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In the bvo-state approximation analytic formulas are derived for the inelastic cross section
in the limit in which the particle velocity is large relative to the energy defect. These formulas
involve a mixing parameter and two eigenphase shifts. For scattering in a C(X)/R potential,
where X is an internal coordinate of the target, the integral cross section is presented in closed
form, with parameters given by the elastic-superelastic potential-difference strength, the
coupling strength, the velocity, and a cutoff for the singular potential, taken to be the target
radius. Results are given for H'-H2, e -Hp, and e -N2 vibrational excitation. The theory ap-
pears to be correct for the high-energy tail of the cross sections.

I. INTRODUCTION

It is desirable to obtain an analytic representa-
tion of the multichannel theory wherever possible to
avoid the heavy labor of the numerical solution of
the close-coupling equations. In addition, an ana-
lytic representation facilitates the study of the scat-
tering as a function of laboratory parameters and
is more easily generalizable to classes of prob-
lems; thus, it may be of more direct use to the
experimentalist than a numerical representation.
Also, the inversion of scattering data to determine
the potential parameters is greatly facilitated.
Olson and Smith' have pursued this approach in

cases where well-defined curve crossings allow
the use of the I andau-Zener inelastic probability
in conjunction with the quantum-mechanical addi-
tion of amplitudes to yield analytic results for the
cross section in which a maximum use is made of
experimental data. It is the purpose of this paper
to derive analytic formulas for the multichannel
problem (using the two-state approximation as a
convenient example) in which the criterion of valid-
ity for the method of solution used is that the par-
ticle velocity be large relative to the energy defect.
It is found that diagonalization of the close-coupling
equations for two open channels yields a constant
mixing parameter and two eigenphase shifts. The
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eigenphase shifts are identical to the shifts in the
Stueckelberg' theory if kI = k, and R„(crossing point)
replaces a large-R cutoff Ro as the upper limit
of integration. The validity of the theory does not
require the existence of a crossing point in the
potential curves. In addition, this representation
appears to be easily generalized to include more
than two states. The latter are inherent limitations
of the Stueckelberg-Landau-Zener' (SLZ) theory,
which in addition has an incorrect high-energy be-
havior.

+4V„(R,)'P ~'), (Sc)

n V(R2) = V22(Ro) —VII(R2), (sd)

(5e)

(st)

+ 4v,',]"'}, (sg)

i, = [a,'- V, (R) —(f+ ,')'/R-']"',

v, = —,'Ov„v„)-2~ [(v„-v„+2 )'

II. THEORY

We desire to diagonalize the close-coupling equa-
tions

P]) = 2MV)g,

e = energy defect = ko /2M - kI /2M .
(sh)

(si)

(D, +v)c = o,
d2 l(l + 1)i

—dR R )
by a unitary transformation, '

(1a)
The value of Ro is arbitrary.

The theory may not be useful unless the follow-
ing physical conditions are met: (a) For the
damping function, Eq. (5c), hV» e over most of
the range of R, and 4V and Vo, are the sante func-
tion of R,

4 =S F (2) hV = IIf(R), V„=Pf(R) (5)

We obtain

(D+ VD}F = 0,

VD =SVS 9

0 =ID + S [D, SI] .

(»)
(Sb)

(Sc)

Then, neglecting e relative to 4V, y=y, is a con-
stant and the transformation matrix in Eq. (2) is
a constant matrix:

X& = damping constant

In general S is an R-dependent matrix, so the equa-
tions are still coupled in the kinetic energy ma-
trix D. For the moment let us adopt an "adiabat-
ic" representation by setting the R-dependent S
matrix equal to its value at some Ro. There the
commutator in (Sc) vanishes, and using the trans-
formation matrix (at R2)

= —(1/2p)[n —(n'+4p2}' '] .
(b) For purposes of analysis we expand the eigen-
phase shifts in inverse powers of the energy; the

phase difference in Eq. (5b) then becomes, to

O(R ')

= rf' —I) = 1 dt[(EV+ e) +4V2I]
0

cos8 sin8
!

(-sin8 cos8)

r(1+x2 )-I&2 x (1+x2)"I/2)

(x.(1+x')-' ' (1+x')- j

q„= (v/u, ')Z, (2f+ 1)J, (E),

PI(E) = [: 2 2 sin ('gI —'gI)
4X(R,)' . 2

1+y Ro

X(R2) = damping function = tan& = X,

(sa)

(sb)

= - [2V2, (R2)] (EV(R2)+ 2 —([b V(RO)+ e]

{4b)

we derive the following parameters for the inelas-
tic cross section2 (in a.u. ), where we have eva)u-
ated the eigenphase shifts in the JWKB approxima-
tion:

Asymptotically 4q is of the order

6'g Ev~ = Ea/U'

where a is the size of the potential and u is the
particle velocity. Thus to neglect & at the infinity
means that

(lo)

The Massey' adiabatic criterion for determining
the velocity for maximum inelastic probability is

so that this approximation will be valid in the high-
energy tail of the cross section. Likewise, we
have to meet the same condition encountered in
condition (a) above for the damping function, that
4V»e over moat of the range of R; otherwise the
error in the phase difference will be the same
order as its magnitude. Both conditions (a) and (b)
suggest that we choose a large R cutoff Ro when

bV is small relative to ~. The insensitivity of the
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FIG. 1. Cross section vs
incident energy for O'-H2
0 1 vibrational excitation.
Open circles: experimental
results of Herrero and
Doering |Ref. 13); crosses:
present theory.
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cross section to such a cutoff (Ro large enough to
represent infinity for a given potential) is then a
measure of the usefulness of the theory. In the
calculations considered in Sec. Ill, conditions (a)
and (b) are satisfied, and calculations for Ro
chosen when ~V«e indicates that Ro represents
infinity for the potential used.

III. CALCULATIONS

+
&

—,+,, „+0(o"u ')~, (12a)

P, = 4X'. /(I+ X,')',
n Z = (o.'+4P')'~'

(12b)

(12c)

[see Eqs. (6) and (7)]. For the 0- 1 transition in
H2, we haveg

In this section we perform calculations for vibra-
tional excitation of Ha and N2 by a structureless
charged particle. %'e assume the dominant poten-
tial is the isotropic part of the polarization poten-
tial, —n (0X) /2R, where no is the polarizability as
a function of vibrational coordinate X. Extensive
calculation on O'-H2 vibrational excitation in which
the quadrupole and polarization potentials as well
as the short-range part of the Hartree potential
are included show this to be the ease above 200-eV
incident energy. If we use Eq. (8) for the phase
difference, the integrations over time and impact
parameter [using l+-,' = hob and g = kof db in (5a)]
can be performed, and we obtain [see the Appendix
for general C(X)/R"]

me o.021 1 2 /we n02 1
4hu p 4o' Sit, ku 10o

n = —2(5.414 —5. 885),

P = --.'(0. V8S),

no = o!o (X„)= 5. 17862 .

(isa)

(18b)

(18c)

The condition 4V» e can now be verified for most
of R. For R=1, b,V=0. 25 and a=0. 02 a. u. hV«e
when R is equal to about 3, but most of the scatter-
ing has occurred in this region; thus the cutoff RD

was chosen to be infinity when the integrations to
produce (12a) were performed. The parameter o
is a short-range cutoff in the singular potential;
in these calculations it is taken to be the internu-
clear distance, 0 =X„. This choice is problemat-
ic, but so are methods' of deriving smooth cutoff
functions which allow the polarization potential to
be taken into the origin. These cutoffs reduce the
potential in the vicinity of the target radius; this
may produce a good behavior for electrons which
accelerate in this region producing less polariza-
tion, but a bad behavior (not enough attraction")
for protons or positrons which decelerate to pro-
duce more polarization.

Figures 1-3 show results for O'-H2, e -H&, and
e -N~, respectively. The e -N~ results are very
crude since the H2 matrix elements were used,
scaled to account for the different polarizability of
N2 at X„. Also, only the high-energy tail of the
experimental' cross section is nonresonant, so
that the smooth curve shown is drawn through the
middle of the resonance oscillations. Figure 1
shows excellent agreement with the results of
Herrero and Doering" above 500 eV. At 10' eV,
&/u = —,'o, but below 500 eV, e/u = —,', so that the
approximation begins to become poor. In addition,
the curve may be rising too rapidly in this region,
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FIG. 2. Cross section vs

energy for e -H2 0-1 vibration-
al excitation. Open circles;
measurements by Linder (Ref.
16); solid curve: close-coupling
calculation by Henry (Ref. 9) in-
cluding a short-range potential
and all long-range potentials
modified at small R by smooth
cutoff functions; crosses: close-
coupling calculation of Henry
(Ref. 9) without the short-range
potential; data points: present
theory.
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not as a result of the growth of e/u, but as a result
of the nonconvergence of the o "u" expansion [Eq.
(12a)j in this region (the expansion converges to
within ~o at 700, +at 500, and & at 400 eV). The

good agreement may be fortuitous: A more care-
ful treatment of the full second-order potential
(analog of the Dalgarno-Lynn 4 potential for H'-H),
which is known to give too much attraction in the
monopole contribution but a more reasonable
attraction in the R quadrupole polarization poten-
tial, needs to be considered. However, if the
agreement is not fortuitous, then the calculation
illustrates the importance of polarization forces
in energy regions where most of the scattering is
in the forward direction. Below 200 eV, small-
impact-parameter wide-angle scattering will be-
come increasingly important and so too will com-
peting electron capture, whose cross section" is
comparable to the excitation cross section in this
region. Figure 2 shows reasonable agreement at
10-eV electron energies, where «/u =Co, but this
theory underestimates the cross section at lower
energies. Henry's calculation (see his Fig. 3)
demonstrates the importance of nonpolarization
potential coupling in this region, expected for elec-
trons scattering in an attractive short-range po-
tential. Also shown are Henry's results without

V, ; these are in much better agreement with our
results, which are larger because of the absence
of a reducing cutoff function. We believe that the
agreement of the no- V„curves could be quantita-

tive if the calculations contained the same long-
range potential, cut off in the same way. How-

ever, the agreement with the no- V„numerical
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FIG. 3. Cross section vs energy for e -N2 0 1 vi-
brational excitation. Open circles: experimental results
of Schulz (Ref. 12) smoothed over resonance oscillations;
solid curve: present theory.
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close-coupling results is still quite remarkable
and is a test of the accuracy of the present theory
in this region of energy.
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APPENDIX

The cross section for arbitrary R " is given by

ge~X me X

x (4n —6) '0 ' "+0(o """u ')
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A theory for exchange of vibrational quanta between molecules is formulated which does not
rely on the Born expansion of the S matrix. A transformation is derived which diagonalizes
the vibrational operators responsible for exchange. The scattering operator is then expanded
in a series of rotational tensor operators which permits evaluation of S-matrix elements to all
orders. This formulation shows that multiquantum processes, bothrotational and vibrational,
play an important role when transition moments are large. Numerical calculations for vibra-
tional exchange rates of carbon monoxide are compared with results of the first Born approxi-
mation from which they differ significantly. The dependence of the cross section on vibra-
tional-energy defect is much less drastic than that of the Born approximation. The present
calculations indicate that cross sections for the exchange of more than one vibrational quantum
are substantial, in marked contrast to the Born approximation where they are forbidden. The
size of these multiquantum cross sections indicates that they can play an important role in the
detailed kinetic modeling of CO lasers.

I. INTRODUCTION

The exchange of quanta of vibrational energy
from one molecule to another during a collision
(V- V) frequently plays a crucial role in the mech-
anism of infrared gas lasers. Since the total ener-
gy change (defect) associated with such a process
is fairly small, the rates for exchange are con-
siderably larger than the rates for thermalization
(V T) processes where -a vibrational quantum is

given up to the thermal bath. Treanor et al. ~ has
shown that a nonthermal vibrational population
distribution evolves in anharmonic oscillators if
the (V-V) exchange rates are sufficiently faster
than the (V- T) thermalization rates. The resulting
population inversion (partial or complete) gives
rise to gain and laser action for the higher vibra-
tional levels. This mechanism has been proposed
for several diatomic molecules (e.g. , CO, NO)
which show laser action in their higher vibrational


