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close-coupling results is still quite remarkable
and is a test of the accuracy of the present theory
in this region of energy.
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A theory for exchange of vibrational quanta between molecules is formulated which does not
rely on the Born expansion of the S matrix. A transformation is derived which diagonalizes
the vibrational operators responsible for exchange. The scattering operator is then expanded
in a series of rotational tensor operators which permits evaluation of S-matrix elements to all
orders. This formulation shows that multiquantum processes, bothrotational and vibrational,
play an important role when transition moments are large. Numerical calculations for vibra-
tional exchange rates of carbon monoxide are compared with results of the first Born approxi-
mation from which they differ significantly. The dependence of the cross section on vibra-
tional-energy defect is much less drastic than that of the Born approximation. The present
calculations indicate that cross sections for the exchange of more than one vibrational quantum
are substantial, in marked contrast to the Born approximation where they are forbidden. The
size of these multiquantum cross sections indicates that they can play an important role in the
detailed kinetic modeling of CO lasers.

I. INTRODUCTION

The exchange of quanta of vibrational energy
from one molecule to another during a collision
(V- V) frequently plays a crucial role in the mech-
anism of infrared gas lasers. Since the total ener-
gy change (defect) associated with such a process
is fairly small, the rates for exchange are con-
siderably larger than the rates for thermalization
(V T) processes where -a vibrational quantum is

given up to the thermal bath. Treanor et al. ~ has
shown that a nonthermal vibrational population
distribution evolves in anharmonic oscillators if
the (V-V) exchange rates are sufficiently faster
than the (V- T) thermalization rates. The resulting
population inversion (partial or complete) gives
rise to gain and laser action for the higher vibra-
tional levels. This mechanism has been proposed
for several diatomic molecules (e.g. , CO, NO)
which show laser action in their higher vibrational
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levels. The populations and the gain for a system
are frequently calculated from a set of coupled dif-
ferential equations called master equations. Vi-
brational exchange (V-V), thermalization (V-T),
excitation (i.e. , electron impact), and stimulated
and spontaneous radiative rates must all be known
in order to obtain a solution. Although room-tem-
perature rates are frequently known for the lowest
vibrational levels, there is very little experimental
data on vibrational-energy-transfer rates for the
higher states of importance in lasers. Therefore
it is especially important to develop a theory of vi-
brational-energy transfer which correctly predicts
the dependence of the cross sections on the molecu-
lar quantum numbers and on the temperature.

Mahan first proposed the use of vibrational tran-
sition moments in the multipole expansion of the
intermolecular potential to calculate exchange rates.
For molecular vibrations with large transition
dipole moments, this term in the potential will be
the significant one in causing nearly resonant
vibrational energy transfer. The approach of
Mahan and of Sharma and Brau to the calculation
of vibrational-energy-transfer cross sections is
similar to the procedure introduced earlier by
Anderson to calculate effective cross sections for
the pressure broadening of microwave spectral
lines. That is, the impact formulation of the first
or second Born approximation is used, and to ob-
tain analytic expressions for the probability,
straight-path collision trajectories are assumed.
This approach has had success in explaining some
vibrational-energy-transfer data and has been ex-
tensively used in interpreting infrared laser per-
formance. The present results show that the (first)
Born approximation is an extremely poor approxi-
mation for cross sections involving high vibrational
states, such as those of importance in CQ lasers.

The organization of the paper is as follows.
In Sec. II, the rate for vibrational exchange will
be formulated in terms of a binary collision scat-
tering operator. Section III is a derivation of a
diagonalization transformation for vibrational op-
erators which permits evaluation of the S matrix
to all orders in vibrational operators. ' Section
IV describes the expansion of the scattering opera-
tor with rotational operators associated with the
dipole-dipole interaction into a series of tensor
operators. Section V gives the results of calcula-
tions of exchange rates for CO and a comparison
with calculations using the Sharma-Brau technique.

Several approximations have been introduced
which considerably simplify numerical evaluation
of the formal expressions derived in Secs. II-V.
The results presented are not meant to represent
definitive, quantitative cross sections for the CO
molecule. However, they are more than accurate
enough to illustrate the significant new predictions

of the theoretical expressions derived. For ex-
ample, these calculations show that exchange of
multiple vibrational quanta in a single collision is
a significant process. For nearly resonant pro-
cesses the cross section for exchange of n+ 1 quanta
is generally less than a factor of 10 smaller than
the cross section for exchange of n quanta. In the
first Born approximation only single vibrational
quantum exchanges are allowed and a restrictive
rotational selection rule (&J=+ I) is imposed. In
the present theory unitarity of the S matrix is pre-
served (conservation of probability) and various
rotational transitions are more properly weighted.
This is the source of the large discrepancies be-
tween single quantum exchange cross sections cal-
culated in the Born approximation and with the
present theory. For total vibrational excitation
of 15 quanta the Born cross sections are ten
orders of magnitude smaller in the nonresonant
limit and about two orders of magnitude larger in
the resonant limit. Further refinement of the
computational procedure will not alter the impor-
tant conclusions which are drawn from the present
illustrative calculation.

II. GENERAL FORMALISM

We are interested in processes where two mole-
cules designated 1 and 2 change their states during
a collision with an intermolecular potential V&~.

The probability for a transition from state ~ 1, 2)
to I 1', 2') during a collision is

(2. 1)

where S is the scattering operator

S=e exp [-i f 9'~z(t)dt] (2. 2)

v(1, 2-1', 2') =n,nz fo vM(v)QI3 (n)dv,

q4 (g) = 2v f 0 pP', 2 (p, v) d

(2. 3a)

(2. 3b)

and 6 is the chronological ordering operator. The
total transition rate is obtained by averaging
over all initial positions and velocities such that
the collision is centered at time zero and multi-
plying by the number of molecules of type 1 in
state I1) and the number of molecules of type 2

in state ~ 2). This average over translational de-
grees of freedom is most easily performed in the
classical-path approximg tion. The translational
states are wave packets so sharply peaked about
classical trajec tories that .operators involving trans-
lational degrees of freedom can be replaced by
classical functions of classical dynamic variables.
The average is performed by integrating over the
following classical variables: the impact param-
eter p; relative speed v; and angles of orientation
to the collision plane +, P, and y. The rate is given
as
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P1122 (p, v)= (I/8v2) f du f (sinp)dp

x f, dyP(1, 2-1', 2'), (2. 3c)

In this section we shall describe techniques for
treating the vibrational transition moments which
occur in V~&. Since we are interested in pure vibra-
tional-rotational- energy-transfer rates we may
ignore electronic degrees of freedom. The inter-
molecular potential can be expanded in a power
series of normal modes of vibration (transition
moments) for molecules 1 and 2, q1, q2:

V~~
—— ~ C]; q~qa

f )=0
(3.1)

The operation of normal modes is most easily

where n, and n~ are number densities for states
I 1) and

~ 2), and M(v) is a Maxwellian speed dis-
tribution. It can be shown that the average over
angles (2. 3c) is equivalent to averaging over ini-
tial and summing over final magnetic quantum
numbers. Either of these averages can be used
to prove that the averaged scattering operator is
invariant under rotations of the collision plane.
This is an important property which will be used
repeatedly in the treatment of rotational operators.
The formalism represented by Eqs. (2. 3)-(2. 5) is
based only on the classical-path and impact approxi-
mations.

Calculating matrix elements of the scattering
operator given in Eq. (2. 2) can pose a formidable
problem. One exception is when matrix elements
of the argument of the exponential are much less
than unity and the Born approximation is valid,
z. e. ,

S:—1 —i f V12(t)dt . (2. 4)

This is a very powerful approximation which
eliminates the problems of time ordering and ex-
ponentiation of operators. In order to use this
approximation in Eqs. (2. 3) it must be valid for
all values of p and v which contribute significantly
to the integrals.

III. VIBRATIONAL OPERATORS

seen by introducing ladder operators

q-=y(a'+a) (3. 2)

which satisfy the familiar commutation relation

[a, a']=1 . (3. 3)

V12 =Kg„(t)T", (3. 5)

where the coefficients f„(t) contain all explicit time
dependence but do not operate on vibrational or
rotational states.

At this point we shall introduce the fundamental
approximation upon which this approach is based.
The appr oximation

Substitution of the ladder operators and explicit
evaluation of the intermolecular potential to second
order give

v-rr t |V,2
= v 12+ V12(c2+a, a1+a2a2)+V12 [a1+a2

+c1(a1+a2) +c2a1a2]+ V12 ala2+c. c.2 2 tl ~-~ t

(3.4)
where only the ladder operators are affected by the
complex conjugation indicated. The first term is
purely scalar and contributes only indirectly by
determining collision trajectories. The second
term can be regarded as purely rotational since
the vibrational operators are diagonal. The third
term corresponds to V-T processes where vibra-
tional quanta are transferred to the thermal bath.
These terms are associated with very large ener-
gy defects and result in very small phase inte-
grals. The fourth term gives rise to fairly small
energy defects and is the main subject of this pa-
per. These terms give rise to vibrational-energy-
exchange rates (V-V) and will hereafter be desig-
nated V,2y1y2(a1a2+ a2a, ). In order to keep the for-
mulation as simple as possible we are treating the
case of nondegenerate normal modes and a second-
order expansion of V,2. However, analogous tech-
niques have been worked out for a fourth-order ex-
pansion and for doubly or triply degenerate modes
of vibration.

The term V&z contains rotational operators which
can be written as a sum of spherical tensor oper-
ators T",

(1', 2'
~6 exp (—i f „exp(i[H2(l}+H2(2)]t] V,2(a1ta2+ a2a, ) exp(- i [Ho(1) + H2(2}]t]dt)

~
1, 2)

=—(I', 2'
~

exep(-i f exp(i[ED(1')+ED(2')]t]V12(a1a2+aza1) exp(- i[ED(1)+E2(2)]t]dt)~ 1, 2) (3.6)

introduces enormous simplification into the calcu-
lation of S-matrix elements. Its validity is dis-
cussed in the final section where it is shown to be
quite good for rotational operators which are ten-
sors of order two or less. This embraces most
terms in the intermolecular potential for linear

l

molecules. This approximation is exact to first
order and the first Born approximation is an exact
limit of this theory.

This approximation eliminates problems associ-
ated with time ordering since the time dependence is
contained in functions which do not operate on
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states. It is useful to define an energy defect {' '
=E.(I') E.(2')-E.(I) -E.(2), (3. 7)

J„=—a, a2p J'-=—,(a~ a f+ ag ag)
—1

J -=a, a2, J',=--, (a,a, -a2ag) .
(3. 11)

The ladder commutators (3. 3) can be used to verify
the following relations characteristic of angular
momentum operators:

[J., J ]= 2J„
[J„J,]= —J'„
[J,J,]=J,

[J„J]=0,
[J„J']= 0,
[J,J']=0 .

(3. 12)

The action of these operators on the basis states
is most conveniently displayed in terms of new
vibrational quantum numbers j and m:

and to define integrals over the coefficients f„(t)
K„(&u)=y,yz f e'"'f„(t)dt . (3.8)

S-matrix elements are calculated from the exponen-
tial operator S(~)

S(cu) = exp f- i[+„K„(&u)T"](a,a2+a&az)), (3.9)

where & is determined by the initial and final
states.

The basis states which we use are simple product
states of rigid-rotor and harmonic-oscillator states

I » 2&= l»mi& I vi&l&2m2&l vg=-
I
&V~VS&, {3.10)

where & is a collective quantum number for rota-
tional states. Nonrigid-rotor or anharmonic-
oscillator basis states can be expanded in terms
of these states. A very suggestive notation can
be used for vibrational operators

The operator S(&, n) contains only rotational opera-
tors:

S((u, n)= exp [—+t2n+, K,((')T'] . {3.18)

If there are no rotational operators in the inter-
molecular potential a closed form ' exists for I'~&

(p, v):

„'(p, ~) = l(jm'Isljm&l = ld ~ (2KO(~)) (3.19)

The diagonalization transformation approach can-
not be used for rotational operators since they can-
not be represented by finite-dimensional matrices.
For the case of rotational operators which are
simple Legendre polynomials it has been shown'
that the scattering operator can be expanded in a
series of Legendre polynomials. This permits
simple evaluation of matrix elements and can be
used for induction and dispersion terms for linear
molecules. These techniques can also be applied
to special cases of the dipole-quadrupole interac-
tion (i.e. , CO&-N2). However an extremely im-
portant case not covered is the dipole-dipole in-
teraction. Using the notation of (3.5) gives

Z K„(cu)T"

f oo

In Sec. IV, we shall use the dipole-dipole interac-
tion to illustrate the method for handling rotational
operators.

IV. DIPOLE-DIPOLE INTERACTION

jm& =j I
o'jm& j= 2(vi+ V2)

J',
l

&jm& =m
l
ojm&, m=- ~(vq —vn),

+ I
uj m& = [j (j + 1) —m (m + 1)j~~ 21 ojm + 1)

J-I &jm& = [j{j+»-m(m —1)j"'I&jm —I)

(3.13)

x I'i~, (I)I'g„(2) (4. 1)

The analogy with angular momentum is obvious,
and it is clear that

a&a2+a&az ——J, +J = 2J„, (3. 14)

which can be diagonalized by a rotation of —,'m about
the J, axis:

f (s / 2 V'y J -i 6r / 2)Jy
Ã g ~ (3. 15)

(jm'le" ~'
~l jm&=d~„.„(—'m)=b~„. (3. 16)

which can be used to eliminate the vibrational
operators from (3.9):
(o'jm'lS

l
ajm& = (o'jm'

l
S —1

l &jm&

The matrix elements of this diagonalization matrix
are simply the rotation matrices'

where R(t) is the intermolecular separation, the
angles 8 and q give the orientation of the inter-
molecular vector in the space fixed coordinate sys-
tem and the operators T» are spherical tensors:

4~
jp (4. 2)

QK„((u)T"= W6 ' '- y,y,TS,O(1, 1)
n ~&3 ~~2

Since, as was pointed out in Sec. II, the exchange
rates are invariant under rotations of the collision
plane we can consider only planes which contain
the z axis. This leaves the angle y arbitrary and
independent of time, and averaging over (equivalent)
y's gives
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f ao

J
x e'"2P3(cos8)

&~~ ), (4. &)

where a coupled representation for the spherical
tensors has been used:

T, , „(k„k~)= (- 1)"a '~ ' Z I(2j + 1)]'
P 102

T, „(1)T„„(2). (4. 4)

S(&u, n) = exp [- —,'inK(&) 2t 5 Ta, ()(1, 1)]

. , (21 ~ 2)(21+1)(2l —1))~~~
5l(l +1)

x j&(nK((2)))T2 o(l, l)+ ', (4. 5)

where the additional terms do not contribute to the
average over m's. The j, 's are spherical Bessel
functions and K((d) is defined

Anticipating that matrix elements of the scattering
operator will be multiplied by their complex con-
jugates and summed over magnetic quantum num-
bers, we use the following expansion of the ex-
ponential operator:

K(~) =- 4 ' y, y, e'"'P2(cos&(t))
Bg1 R t

(4. 5)

Matrix elements of the spherical tensor T2 0(l, l) are'

(j'&j 2
J'M'

l
Tz o(l, l )

l j&jz JM) = (- 1) '~&'~i) I5(2 J' + 1)(2J'+ 1)(2j&+1)(2jz+ 1)(2j&+ 1)(2jz+ 1)]

MIOM jlj2 J 000 000 ' 4'7

l 2

This expression is simplified when the S-matrix elements are multiplied by their complex conjugates, and
averaged over initial and summed over final magnetic quantum numbers. Using the orthogonality relation
for 3-j symbols

gg (M OM) 5' (4.5)

and the orthogonality relation for 9-j symbols

.I ~ I I
j1 ja J

Q (2Z+1)(2Z+l)(2l, +1)(2l,+1) j, j, J
JJ'

~1 Ei

.I .I I
j1 j2 J
j1 j2 J
l2 l2 2

(4. 9)

gives a simple expression corresponding to Eq. (2. 3c) (recall that j, m, and m are vibrational quantum

numbers),

(2j~+1) '(2ja+1) ' ~ l(j~ ja~M'jm'I. ~(~)li ~iaJMjm&l' =-' ~ &.' ..&'...&';,.&'...~ "',,', ",
)

I
) ' 2

.x j, (nK(&u))j, (AK(&u)) (2j, + 1)(2l+ 1) ' ~' (2j~+ l)(2l+ 1) (4. 10)

Evaluation of (4. 10) is simplified by the relations

Q J ( 1)2 2)II QJ

j,(x) = (- 1)'j,(- x),

(4. 1 la)

(4. 11b)

which show that only terms for which l+ &V is even
(& V is the number of quanta exchanged) contribute
to the sum over n and k. The 3-j symbols show
that if 4 V is odd, initial and final rotational states
have opposite parity, while if 4V is even, rotational
states have the same parity.

Only the integrals over impact parameter and

I

relative speed remain to be performed to obtain
vibrational exchange rates. All dependence on p
and v is contained in K(&u) and only the spherical
Bessel functions enter the integrals (2. Sa) and

(2. 3b).

V. APPLICATION TO CARBON MONOXIDE

In this section the formalism which has been
developed is applied to the calculation of vibra-
tional-exchange cross sections for carbon mono-
xide. Equation (4. 10) is in a computational form
and its evaluation poses no fundamental difficulty.
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Calculations are being performed which explicitly
evaluate this expression using curved classical
trajectories and anharmonic CO vibrational. wave
functions. The results presented in this section
follow from simpler approximate calculations
which illustrate the major predictions of the
theory. The approximations used have been chosen
to underestimate the cross sections and the re-
sults represent lover limits; however, we do not
expect an increase of more than two or three to
result from a more comprehensive calculation.
Since the comparison with the commonly used
Born approximation involves discrepancies of
many orders of magnitude, the accuracy of this
procedure is sufficient to illustrate the differences
between the two theories. Finally the approxima-
tions introduce mostly scale error, and the quan-
tum number dependence, the crucial issue in this
paper, is quite reliable.

The probability (cross section divided by the
kinetic cross section) for a vibrational exchange
which has been averaged over a Boltzmann dis-
tribution of initial rotational states and summed
over final states is given as

(2l+3)(2l+1) (2l —1) ~ 0 „0
l(l+ 1) &,n, a

The classical average over impact parameter and
relative speed is given in terms of normalized
variables u and u.'

f', „,= 2f e" -u0[2 f wf', „~(u, w, ~) dw]du,

(5. 2)

where po is the kinetic collision diameter and

u-=v/v0, v0= (2k'/p)"'= (-,' m)'" v, u =-p/p, .
All of the terms which depend on the classical
variables are collected in

f,,„,(u, u, ~) -=Q j, (nK(~))j, (kK(~)) C.
tt=o

(5. 3)
where C, ~ is a thermal average over rotational
terms with a total energy defect of PB, and vibra-
tional-energy defect of &2+,x, . For the case of
exchange between two CO molecules

AcB~ .I .I .I .I @Gee
Cr, ,s = ' Q exp —[A(A+ 1)+j,(js+ I)]

~l ~2

& (2j, + 1)(2j 0+ 1) P (2j, + 1)(2j0+ 1)
&1&2

which arises because 2, x, =14B,for CO. If the
straight-path approximation is used to evaluate
K(~) we obtain

(SP, 2
2 ~V' 1

q p30
(5. 5)

where v0 is p0/v0 and R(x) is the so-called reso-
anacefunction. The variable x is defined as

R(x) = x'K, (x) —xK, (x) . (5. 8)

This function remains nearly constant at unity until

x becomes greater than 1 and then it drops sharply
at x& 2. For numerical simplicity this function
has been replaced by a step function

R(x) =H(x: 2) =1, x ~2

=0, x&2

and since R(x) occurs in the argument of a spheri-
cal Bessel function the sharpness is enhanced,
making this a rather good approximation. The in-
tegral over impact parameter becomes

2 f wf( q y(uqwq~)dw

= g C, 0 f ' wj, (nK)j, (kK) dw, (5. 7)

where the use of the step function is implied. The
calculation is further simplified restricting the cal-
culation to collisions with w &1; for CO at 200 K
we obtain

wf ", ,(u, w, &) dw = 98u' j, —jg
0

g

.8 l. .a
0~0(u) ~ 0=0 P 0

The integer @(u) is the smallest integer such that

p, (u) & (I /wcr0B, ) u= Vu .

For exactly resonant exchange, neglecting colli-
sions for which gg &1 underestimates the proba-
bility by a factor of 2. However, we are mainly
concerned with nonresonant cases and the error
introduced will be considerably smaller. The
second term in (5.8) is neglected because the de-
crease in C, 0 is not compensated for by 1/P0.
A Gauss-Hermite quadrature rule is used to per-
form the remaining average over u:

x= ~p/v=-2mc70pa, u/u

and the resonance function is given in the straight-
path approximation in terms of modified Bessel
functions:
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(5. 9)
%'e can now examine the validity of the funda-

mental approximation introduced in Ec(. (3.6):
CL

o -6~
-8-

Born, DV=$

I I I I I

-CO(21-n)+CO(n) CO{21-n-bV)
-P mCO(n a )

t)V

= &ilexp[ —i f e'"&t'V(t) dt] lf& (5 10)

Representation of the resonance function by a step
function is equivalent to introducing a projection
operator P(~0) defined by its operation on an arbi-
trary operator M'4:

&t II'(".) ~lf& =&t IMIf&, ~if ~0

-lo—

-l2—

FIG. 2. Probability of vibrational-energy exchange
between carbon monoxide molecules. The sum of the
vibrational excitations of both molecules is 21. Other
variables have the same values as those in Fig. 1.

=- 0, CO.
~

& (00 ~

The size of coo depends on impact parameter, relative
velocity and the power law for the interaction.
For these CO calculations the changes in rotational
state of molecules 1 and 2 are constrained to be
those which cancel the vibrational energy defect
dE within a factor PB;.

&1,2
I

exp[ikP(pB, )T»(1, 1)]I1,2&

=&1,2 II'(PB,) e~[tk1'p, o(1, 1)]l 1, 2&

(5. 11)
is exact to kth order if

If we take 0= aB, then a series expansion of the
exponential for the dipole-dipole interaction shows

CL

a -6
O

-S

-l2;

0m,

CO (t3-n)+ CO (n)

CO ( l3-n-BV)+CO(n+BV)

FIG. 1. Probability of vibrational-energy exchange
between carbon monoxide molecules, The sum of the vibra-
tional excitations of both molecules is 13, and Dy is the
number of quanta exchanged. The exchange processes as
written are endothermic and the probabilities given were
calculated for the endothermic direction. As described
in the text, the probabilities were averaged over classi-
cal dynamical variables and a Boltzmann distribution of
initial rotational states characterized by T = 200 'K. For
comparison to the results of the present theory, the re-
sults of a first Born approximation calculation are shown.

k &K —P.

This result is completely equivalent to (5. 10) and

can be verified by noting that only those sequences
of intermediate states which are connected to each
other and the initial and final state by the 4j = + 1
selection rule contribute to the series expansion.
In the case k & v- p the right-hand side of (5. 11)
will allow terms which would have been annihilated
in an expansion of the left-hand side. However,
the approximation will not fail seriously unless k
is four or five times larger than ~ —P. Examina-
tion of these calculations showed that the bulk of
the cross sections result from contributions "exact"
to at least tenth order.

Cross sections were calculated for processes
of the type

CO(v —n)+ CO(n) -CO(v —n —&v)+CO(n+&v) —&E,

where 4E denotes the vibrational-energy defect, v
is the sum of vibrational excitation in both mole-
cules, &v is the number of vibrational quanta ex-
changed, and n can have any value less than —,

' v.
Probabilities, summed over final rotational states
and averaged over a Boltzmann distribution of initial
rotational states, were calculated for all n and v

up to v= 40 and all 4v such that &E & 1000 em-'.
The resulting 800 cross sections required about
10 min on a CDC 3800 computer. Calculations
using identical parameters for CO but employing
the first Born approximation" were performed to
compare with these results. Figures 1 and 2 show
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1: CO (n+1+6V)+CO (n-6V)

CO (n+1)+ CO (n)

20
2n+ 1

I

30

FIG. 3. Probability of vibrational-energy exchange
between carbon monoxide molecules. The sum of the
vibrational excitations in both molecules is 2m+1, and

Ae is the number of quanta exchanged. The exchange
processes as written are endothermic, and the probabili-
ties were calculated for the endothermic direction. The
vibrational-energy defect is —56 cm ~ for all the Dv =1
processes, -168 cm ' for M =2, and -336 cm ' for 6v
=3. As described in the text, the probabilities were
averaged over classical dynamical variables and a Boltz-
mann distribution of initial rotational states characterized
by T=200'K. For comparison to the results of the pres-
ent theory, results calculated in the first Born approxi-
mation are given.

while the results of this theory show broad maxima.
This occurs because for higher total excitation
larger bj transitions become more probable, even-
tually forcing an unfavorable Boltzmann factor for
the initial rotational state.

The relative size of multiquanta exchange cross
sections is the most significant result of these cal-
culations. In all cases the probability for exchange
of n quanta was much greater than the nth power
of the corresponding probability for exchange of a
single quantum. %e reiterate that these calcula-
tions use harmonic-oscillator states for vibra-
tional wave functions, and that anharmonic-oscilla-
tor states are really a linear combination of har-
monic-osciU. ator states. However, even for high
levels of excitation in which a large number of
harmonic basis states contribute, the cross sec-
tions will not change drastically because of the re-
latively gradual variation of our results with total
excitation,

The important role of V- V exchange processes
in determining the vibrational. population distribu-
tion in CO lasers has been discussed at 1.ength. '
There is general agreement that exchangeprocesses
of the type

CO(n)+ CO(m) = CO(n —1)+ CO(m+ 1)+ &&

pump upper vibrational levels giving rise to gain
and laser action. Detailed balancing gives a rela-
tion between forward and reverse rates,

probabilities for exchanging one or two quanta
for values of the total excitation v =13 and 21, re-
spectively. Since

4E= 2&v, x, hv(v —2n —&v)

the vibrational-energy defect is largest for n= 0,
decreasing in steps of 4(d,x,&v as n increases.
The gradual decrease of the probability with vi-
brational-energy defect for &v= 1 is in marked
contrast to the very steep falloff of the Born cal-
culations for 4E &100 cm-'. This results from
the Born selection rule 4j=+1 which severely
restricts cancellation of 4E by energy changes in

the rotational degrees of freedom. These figures
also show that the 4v= 2 cross sections are sub-

stantial, particularly for the larger values of n.
Figure 3 shows the change in probability as a

function of total excitation for exchange of 1,2, and

3 vibrational quanta for the most nearly resonant
processes calculated (b E= 56, 168, and 886 cm ',
respectively). It can be clearly seen that the Born
calculation continues to rise with total excitation,
becoming quite large for this nearly resonant case,

and since for an anharmonic oscillator ~E is posi-
tive for m & n, the rate which increases the higher
level is favored. Analysis with master equations
which incorporate processes of the type (5. 12)
and detailed balancing has given generally good
agreement with experimental small signal gain
data. In all of these cases rates for multiquantum

exchange processes which were found to be quite
substantial in our ca,lculations have been neglected.
However, it can not be concluded that this implies
that our results conflict with experimental smaB
signal gain measurements. Numerical inversion
of steady-state master equations can not give a
unique solution for exchange rates since several
hundred rates can be significant in about forty
steady-state master equations. Thus, it is possi-
ble to adjust exchange cross sections based on our
calculations and those based on Born calculations
to predict identical steady-state characteristics.
However, the enormous discrepancies between the
two theories will be reflected in more detailed
kinetic modeling of time evolution and saturation
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characteristics. In conclusion we feel that kinetic
modeling should not be based on the contribution of
relatively few large exchange rates; our calcu-
lations indicate that many more somewhat smaller
rates would be more appropriate.
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