
CHARGE-CHANGING CROSS SECTIONS OF. . .
duces the probability of multiple capture but en-
hances multiple loss. Little is known about the
times which are necessary to complete the rear-
rangement processes of ions initially highly ex-
cited. %hen these times are longer than the times
between two successive collisions, multiple-loss
cross sections would to some extent change into

excitation cross sections; this would particularly
influence the balance of electron capture and loss
by heavy ions penetrating through large molecules
or solids. Given the major qualitative understand-
ing of multiple-electron loss of heavy ions, one
may hope that qualitatively satisfactory theories
can be worked out in the future.
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The low-energy scattering by a potential consisting of a long- and a short-range part is dis-
cussed. A general expression for the phase shift pz is derived starting from the radial
Schrodinger equation. Effective-range expansions are presented for partial waves of all or-
ders for the case of a long-range r potential. The quantity tarp&, is calculated up to and in-
cluding the term k "ink. It is found that in the low-energy limit, tarsi is proportional to
k~' for s, p, and d waves, and targL is proportional to ke for all the higher partial waves.

I. INTRODUCTION

The purpose of this paper is to present a deriva-
tion of an effective-range theory for x potential
scattering. The significance of the x potential
lies in the fact that it appears as a correction of
the van der Waals potential in the description of
the long-range interaction of two atoms, and repre-
sents dipole-quadrupole effects. ' It also appears
as a correction to the polarization potential in the

description of long-range electron-atom interac-
tion. ' ' lt is generally a repulsive potential, while
the van der Waals and polarization potentials are
attractive.

In Sec. II we derive a general formula for the
phase shift due to scattering by a potential consist-
ing of a short- and a long-range part. In Sec. III
we present effective-range expansions for x po-
tential scattering for all partial waves, based on
the formula derived in Sec. II.
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II. FORMULA FOR PHASE SHIFTS

duL duL,2 2

uL~, 2
—uL, 2

—uL~UuL ~dh Ch

which may be expressed as

(4)

We consider a scattering potential consisting of
a short-range part V(r) and a long-range part U(r)
such that

V(r) =0 for r &d,

U(r) = 0 for r & d .
Let uz, (r) be the eigenfunction of the radial Schrb-
dinger equation with both U and V acting, and uL, (r)
the eigenfunction with only V acting. Then

d uL ~ z L(L+1)
dh

+ i k —
5

—(U+ V) l uL = 0,] L (2)

d uL, kz L(L+ 1)
Ch h ]

L2' + k —
2
——V uL, =O .

Here U=(2m/8 )U, V=(2m/k )V, L is the orbital-
angular-momentum quantum number, and A is the
wave number of the scattered particle. Multiplying
Eq. (2) by uL, and Eq. (8) by uL and subtracting,
we obtain

tan5L = tan5L, —k '(1 —tanz5L, )I(L) + 2k ~ tan5L+(L)

—k tan 6L,K(L)+ O(U ), (11)

where I(L), J(L), K(L) are integrals defined by

I(I.) = f (kr)'j', (kr) U(r) dr, (12)

Z(L) = f (kr)zI, (kr)n, (kr)U(r) «,
K(L) = f (kr)' [j'(kr)+n'(kr)] U(r) dr . (14)

Since V(r) is short ranged, the phase shift from
V(r) is given by conventional effective-range
theory'.

k cot6L, = -AL, + zrL,k —qL, rL,k + ' ' ',2L+ 1 1 2 3 4

(15)
where AL„rL„and qL, are the scattering length,
effective range, and shape-dependent parameter,
respectively, for the potential V. When the poten-
tial is U+ V, the corresponding parameters will be
denoted by AL, r» and qL. For our purposes it
is convenient to rewrite Eq. (15) in the form

tan5» = -AL, A' —2h'L, AL, k2I+1 1 2 2L+ 3

+ (qL,rzL, AzL, —4rLQL, )k
' '+ ' . (16)

d f duL duL4~
I uz 4 uL, ~

= uL4Uuz

Integrating (5) from 0 to r, we obtain

(5) We see from Eq. (11) that the determination of
an effective-range expansion for each partial wave
involves the evaluation of the integrals I(L), J(L),
and K(L).

duL4
uL4 uL uL4UuLdrdh dh o 'o

Now uL and uL, satisfy the boundary conditions

u, (o) = u„(o) = o,

(6)

uz, - sin(kr —zLm)+tan5Lcos(kr —,Lm) as r-~—,
(7)

uL, - sin(kr ——z'Lm) + tan5L, cos(kr —', Lzz) as r- ~-.

Here 5L is the phase shift when the scattering po-
tential is U+ V, while 6L, is the phase shift when
the scattering potential is V alone. Letting h- ~
in Eq. (6), using the boundary conditions (I), and
noting that V=0 for h & a, we arrive at the formula

tan6L = tan5L, , —k f uL, UuL dr . (8)

We will only consider first-order effects due to U.
Since uL differs from uL, by a term of order U,
Eq. (8) becomes

tan6L=tan6„-k ' f uzL, Udr+O(U') . (9)

For h &d, uL, is the radial wave function for free-
particle scattering:

uL, = krjz (kr) —tan6L, krnL(kr) for r & d, (10)

where jL and ~L are the usual spherical Bessel and
Neumann functions, respectively. Substituting Eq.
(10) into Eq. (9) and adding and subtracting a term
[tan5L,krjL(kr)] in the integrand, we find

where
Ao ——Ao, + POo,

8Q = (-', d' ——,'A„d+-', A'„)/d',

rQAQ =ro.AQ4+ P84 ~
2 2

(19a)

(19b)

(19c)

6$ ( od + 3Ap d 5AQ d zrp Ao d2 3 2 2 2 1 2

+ar„A,',)/d', (19d)

qprpAQ — rQAQ = qQ rp AQ rp Ap + Pez t

ez [ 45 d + 15 Aozd —QAozd 5 ro4Aozd2 6 2 5 1 2 4 1 2 3

III. EFFECTIVE-RANGE EXPANSIONS

~ this section we present effective-range expan-
sions for a h long-range potential, which are
based on formula (11). We consider a r 5 repul-
sion:

U(r) = Pr ', r & d

where P is a parameter which characterizes the
strength of the potential. The short-range po-
tential V(r) is arbitrary. On inserting Eq. (16)
and the results of Appendices A-C into Eq. (11),
we obtain effective-range expansions for all par-
tial waves. We find for the s wave:

2 3 3 2 1 2tan6Q = —Ao k —zroAok + (qoroAo 4roAo)k

++5, o Pko++5, 5 PApk' ln 2kd
~

+ O(k ), (18)
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+ —,'r0, As,d + s(srssA0, —Qs,rssA0, )d

——', (-.'r'„A,', —2Q„r,',A,',)]/d' . (IS&)

1 3 2
+!f(~4rl Al Ql rl Al }d 7 rl Al d 9 ( rl Al

—2Q„r,',A,',}]/d'. (»f)
We find for the P wave:

sl Alh srl lh 587 ~ph + (QlrlA1 rlA1)h3 I 2 5 2 6 3 2 1 2 3 7

—
5887 pAlhsin~ 2hd ~+ O(hs), (20)

We find for the d wave:

Ash + 20279 &ph —2r&sh'+ O(h') (22)

where
Al =Als+ p82 s

8, = (—„d —9A„d'+9 A'„)/d',

r,A, =r„A„+P82= 2

(21a)

(21b)

(21c)

84 —(- 45 d —
15Alsd —yrlsA lsd

8 2 5 1 2 3

Qlr', A, —sr,A, = Q, ,r„A„—sr„A„+p8, , (21e)

5
= [525 d —25Alsd + 20 lsAlsd

1 10 2 7 1 2 5

As=As, + P88,

8=(225d"-1'5Ass '+I'1 ss)«" s

rsA22 = r„A2„+p8, ,

7 (1575 105 Ass~ T5 r2sA2sd

(23a)

(23b)

(23c)

The expansion (22) also contains a higher-order
logarithmic term, 2079 PAsk" In I 2kd i. We find for
the higher partial waves:

where
tanSL = —10mpw(L)ks —ALA

' —srLA2Lk *8+ (QLrsLAL —srLA2L)ks ' + O(p"), L & 2 (24)

AL =AL + p88 s

17d A [(2L}t] A
8 22L+ 2(2L 5)[P(L+ s)]2 3(2L+ I)ds + 22L(Lt )2 (2L4. 7)d2L+ 7

rLAL =rL A2L + p89 s

77(2L+3)d -2
AL, g(L) rL A2L [(2L)!] rLsAL, (2L 1)!(2L 2}!A,

2 '2(2L —3)[I'(L+ 2)]2 4d 3(2L+ 1)d 2 (LI) (2L+7)d ' 2 [(L —1)!] (2L+ 5)d

Q r AL —'s LAL = QL,r L,AL, —srL, AL, + p810,3 2 1 4 3 3 2 I 2 2

(2Sa)

(2sb)

(25c)

(2sd}
(25e)

&(2L+ 4)(2L+ 5)d ' 6AL,h(L) rL, A2L, g(L} srsL, A2L, —QL,rsL, A2L, [(2L)!] (srL, AL, —2QL, rL, AL, )
2 ' (2L —1)[I'(L+~)]2 d 16d 3(2L+ 1)d 2 (L!) (2L+7)d

(2I. —1)!(2L —2)!rL, AL, (2L —2)!(2L —4)!AL,
2 [(I.—1) ~] (2I.+5)d ' 2 [(L —2) t] (2L+3)d

(2st')

The functions g(L}, h(L), and 50(L) in Eqs. (24)-
(25f) are defined by Eqs. (B6), (B7), and (A3) in
the Appendices. The following points should be
noted concerning the general validity of the expan-
sion (24). Only those terms k2 ' ', . . . , are to be
retained for which the exponent is less than 12.
The reason why the terms with exponents greater
than 12 are invalid is the approximation made in
going from Eq. (8) to Eq. (9), i.e. , the neglect of
any terms of second order in the long-range poten-
tial. This rules out all second-order terms in P,
the leading one being a P k' term for all L. This
restriction eliminates all terms except the 4 term
for all I- & 5.

It may be noted that all the terms through k6 are
anticipated in the general results of Levy and
Keller7 who discussed the general x " long-range
potential using a different approach from the pres-

igher-oxder 47~ k, and k

terms for L=O, 1, 2 were not explicitly considered
by Levy and Keller, and are therefore new. Thus
the present work is an extension of the results of
Levy and Keller, filling in some higher-order
terms.

In Eqs. (18) and (20), the coefficient of hs '
1nk actually conta, ins Ai, rather than A~, but the
replacement of Al, , by Al. is legitimate since the
error introduced is of second order in the long-
range potential. The expansion (24) for L & 2 does
not contain any logarithmic term in first order.
Equations (18), (20), (22), and (24) show that in
the extreme low-energy region, tan5~ varies as
k2 ' for s, p, and d waves, and tan5~ varies as

for all partial waves higher than the d wave.
By combining these results with the corresponding
results for a polarization x potential ' and a
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I(L) = —,'1lpk' f z JL, 1/2(g) dg (Al)

The integral in (Al) may be evaluated for L & 2 by
dividing the range of integration into two parts,
one part extending from zero to infinity, and the
other from zero to kd. The integral with range
zero to infinity may be evaluated using Eq.
6. 574-2 of Ref. 12. To evaluate the integral from
zero to kd, we may use the power series expansion
for the square of a Bessel function as given by
Eq. 5.4-6 of Ref. 13.

We find that the value of I(L) for L & 2 is

' (k)= *k& (d0k~(k&) —E *" (kd)' '" ' (,
p 2L+2m —5 ] '

(A2)where
u/(L) = [(2L+7)(2I + 5)(2L+ 3)(2L+ 1)

x(2L 1)(2I, 3)(2I, 6)] ', (A3)

(- 1)"(2I.+ 2m+ 1)!" 2"'"'(2L+m+1)![r(I.+m+-.')]'m!
(A4)

Considering the ease L =0, we make the substitu-
tion z = k) in E(l. (12), and use the trigonometric
expression for j6(z), '6 thus obtaining

I(I =0) = pk f z sin zdz . (A6)

The integral in (A6) may be evaluated by repeated
integration by paris. The final result is

k4
I(L = 0) = d g

— g+ — + O(k )) .

van der Waals x 6 potentiaJ, ' we can infer a gen-
eral rule for any potential with a 1 2" tail (where
n is an integer & 1). At sufficiently low energies,
tan51. varies at k ' for all partial waves up to and.

including the partial wave of order L =~- 2. Fur-
ther, tan51. varies as k" 2 for all partial waves
higher than the partial wave of order L =e —2. The
k ' dependence is characteristic of short-range
forces (e.g. , nuclear forces), while the k2" 2 de-
pendence is characteristic of long-range forces.

We have examined the x ' potential in the Born
approximation, and we find that only the k6 term
for L) 2 is given correctly. More generally, for
any potential with a r 3" tail, the Born approxima-
tion gives the correct leading term in the low-en-
ergy limit for all partial waves of order higher
than L=n —2. The fact that the Born approxima-
tion gives substantial agreement with Schrbdinger
theory for the long-range contribution has been
pointed out previously. ' '"

APPENDIX A: II".,VALUATION OF I(L)

On inserting E(l. (17) into Eq. (12) and making
the substitution z =km, we obtain

For the case L=1, making the substitution z=k~ in

E(l. (12), and using the trigonometric expression
for j1(z),' we obtain

I(L=1)=Pk' f„(z ' sin2z —z sin2z+z 'cos2g)dg .
(A7)

The three integrals in (A7) may be evaluated by re-
peated integration by parts. After somewhat tedi-
ous but straightforward algebra, the following ex-
pansion is obtained:

( k6 2' dk
I(L=2) =

pl(22, d
—2079+„7,+o( ")/I.

APPENDIX B: EVALUATION OF J(L)

(A10)

On inserting (17) in (13), and making the sub-
stitution z = kx, we obtain the expression

J(L)=(-1) '
2&pk f g JL+1/2(z) J L 1/2(g)dg .

(Bl)
The integral in (Bl) may be evaluated by dividing
the range of integration into two parts, one part
extending from kd to 1, and the other from 1 to .
To evaluate the integral with range kd to 1, we use
the power series given by Eq. 5.4-7 of Ref. 13,
which leads to the result

1 &+1 &~ k'7 bIP bL1, I2
6(kd) 4(kd)' 2(kd)

—k g n~)2 dk~+ kZ (kd)~" ) (Bk)
4 2m —6

where

B= JL+ 1/2(z) - L-1/2(z) z 6 HALO 4kL1

1 bI,—2b1,2+ bg3 ln2+ / I
m 42m —6

(B3)

(-1) (2m)!
( 4)2' (m! )2r (L+ m+ -,') r (- I, + m+ 2)

We note that B is independent of k, and that Eq.
(B2) holds for all values of L. Inserting the values
of b», b», and b» explicitly, we obtain the re-
sult

" ="=k kkd' 4kd" kkk rkk' ' ") '

(Aa)

Considering the case L= 2, and making the substi-
tution z =kr in Eq. (12), and using the trigonometric
expression for j2(z), '4 we obtain the expression

I(I =2) = Pk' f [(Qz
' —6z ' +z ') sin z

—(9z "—3z ) sin2z+9z '6cos2z]dz . (A9)

The integrals in (A9) may be evaluated straight-
forwardly by repeated integration by parts. Since
the algebra becomes rather tedious, we only give
the first three terms in the final expansion:
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u g(L)a2 3a(L)a'
(6(2L+ 1)d 16d d

—2owp))')n~2(d~+a(a')), (ss)

where

a(L) = [(L+ -'.)(L+-')(L ——.')] ', (B6)

h(L) = [(2L+ 5)(2L+ 3)(2L+ 1)(2L—1)(2L —3)] ',
(»)

and w(L) is defined by (A3).

APPENDIX C: EVALUATION OF K(L)

In order to evaluate the integral K(L), we insert
(IV) in (14) and make the substitution z = kx, which

K(L) P Q Lm (yd)2()(. 2L

d 0 2m —2L —7
(C2)

where the coefficients c& are given by

2 (2L —m)! (2L —2m)!
[(L —m) (]'m (

(C3)

We note that E(I. (C2) holds for all values of L.

gives

K(L) = 2vPf2 f z [CT L+ y y2(z) +J L- g/2(z)]dz
(C1)

The integral in (Cl) may be evaluated using E(I.
9.62-5 of Ref. 13. We find
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Absolute Cross Sections for Excitation of Neon by Impact of 20-180-keV H+, H2+,
and He+~
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The technique of heavy-ion energy-loss spectrometry has been used to measure excitation
cross sections for the (2p')3s and (2p')3p electronic configurations of neon by impact of heavy
ions upon ground-state neon. The incident particles used were H", H2', and He' at impact
energies from 20 to 180 keV. The results are compared with previous optical measurements
of the emission cross sections of lines from these levels as excited by H" and He' impact.
Agreement is not good, neither in shape nor in absolute magnitude, for excitation of the
(2p5)3s configuration. However, agreement is surprisingly good for excitation of the (2p )3p
configuration. A curve-fitting technique has been applied to extract relative singlet-triplet
cross sections for levels within the (2p') 3s configuration. Almost no triplet excitation is
observed for H' and H2' impact. Significant triplet excitation is observed only for He' im-
pact.

I. INTRODUCTION

There has been considerable recent interest in
the properties of neon as embodied in collision
cross sections. Investigations have been conducted
by bombarding neon with low-energy ions' ' and
with electrons at energies ranging from threshold
to several hundreds of eV. 4'5

The extensive work of Coffey et al. ' on inelastic
and elastic scattering of He' by Ne at energies be-
low 5QO eV has indicated the wealth of information
obtainable by collision spectroscopy. In this low-
energy range, the observed patterns in the data
can be explained quite reasonably in terms of mo-
lecular curve crossings which, in turn, yield val-
uable information concerning the nature of inter-


