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The experimental results for the self-broadening of pure Tl of the previous paper are shown
to be in good agreement with the theory of resonant collisions, taking into account the effects
of the hyperfine structure. Wall collisions are nearly negligible in that case. The decrease
of the self-broadening observed with the addition of a foreign gas is explained in terms of
three-body collisions (Tl-He collisions occurring during a Tl -Tl collision) which broaden the
optical transitions of Tl and decrease the resonance effect in the transfer of excitation between
Tl atoms. The quantitative agreement obtained with the experimental results shows that these
three-body collisions must be responsible for the major part of the observed reduction in
self-broadening.

I. INTRODUCTION

In the previous paper' on zero-field level cross-
ing in atomic thallium (Hanle effect) several ob-
servations were made. Among these were (a) the
resonance-broadening cross section for thallium-
thallium excitation-transfer collisions and (b) the
fact that in the presence of a foreign gas, either
helium or argon, the resonance-broadening cross

section was reduced. In the first case, agreement
with theory was less than expected and in the second
case there existed no suitable theoretical descrip-
tion. It is the purpose of this paper to present a
theoretical explanation of these two effects.

The theories of D'Yakonov and Perel', Byron
and Foley, Omont and Meunier, Kazantsev, ' and
Berman and Lamb on resonance-broadening line
shapes are based on several assumptions among
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which are (i) a spherical geometry of the radiating
atoms, (ii) a large hyperfine separation so that the
hfs levels may be treated independently, (iii) tran-
sitions having angular momenta Z=O, 1, and (iv)
binary collisions. Some of these assumptions are
relaxed for the special case of the 7 S«~ state of
thallium. The resonance-broadening cross section
for Tl*-Tl excitation transfer is calculated and
found to be in good agreement with experiment.
With the reasonable physical model for three-body
collisions that assumes that during a Tl*-Tl col-
lision there is a large probability that at least one
He-Tl collision takes place, it is found that a re-
duction in the resonance™broadening cross section
occurs. This reduction in the probability of the
excitation-transfer process occurs because of a
broadening of the thallium-atom levels, due to
helium-thallium collisions, and a concomitant loss
of resonance between the energy of the initia, l state
and the final state where the excitation has been
transferred.

In Sec. II we discuss the self-broadening of pure-
thallium atoms in the level-crossing experiment;
and in Sec. III we present a study of the relaxation
of thallium atoms caused by resonant collisions in
the presence of a foreign gas. Section IV contains
discussion and conclusions.

II. SELF-BROADENING OF PURE THALLIUM

A. Resonant Collisions

Relaxation rates caused by resonant collisions
between an excited state with J= 1 and a ground
state having J,= 0 have been calculated by several
authors. For transitions with J,= —,

' and Jr= —,
'

the same calculations have been performed by
Stacey and Cooper. ~ In their case the 8 matrix
can be expressed in terms of the 8 matrix elements
for a J,= 1, J~= 0 transition and the final results
written in the form

g =10 C NX 1"8, (1)
where N is the atomic density, X is the wavelength
of the transition, 1/I' is the lifetime of the upper
level, and B is the total branching ratio from the
upper level to the lower level. g denotes the re-
laxation rate of the observable n and C is a con-
stant. For a J= —,

' level the only observables are
the total population and the orientation (magnetic
dipole). The relaxation rate of the total orienta-
tion of the vapor is (in the notation of Hef. 4)

g'= g (1+2) =g'(1)+g'!2)

(5)gg)=4. 90&10 N .
This result is derived under the hypothesis that
AE~T, «h, where all the transitions 1~~, 2&g

7 S~g2
2 /

l2 GHz

F =0

in the 3776-A line in atomic thallium (see Fig. 1),
one may consider two possibilities. The first is
the ideal case of a nuclear spin with I=-,' and a
small hfs such that all hyperfine shifts satisfy
bE„,«If/T„where T, is the mean duration of a
Tl*-Tl collision. The hyperfine coupling is thus
negligible during a collision, but large compared
to the natural width I'. The second possibility is
the opposite hypothesis, bE„» ff/T, .

We may, in this first approximation, compute
the relaxation rate of the orientation, g~~, of the
1=1 excited state using the classical procedure
(see Hef. 4). This is done by writing the density
matrix in a basis in which the electronic and nu-
clear angular momenta J and I are uncoupled,
computing the mean effect of a collision on the
electronic part, assuming that the nuclear part is
unaffected, and going back to the representation
where T and J are coupled. In the present case,
since the values of the angular momenta are small,
it is simpler to write some elements of the density
matrix and compute their evolution by an elemen-
tary procedure instead of using the general method
with Sj Wigner coefficients. The result is

gtt= s(g +g') ~ (3)

In this case (J)=(I)= —,'(F), and the electronic
orientation (J) relaxes with the rate g and the nu-
clear orientation (I) is destroyed at a rate g when

the excitation is transferred from atom 1 to atom
2. It is also assumed that the ground state is com-
pletely disoriented.

Equations (2) and (3) give

Ctt=s(C +C )=1,485

For the 3776-A line of thallium, with' 1/I'=7. 55
x10 sec and 8=0.463, the relaxation rate is

for observation, after the collision, of atom 1 ini-
tially excited and atom 2 initially unexcited. The
corresponding values for C are'

e P, ]22

2l GHz

F
I p

C'=1.06, C'=1. 91. (2)

To evaluate the effect of the hyperfine structure
FIG. l. Hyperfine structure of 3776-A resonance line

Of thallium.
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gl 10 2''y3r(& 10C1g + 3 11Clg ) (8)

where the partial branching ratios are" Bgp —3B
and Bj&= 3B. ' C' is the constant for an isolated
E=1--0 transition~ 6 and equals 3.44. There is
no exact calculation for the constant "C' for an
isolated E = 1 -- 1 transition. It is a simple matter
to compute this in the Anderson approximation'P
using a cutoff pa, rameter for strong collisions which
gives "C'„,= 2. 28 [Ref. 4 (b), Eq. (l. 146) and

(l. 138)] but the accuracy of this approximation is
known to be poor. Nevertheless, using this result
yields C~~=1.43 from Eg. (8). The difference be-
tween this value and the value in Eq. (4) is seen to
be small.

Furthermore, 4E~ is not much larger than 5T,'.
A comparison between experimental results in the
P& state of mercury"b' "' and with theory '"'"

shows that the influence of hE is nearly negligible
for 4E= 12 GHz, and small for 4E= 21 GHz. Since
the influence of the situation in which AE= 31 GHz
is expected to be very small in the thallium case,
it seems reasonable to think that the exact value of
C~» is not very different from 1.485 and perhaps a,

bit smaller. We shall adopt for the theoretical
value

Cgg = 1.46 +0. 15 . (9)

Taking into account the uncertainty in J3 and I' this
gives

g,', = (4. 80 + 0. 80) x 10 N .
B. Wall Collisions

(io)

For an E = 1 --0 transition the broadening of
level-crossing curves by wall collisions of excited
atoms has been discussed by Dodsworth, Gay, and
Omont. ~m Under the experimental conditions of I,
Eq. (20) of Ref. 12 would give an approximate
broadening rate

r, =-'. r =0, 8x10-'Z)'I',

2E3 are equally possible. If one takes as the defini-
tion of T,

~a= &v&-vs (&/&)

where' 0=1.2x10 ' cm and T=9VO'K, one has

T,'/2v = ll. 6 6Hz .

This frequency is not large compared to the hyper-
fine splittings of the various FF' transitions (Fig.
1). Accordingly, certain transitions 1F„2F~
-1Ff, 2F, will have a smaller probability and the
value of Eq. (4) is probably too large.

To obtain a lower limit to g&& we assume the sec-
ond and opposite hypothesis, namely, 4E„,T, »N, ,
where only the transition 1F&, 2E3-1E&, 2E~ is
allowed. ' For this case,

which is generalized for a transition i = F, F,' to

2F 1
+

(i2)

I' = 0.045 x10 'M'T'B, (i4)

which is about 3% of the value for resonance col-
lisions, Eq. (9). If the intensity emitted by the
lamp is greater in the components for which the
absorption coefficients are largest, this value will
be a little enhanced, but 6/o seems a safe upper
limit. The total broadening constant is then

Cgg ~
——1. 50 a 0. 18

and

z',„=g'„+r„=(6.0~0. 9)~10 'x,
in excellent agreement with the experimental
value~'9 for pure thallium:

g,„„=(6. 88~0. 49)X 10-'~.

(16)

III. RELAXATION BY RESONANT COLLISIONS IN
PRESENCE OF FOREIGN GAS

The experimental results of I show that the borad-
ening of thallium Hanle signals caused by resonant
collisions is reduced in the presence of roughly
half an atmosphere of helium or argon. The effi-
ciency of resonant collisions is lessened by the in-
teraction of thallium atoms with the foreign gas. In
this section we propose a quantitative interpretation
of this effect in terms of three-body collisions Tl~-
T1-He.

The description of such three-body collisions is
greatly simplified by the fact that a Tl-Tl* collision
lasts much longer than a Tl-He or Tl-Ar collision.
We have seen in Sec. H, Eq. (I), that the mean
duration of a Tl-Tl* collision is of the order of

T,=1.4x10 sec . (i8)

In the case of a Tl-He collision the broadening
cross section for the 3VV6-A line is'3 o'= 1.2x10 '

where B, is the branching ratio and N, the number
of atoms in the F, ground state.

In natural thallium, with isotopic concentrations

C2p3 = 0. 295 and C», = 0. V05, the Hanle signal comes
from four different transitions: J' = 1--0 and

F= 1--1 of both isotopes. The contribution of each
isotope to the signal depends upon the intensity
emitted by the lamp in each set of transitions. As-
suming an equal intensity in these four lines, we
shall take for the broadening rate

rw T ~pi rlv)

where p, is the relative contribution of the excita-
tion by the ith transition to the Hanle signal (—, for
each E=1--0 transition, ~ for each /=1 -1
transition). This gives
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cm and

T', = T,/SO (19)

(for Tl-Ar collisions T,/T,' =10). It is thus rea-
sonable to consider Tl-He or Tl-Ar collisions as
occurring instantaneously during a Tl™Tl* collision
and to therefore describe the thallium-rare-gas
collisions in terms of the parameters of the col-
lision-broadening theory.

The collision-broadening rate of thallium by
helium is

v t

y=cr'NH, vH, Tq=4. Ox 10 sec10 (2o)

for lV„,=1.5&& 10' cm '(p=426 torr) and T=920'K.
Since this value is the same order of magnitude as
T,' there is a large probability that the phase of
the electric dipole of one of the thallium atoms will
be destroyed by He-Tl collisions during a Tl-Tl*
collision. In other words, the He-Tl collisions
perturb the probability of excitation transfer be-
tween the thallium atoms through the dipole-dipole
interaction. In fact, we shall see in Sec. III C that
some functions appear in the theoretical expres-
sions that are characteristic of nonexactly resonant
transfer of the excitation. '"'4

Let us point out that this eduction of broadening
by the addition of a foreign gas is only observable
for 8 levels or isolated J= —,

' levels such as the
7 8,» state of thallium for which depolarization by
collisions with a foreign gas is very small (o~ = 3
x 10 "cm for Tl-He collisions' ). In the usual
case, foreign-gas broadening of the level-crossing
curves would completely obscure this reduction of
resonant broadening.

A. General Equations

To compute the effect of resonant collisions per-
turbed by foreign-gas broadening we shall use the
formalism of Ref. 4. The potential appearing in
the self-broadening theory is the dipole-dipole in-
teraction

V(K)=-(I/ft')[S(P; u)(Iy, u)-P, 5,], (21)

where K= Ru = b+ vt is the interatomic vector with
relative velocity v and impact parameter b (Fig.
2), and P, is the electric-dipole operator for atom

The state vector of the two thallium atoms sys-
tem is

I
~&=~s(f», f.) I f»& I

f.& (22)

and a classical straight-line trajectory is taken for
the motion of the atoms. To describe the statistical
effects of the foreign-gas collisions we use the
density matrix for the two-thallium-atom system,

P E»»(»l »2)»» (»1»»»)
I »I) I »3& &'» I &»3 I

or in the irreducible representation for each atom,

FIG. 2. Collision axis and parameters.

p =+ p„, I
n»&N& » I aa&aqa )) ~ (24)

P = —'» [I Pl —GP = —»I P —&P (27)

where G is the relaxation matrix describing the ef-
fect of He- Tl collisions. G operates independently
on atoms 1 and 2:

»"
I eek»q»» = -,r»l eek»q» )),

G
I

eg«e» » = (r+»+
I eg-«e»»

where, y'& is the relaxation rate of the k, observ-
aMes of the excited state, and y and d are the
broadening and shift constants of the optical line
which must be the same for every value of K, for
Tl-noble -gas collisions. '

We have

(28)

(29)

o=e 'p (20)

and use a perturbation expansion solution for Eq.
(27):

o(v)=o(- ~) —i f »fv'e ' 1.(~')e "c(-~)
f'd" f' —d" ."'I,(")

where
I

nkq »:= T,' ' is both a component of an ir-
reducible tensor acting in the atomic-state space,
and a vector of the so-called Liouville space. 4 We
assume that there is no hyperfine structure or that
the hyperfine structure is small and negligible dur-
ing the collision. For one atom excited, the elec-
tronic states of interest belong to the subspace EE
of Liouville-space spanned by the following vectors:

1«I»qt » I gg&aqua » (2S)

I egA»@» », I g«a@a », (2s)

and the symmetric vectors obtained by exchange of
atoms 1 and 2 (e denotes the resonance excited
state and g the ground state). In fact, we will be
concerned only by vectors having k~= 0.

The master equation" during a Tl- Tl collision is
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&e
'"' '"&L(~")e "'o( —~) . (31)

The first-order term will disappear in angular
averages ((L)=(V) =0) so we will discuss only
the second-order term.

As we are interested in computing the effect of
He-Tl collisions on the self-relaxation of the ob-
servables of the excited state which belong to the
EE subspace, we shall restrict our analysis to this
subspac e.

If we take

f dx' f dx" g(x', x"),

where

n=2rblv- (40)

= f dxE(x) f du E(x+u)e"", (41)

The upper integral of Eq. (39) can be written as
a sum of terms of the type

IJ, = f dxF(x) j dx'F(x')e "'" " '

o(-")=
I «»e~&& I gg»)), (32) which is easily expressed in terms of the Fourier

transform of F:
then

««b, q„ggoo I
«")&)

=1 f'"—dr' f' dr" e "'"'-"'&

y((g) = f dxF(x)e'"*

„a a

(42)

(43)

[Note that in developing the product L(r')L(r") the
intermediate states are of the type

I
egKq Q&,

geKa Qa». ] A similar term corresponding to
transfer of excitation to the

I
gg00, eel& q&» vector

contains the same exponential factor. All the other
components of o(~) become zero when the angular
average is performed. For the V S»~ state of
thallium, ,y~ is very small, and h~ = 2y.

In Sec. III B we shall evaluate the angular aver-
age of the matrix elements of

Y(y, b, v) = 1 —f „dT' f dr" e "" ' &L(7')L(7") .
(36)

B. Angular Averages

Writing V(r) [Eq. (21)] in the form (see Fig. 2)

V(~) =Z, V,"'~g'(y), (36)

where rqo is the rotation matrix about the y axis
and V' ' is an irreducible tensor of rank 2, it can
easily be shown that all the quantities appearing in
the average of L(v')L(r") over the angles of b and
v can be expressed in terms of

g(x, x') =Q, & ~& (x) r,'('&'(x') (1+x') '~'(1+x") '~'

(3'f)
where

x= tang = v7/b .
The angular average of F is then given by

& Y'(y, b, v) ) —1 = [ & F(0, b, v) ) —1 ]

(36)

x f dx' f dx" e "'"' ""'g(x', x")/

&& «eel& g„gg00 I
L(v') L(v")

I
«k, g, , gg00)),

(33)
where

The explicit form for the different E(x) are given
in Hefs. 4(b) and 11. Finally, one obtains

& l(r, b, v) &-1=(&l(0,b, v) &-1)»(n), (44)

where

I&&(6) =
„a a fs(&) d& ~

1
(46)

The function f&(&u) is defined by Tsao and Cur-
nutte' in their study of nonexactly resonant col-
lisions:

f&((d) = ~ (d [Ka((d) + 4K&((d) + 3Ka((d)] &
(46)

where the K, are modified Bessel functions. Of
course,

h, (0) =f, (0) =1 .
The interpretation of Eq. (45) is clear: I&, is the

average of f, (a&) with a weight a 'q(pa+ &ua) d~ equal
to the probability that the distance of a point in the
profile of atom 1 (broadened by He collisions) to a
point in the profile of atom 2 is equal to ~.

The variation of h, with x is shown in Fig. 3.
Notice that unlike f„which as an exponential decay,
h, decays as x ' for large x. The weight of the por-
tions of the two profiles which are in resonance de-
creases slowly when the width increases.

C. Integrations over b and v

Equation (44) is only valid for large values of b;
one has to introduce a cutoff'a for close (strong)
collisions. Furthermore, the result must be aver-
aged with respect to the distribution W(v) of the
relative velocity v that we assume to be Maxwel-
lian. "

To simplify, we shall only discuss the relaxation
rate g'„of the orientation of the V S,&3 state of
thallium (the result for the other relaxation rates
of interest would be exactly the same). The mean
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FIG. 3. Functions h&(z) [Eq.
{45)], unbroken line; H~(x) [Eq.
{56)], broken line; and H(x) [Eq.
{54)], dotted line.

0.3—

0.2—

O. I—

11.,(b, v) = (I /b'v')a, (2yb/v), (46)

"probability" of destruction of the orientation by a
collision with parameters 5 and v is, written from
Eq. (44), for large impact parameter

where v is the mean relative velocity of two thal-
lium atoms, graf ONE and

H(a) = dxx'e "'
& lT

0

II (b, v)=1. (51)

After some rather tedious transformations, it is
straightforward to show that the relaxation rate can
be put in the form

g 11 gl 1H(a) (52)

where g« is the relaxation rate in the absence of a
foreign gas, calculated using the same cutoff ap-
proximation. a is a dimensionless parameter of
the order of magnitude of yb/v,

a=4' "'yMo/V,

where p, is a constant that depends on the electronic
angular momenta J and J„ the nuclear spin, and
the total angular momentum of the excited state.

To evaluate the relaxation rate [see Eq. (3) for
the meaning of the indicies]

g1 = f ~(v)g(v)dv=2vÃf „vW(v)dv fo D(b v)bdb

(49)

one uses the classical approximation '
g(v) = vNv[bo+ 2 f II„(b, v)bdb], (50)

50

where bo(v) is the Weisskopf radius defined by

p'(x)+, ~( H,
1

1 tap
(54)

where the function p(x) is defined from Eq. (51) by

a, (ap/x) = p'x'.
The function Irf is

(55)

D. Numerical Values for He-Tl and Ar-Tl and Discussion

The values of a [Eq. (53)] and of H(a) for the dif-
ferent experimental conditions of Refs. 1 and 9 are

""
a, (zx) 2

""
x

H, (x) =21, dz=, p F1(y) dy,
g 1T

0
X +P

(56)
where F,(y) is the function introduced by Tsao and
Curnutte" and which can be expressed in terms of
modified Bessel functions.

The function H(x) is tabulated in Table L The
functions H, (x) and H(x) are shown in Fig. 3. As
with h, (x), these functions decrease slowly for large
x (as x ' for H, and x '~' for H).

Finally, let us point out that Eq. (52) is also valid
for some other g rates and, in particular, for the
rate of excitation transfer from atom 1 to atom 2.
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l, = 2. 4x10 cm, (57)

to the "transport mean free path" l, representing
the mean distance an excited thallium atom travels
before the direction of its velocity is randomized
(see for instance, Ref. 18):

l, = mal, .
In this expression l, is the mean free. path

I, = Noo~(1+ MTi/Mo)'

(58)

where M»/Mo» 1 is the ratio of the atomic mass
of thallium to the atomic mass of the foreign gas,
No (» N») is the foreign-gas density, and o, is the
Tl*-foreign-gas-scattering cross section. n~ is
a coefficient depending upon the ratio M»/Mo:
nH, =30, nA, =4. 5.

Taking 0, = 5&& 10 "cm as an order of magnitude
for the cross section, one gets the values for l,
shown in Table II. It is seen that at 4QO torr both
buffer gases must almost completely prevent wall
collisions. Helium at 113 torr must also reduce
the wall effect. Since the order of magnitude of
the wall effect is -4x 10 ~Am (Sec. II B) it is seen
that the buffer-gas correction brings the experi-
mental results into better agreement with H(a)
(Table II) for buffer-gas pressures of -400 torr.

TABLE I. Tabulation of the function H(x) [Eq. (54)).

g H(z) g H(g) g H(Pg) g H(ft;) x H(P:)

0. 0 1.000
0. 1 0. 986
0. 2 0. 962
0. 3 0. 934
0, 4 0, 917

0. 5 0. 897
0. 6 0. 879
0. 7 0. 862
0. 8 0. 845
0. 9 0. 830

1.0 0. 816
1.2 0. 789
1.4 0. 765
1.6 0. 744
1, 8 0, 724

2. 0 0. 706
2. 4 0. 674
2. 8 0.647
3, 2 0. 623
3.6 0. 602

4. 0 0.583
4. 4 0. 566
5. 0 0.543

given in Table II, together with the experimental
ratios &Cv/&w of the broadening rates of the Hanle
signals in the presence of, and in the absence of,
foreign gas. It is seen that the values of this ratio
agree with li(a) within the limit of experimental
uncertainties in y, Aw, and bse. Nevertheless,
the reduction of the relaxation rate by resonant
collisions seems a little more important than the
theoretical value of Eq. (52). This small discrep-
ancy, if real, can be accounted for in several ways:
It is well known that the cutoff procedure used for
strong collisions can bring some nonnegligible er-
rors, nevertheless, these errors must be less im-
portant for the ratio gi, /gI, than for the absolute
value of g«. Furthermore, the effects of the hy-
perfine structure are not properly taken into ac-
count. In addition, kinetic collisions between ex-
cited thallium atoms and foreign-gas atoms can re-
duce the diffusion of excited thallium atoms and the
probability of wall collisions.

To see the order of magnitude of this latter ef-
fect, we compare the mean distance traveled by a
thallium atom during its excitation (T = 970 'K),

TABLE II. Comparison of theory and experiment for
the reduction of self-broadening by buffer gas.

Foreign gas He He Ar

Pressure (torr) 113 426 419
a [Eq. (53))' 0.25 + 0. 08 0. 93 + 0.30 0. 78 + 0.22
H(a) [Eq. (54) J 0. 95+0, 02 0. 83+0.04 0. 85+0.04
(&sv/bee) ~& 0. 97 + 0. 06 0. 75 +0. 04 0. 76 + 0.07
l~ [Eq. (58)j(10 gin) 2. 1 0. 56 0.25
(&n)/&to) „' 0. 93 +0. 04 0. 79+0.05 0. 81+0.05

~z tEq. (53)] is of the order of magnitude of the prob-
ability 2&T~ that a He dephasing collision occurs during
a Tl- Tl* collision.

H(a) is the corresponding theoretical decrease of the
self-broadening rate [Eq. (52) and Table I).

(+w/+w)~t is the observed decrease (Refs. 1 and 9),
the "transport mean free path. "'

l, fEq. (58)] is to be compared to the mean distance
traveled by an excited Tl atom, la=2. 4 10 cm, to see
whether the buffer gas prevents wall collisions.

(&w/&w) th is a combination of H(g) and of the esti-
mated reduction in wall-collision broadening.

IV. CONCLUSIONS

We see that the theory is able to account for all
the experimental features' of self -broadening of
Hanle signals of thallium and of the effects of a
buffer gas.

For pure thallium, since wall effects are very
small, this provides evidence, once again, of the
very good accuracy of the theory of resonant col-
lisions when hyperfine effects have been treated
properly.

The decrease in self-broadening due to buffer
gases is well explained in terms of three-body col-
lisions (Tl-He collisions occurring during a Tl*-Tl
collision) which broaden the optical transitions of
thallium and decrease the resonance effect in the
transfer of excitation between thallium atoms. The
quantitative agreement obtained with the experi-
mental results shows that these three-body colli-
sions are certainly responsible for the major part
of the observed decrease in self-broadening, al-
though the prevention of wall collisions by the buffer
gas is, probably the origin of a small part of the ef-
fect.

A similar reduction should be expected in the
self-broadening of level-crossing signals of J= —,

'
resonance states of heavy alkalis, and in the prob-
ability of exchange of excitation by resonant colli-
sions (M+X-X+20) for any element; but this last
effect is probably more difficult to observe.

It is also reasonable to think that the same kind
of three-body collisions should enhance the prob-
ability of collisional transfer of excitation (2P+ Y
-X+ V') in the case of nonperfect resonance match-
ing. In this situation the atomic levels are broad-
ened by collisions with the buffer gas thus causing
a partial overlapping of the levels. If the cross
section for this transfer is large then the same
treatment above should be applicable.
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