTON-MOBILITY
FORMULA

In this appendix we show the integration proce-
dure used to obtain Eq. (29) from (28). We first
define in the integral in (28) the variable x by

(kK -K')%=8m* x/B ; (B1)

3k -k )=22u/BY?, Sk+k)=ko+v(2u/p)M 2.
(B2)
With these variables Eq. (28) becomes
e/ 1= (4k4 R%/ 91 %) e D F(z) , (B3)

where

F=4—1%-z— J'_m dxf dv [(1+v9)2 =22y
/%2 -1y

y e-(l'z"ha)I 2z (1+vy) dus 1/2 e-x-havzlx ’ (B4)
A2u, /¥
y=(2u, /82, (B5)
and
2= BRE/4m* . (BS6)

For all temperatures of interest y is < 1; then be-
cause of the Gaussian ¢~®*?®, the terms vy and
2%y? may be safely neglected in (B4), the lower
limit of the v integration may be replaced by — «,
and since u,/m* <1, the lower limit of the x in-

tegration may be replaced by zero. Thus doing
the v integration, we find
2z -(xﬂ )

=——f d)\f dx —g-—[g . (B7)
If we now let A=ax!/? and do the x integration, we
find

— l -Zza
F(Z)—z f T:;z—w—ze (1+Zz+2za)
(B8)

Using

8 %0
b %= —73 j_dw wt e
37 0

and the integral representation of the Bessel func-
tion®®

KD(Z) = 26-"/: dive'z"”a (1 + w2)-1/2 ,

we have ,
F(z)=-— —ze" {5?—5 3—) [ef Ko(2)] -

Then employing the Bessel equation K, + Ky/z — K,
=0, and the relation K,= - K,, we derive Egs. (29)
and (31).
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The narrow-line output of a dye laser on the low-frequency side of the p, /2 Tesonance line
(7948 &) of rubidium was self-defocused by passage through dilute rubidium vapor. The de-
focusing was caused by the electronic nonlinearity associated with “adiabatic following” of the
laser field by the pseudomoment of the resonant atoms. By using the corresponding non-
linear dielectric constant, the wave equation was solved numerically and gave excellent quan-

titative agreement with experiment.

INTRODUCTION

In the experiments on thermal self-defocusing of
light, the intensity dependence of the dielectric
constant € was due to absorption and subsequent
heating. !~ The self-defocusing reported here is
due to the resonant nonlinearity associated with
adiabatic following, and the observations provide
a precise test of the adiabatic following model.

Previously, Grischkowsky* observed the self-
focusing of light by potassium vapor when the fre-
quency v of the light was greater than the frequency
v, of the P3,2 resonance line (7665 A) of potassi-
um; however, when v<v,, no self-focusing was ob-
served. Instead the observations were consistent
with self-defocusing. These results could be ex-
plained either by the adiabatic following model,
which was introduced in Ref. 4, or by the steady-
state model of Javan and Kelley.® Both models
give constitutive relations which are local and
known analytically for all intensities. Also, the
resonant electronic nonlinearity of each model
causes self-focusing when v, < v and self-defocus-
ing when v<v,. Recently, Akhmanov et al.® ob-
served self-focusing and self-defocusing in potas-

sium vapor. In a limited region they were able to
show experimentally that the nonlinear suscepti-
bility was proportional to (v — 1), This result is
obtained from either adiabatic following or the
steady -state model.

The term adiabatic following describes the situ-
ation in which the pseudomoment 5 of the near-
resonant transition follows (remains parallel to)
the effective field &, of the laser pulse.*™® Adi-
abatic following occurs when two conditions are
satisfied. First, in the rotating coordinate frame,
the direction of & . must change slowly compared to
the precession frequency A of p about éI (a must
change adiabatically)®; second, the pulse width
must be short compared to 7y and T, of the atomic
system. The response time of 5 and of the corre-
sponding resonant electronic nonlinearity to
changes in & . is of the order of A" (for the work
reported here the response time was less than 100
psec). In contrast to adiabatic following, the
steady-state model is insensitive to how the pulse
is applied and requires the pulse duration be long
compared to both T; and T,. The response time
for the steady-state model is approximately 7.

We will now derive the condition for adiabatic



