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The Glauber amplitude for describing collisions of charged particles. with two-electron
atoms, resulting in transitions between spherically symmetrical states, is reduced to a read-
ily computable form. Application is then made to the 2! S—1!$ transition in helium, for which

angular distributions are determined for 26.5-, 34-,

50-, and 83-eV incident electrons.

Comparison with experiment shows that the Glauber theory is capable of accurately pre-

dicting the angular distributions for even our lowest-energy calculation,
theory predicts the recently observed structure in the differential cross section.

In particular the
The energy

dependence of the “apparent” generalized oscillator strength is also demonstrated for incident

energies in the range 300~1100 eV.

A number of recent papers have dealt with the
applicability and usefulness of the Glauber approxi-
mation® with respect to collisions of charged parti-
cles with atomic systems. In particular, a fairly
complete study of the approximation as applied to
the elastic and inelastic (bound-state excitation)
scattering of electrons and protons by hydrogen,
has shown the Glauber theory to be quite accurate
in the energy range where the first Born approxi-
mation is known to fail and close-coupling theories
with their modifications” are not feasible. Addi-
tional applications have been made to helium® ®°
and lithium, !° and quite recently the theory has
been applied to impact ionization of hydrogen!! by
electrons, and multiple scattering effects'?
electron-molecule collisions.

Although Thomas and Gerjuoy? have been able to
obtain closed form expressions for the scattering
amplitudes for the excitation of certain energy
levels of hydrogen by electrons or protons, it is
unlikely that such will be the case for many-elec-
tron atomic systems even with the simplest approxi-
mate wave functions. Using a particular form for
the atomic wave function, however, Franco'® has
been successful in reducing the (32 + 2)-dimension-
al integral occurring in the amplitude expression
(for scattering of charged particles by a Z-electron
atom) to a one-dimensional integral involving
products of the generalized ;F,a; b, c; x) hyper-
geometric functions. This expression is quite

2-5

6

appealing in its scope, but apart from (e~, H) and
(p*, H) collisions, its numerical tractability has
yet to be demonstrated. Thus, the essential aim
of the present article is to present a simplification
of the Glauber amplitude for the two-electron atom,
for certain excitations by charged particles. Spe-
cifically, the amplitude for excitation by electrons,
of ground state helium (1 1S), to the first meta-
stable state (2 !S) is put in a readily computable
form and evaluated. The differential cross sec-
tions for this process for selected energies in the
25-1100 eV range are presented and compared with
experiment and other theoretical values.

The collision amplitude F;(g), where the atom
(two electrons in the field of a doubly positively
charged core, e.g., He, alkaline earths, Hg,
etc.) is excited from some initial state ; to some
final state f by an incident electron, is given ac-
cording to the Glauber theory by

IRy = ad > - > .
Fl@=2 [ a5t a0, £)[1-(5, 7)

x (b, Fz)l‘l’i(f‘l’ ), ()

where
(B, )=(|b-5,|/p)%" (2)
and n=1/k;. Here ¥, and ¥, are the wave func-

tions representmg the target state before and after
collision. ki and kf are, respectively, the incident
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and final momenta of the scattering electron, and
d=(k; -k;) is the momentum transfer (note that
Hartree atomic units are used). The vector b is
two-dimensional and lies in a plane perpendicular
to the incident direction, as does §; ¥;=8;+2;. A
complete description of the coordinate system has
been given by Tai, Bassel, Gerjuoy and Franco. 2

For transitions between spherically symmetrical
states, Franco® has shown that Eq. (1) may be re-
duced to

Fy ()= 4n%ik; [drd6de dz,ydz,7r° sin®6 cosb
X sing cosg Jy(grcosO)¥rA(8, ¢)¥,, (3)

where the integration variables », 6, ¢ have arisen
owing to a transformation of 5, s;, and s, to
spherical polar coordinates, and A(8, ¢) is a func-
tion of products of Gauss hypergeometric functions.
With the possible exception of functional forms de-
pending explicitly on interelectronic distances,
virtually all approximate wave functions for the
types of states under consideration may be put in
the form

o) G ) ()
v, (7, fa)=2ja§'”7’i" v e e e, (4)

where »{'’ and m !’ are integers. Substituting (4)

into (3) and carrying out the z integrations gives
- /2 /2
Fiu(d)= 16ﬂzikin0“ a6 J; "dg A6, ¢)
xfow drv"Jo(gr cosb)

X Ky(ar sinf sing)K, (B sinb cos¢), (5)

with
() () ()
C —d \"'f —d \" [ —d \™
P= &) ()
,,Z,,f“f T \apP) \avP) \ac®
()
d \"e
x
@) ©
and
a=b"+0, B=ci v (7)

Equation (5) gives the amplitude in the form eval-
uated by Franco for elastic collisions. This ex-
pression may, however, be reduced further by
noting that the infinite integration can be done
analytically, with the result (see Appendix)

- X T/2 /2 ,
Fpi(§)=167%,P [ a6 [ dgA’(6, ¢)

x B(6, ¢; q), (8)
where

C Y- v (=3),T+5)I(+3)
B(6, ¢; q)=1536V7a’'B E}) (ll!)zl"(l+%-)
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(9)
with

a’=asingdsing, B’=pBsinbcosy,
(Ot' - BI)2+ )\2

= ST NI T ¢

A qcose, VA (a'+ﬁ') +A

Although the amplitude, as given by Eq. (8) is not

nearly as simple as the corresponding first Born

amplitude, it is readily computed by numerical

quadrature as illustrated by the following calcula-

tions of the differential scattering cross sections:

dosi(Q) = (kg /R;) | Fri() | 2 (10)

for the 2'S~11S transition in helium.

For the ground state of helium we use an approxi-
mate Hartree-Fock function, with the one-electron
orbitals chosen to be of the form

¢r)= {\.7‘/_1_;_ (e +ne™").

The parameters chosen are those given by the
Hartree -Fock!* fit of Lowdin'®: o =1.455799, 8= 2a,
1n=0.60, and Nyg =1.48423. The wave function

for the (1s 2s) 2'S level is chosen to be orthogonal
to the ground state and of the form

Uotg =N h1g = v¥1g), v={¥;315|¥}15)

and N is a normalization constant. The function
¥)1s is of the Eckart form, '® as determined by
Altshuler.'” The transition energy change for
these functions is AE=0.7239 a.u. as compared
to the experimental value of AE=0.7576 a.u. The
effect of these energy differences on the calculated
cross sections was found to be very slight, and the
reported results are for the experimental value of
this quantity.

Figures 1-4 give, respectively, the results of
our calculations for incident electron energies
26.5, 34, 50, and 82 eV; as compared with experi-
ment, with the first Born approximation, and in
Fig. 4, with the high-energy approximation of
Hidalgo and Geltman.?® In Fig. 5 the energy depen-
dence of the “apparent” generalized oscillator
strength

AE k
foa) = 2 donolg)g®
n

is demonstrated for incident energies in the range
300-1100 eV.

The excitation of the 2S state of helium by elec-
tron impact has been considered in detail by Rice
et al.*® for the energy range of primary interest
here (25-100 eV). Their analysis was directed
towards determining the qualitative and quantitative
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FIG. 1. Differential cross section vs scattering angle
0 for incident electron energy E =26.5 eV, Solid line,
first Born approximation; dashed line, Glauber approxi-
mation; ®, experimental results of Rice et al. (Ref. 18).

validity of first-order plane-wave theories, a
similar treatment having been given previously for
the 2P excitation in helium. Contrary to their
findings for the 2'P excitation, they found that for
even qualitative agreement at small angles, some
allowance must be made for polarization of the
target. Even so, their best approximation to the
scattering amplitudes, which includes exchange
and charge polarization (in the form of a two-pa-
rameter adiabatic polarization potential) gives dif-
ferential cross sections which, when compared
with experiment, are to be considered in quite poor
agreement for the energy range 25-~100 eV. These
results show the need for more accurate represen-
tation of polarizing effects (important particularly
for small-angle scattering) and distortion and ex-
change interactions (which become increasingly
more significant for large angle scatterings).

With the exception of exchange interactions all
of the above effects are to some extent included in
the single Glauber amplitude [Eq. (1)]. Byron®
and more recently Bransden and Coleman® have
demonstrated the relationship between the Glauber
approximation and the close-coupling and usual

impact-parameter methods; and as Byron suggests,

eikonal approximations are to be viewed “as close-
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coupling methods in which all channels are included
at the expense of making certain approximations in
each channel.” Thus, core interactions enter into
the theory in a very natural way. Birman and
Rosendorff® have presented a revealing derivation
which shows that if, prior to making the Glauber
small-angle approximation one closes the summa-
tion over all states (appearing in the Lippmann-
Schwinger equation) by replacing the intermediate
propagation energies by the incident particle ener-
gy, then Eq. (1) is derived. It is this approxima-
tion which leads to divergence of the Glauber am-
plitude in the inelastically nonphysical limit of ¢
approaching zero. This, of course, is reminiscent
of similar difficulties in approximate second Born
calculations. %

Figures 1 and 2 show our calculations for inci-
dent electron energies of 26.5 and 34 eV, respec-
tively, as compared with the corresponding first
Born approximation, and the experimental results
of Rice ef al. The Born approximation is seen to
considerably overestimate the magnitude of the
differential cross section (except for the very for-
ward direction at 34 eV) and fails to give even
qualitatively the shape of the angular distribution
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FIG. 2. Differential cross section vs scattering angle
6 for incident electron energy E =34 eV. Solid line,
first Born approximation; dashed line, Glauber approx-
imation; ®, experimental results of Rice et al. (Ref. 18).
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FIG. 3. Differential cross section vs scattering angle
6 for E=50 eV. Solid line, first Born approximation;
dashed line, Glauber approximation; ®, experimental
results (at 55.5 eV) of Rice et al. (Ref. 18); O, experi-
mental results of Crooks and Rudd (Ref. 19).

throughout the angular range. Rice ef al. reach
essentially identical conclusions with their first-
order plane-wave polarization-exchange theories.
Even for such relatively poor wave functions, the
Glauber theory is strikingly successful at these
energies. For 34 eV, the theory predicts results
which are seen to be quantitative out to 6~80°; and,
while the quantitative agreement is not as good for
26.5 eV, the shape of the cross section agrees
quite well with experiment.

Comments similar to the above may be made
regarding Figs. 3-4, where the calculations are
extended to larger angles and to the energies 50
and 82 eV, respectively. In Fig. 3, we also plot
the experimental results of Rice ef al. (at 55.5
eV), Crooks and Rudd, ! and Chamberlain et al.?
The experimental results in Fig. 4 are those of
Rice ef al. and Opal and Beatym; along with this
the calculation of Hidalgo and Geltman® is given
for comparison. The calculations of Hidalgo and
Geltman differ from a first Born result in that
allowance is made for the interaction of the incident
electron with the nucleus. The effect of this is
that some approximation to the distortion of the in-
cident electron by the scatterer is included.

Figure 5, showing the “apparent” generalized
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FIG. 4. Differential cross section vs scattering angle
6 for E =82 eV. Dot-dashed line, first Born approxi-
mation; solid line, Glauber approximation; dashed line,
calculation of Hidalgo and Geltman (Ref, 20); O, experi-
mental, Rice ef al. (Ref. 18); @, experimental, Opal and
Beaty (Ref. 21).

oscillator strength, is intended as a summary of
our higher energy calculations (300-1100 eV),

giving the energy variation of the Glauber cross
section. For comparison, various experimental
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FIG. 5. “Apparent” generalized oscillator strength vs
¢*. Curves 1—4, Glauber calculations for incident elec-
tron energies, E =300, 500, 900 and 1100 eV, respec-
tively; curve 5, first Born approximation; curve 6,
calculation of Kim and Inokuti (Ref. 22). A, experimental
results of Vriens et al. (Ref. 23) at 300, 400 eV; and O,
experimental results of Lasettre et al. (Ref. 24) at 500
eV,
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results (see legend to Fig. 5) are included, to-
gether with a Born calculation using the wave func-
tions discussed above, and the more accurate re-
sults of Kim and Inokuti.?® In terms of the scatter-
ing angle, the maxima (for the energy-dependent
calculations) vary from 6 =10° for 300 eV to 6=6°
at 1100 eV.

The deviation between experiment and our calcu-
lations are attributable, over-all, to a number of
factors: approximate representation of polarization
and distortion effects, neglect of exchange, rela-
tively inaccurate wave functions, and of course the
inherent small-angle nature of the Glauber approxi-
mation. Investigations to determine the effect of
exchange and corrections to the theory are current-
ly being explored.

The authors wish to thank the Indiana University
Research Computing Center for use of its facili-
ties.

APPENDIX

The 7 integral in Eq. (5) is a special case of the
more general integral

Ip, v, w)= [ drrd (K, (BrK,(rr). (A1)

Integrals of products of three Bessel functions,
similar to the above have been treated by Bailey®;
however, it appears that only the case I(v+1, v, u)
has been given in closed form.?® We note that use
of the integral transform?®°

Ku(ﬁ'r)Ku('yy) = —12-J d_t. e-rztg‘(32+yz) “tKu(B’Y/Zt)
0
(A2)
allows us to rewrite (Al) as
J
Vra'Tw+n+1)(By)"
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* 2,2
Ip, v, u)=%J %ﬁe'“‘ wAtE (By/2t)
0

XJ‘ drr’e'”zJ‘,(a'r) ,  (A3)
0

where the order of integrations has been inter-
changed and the conditions Re(r) > 0 and Re[} (8
+7)%]>0 are required. Performing the » integra-
tion and replacing ¢ by 1/¢ gives

Ip, v, p)
- avrsf‘% v+ 12 B + 12)I dt t(v~o+1)/2-le-(52+'yz 7w /4
2" (v+1) 0

XKu(‘%BYt)1F1(}EV+%P+%§ v+l; ~ga?),

(A4)

where ,F,(a; b; z) is the confluent hypergeometric
function.

For the case p=v+2n+1, =0, 1, 2,...,
+Fila; b; z) reduces to an n-term polynomial in ¢,
and

@T(y+n+1) & (=n)y(sa?)
22T (w+1) op W+1)k!

Iv+2n+1, v, u)=

© 2,42,,2
XI dt tv+n+ke-(a B t/d K, (_% B’)’t) .
0

(A5)
Subject to the restriction Re(v+n+k+1)>|Re(p)l,
evaluation of the #-integral gives the result

I(V+21’l+1, v, H):22u+2nw

T+ D[(B+y)%+ aF]*7*m1

i (=) T(p+v+n+k+ DIy =—p+n+k+1)
k=0 W+ 1)k Tw+n+k+ %)

2 ] (B_y)2+a2
X (m) aFl(u+v+n+k+1, p+d; vin+k+ 3 . (A8)

There is little difficulty in showing that for »=0,
(A6) can be put in the form of the known result for
Iv+1, v, p).

B+¥)+a

The substitution of the combination v=0, n=3,
and p =1 in (A6) leads to the result given in Eqgs.
(8) and (9).
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In the two-state approximation analytic formulas are derived for the inelastic cross section

in the limit in which the particle velocity is large relative to the energy defect.
involve a mixing parameter and two eigenphase shifts.

These formulas
For scattering in a C(X)/R" potential,

where X is an internal coordinate of the target, the integral cross section is presented in closed
form, with parameters given by the elastic-superelastic potential-difference strength, the
coupling strength, the velocity, and a cutoff for the singular potential, taken to be the target

radius. Results are given for H*-H,,

e -H,, and ¢ -N, vibrational excitation. The theory ap-

pears to be correct for the high-energy tail of the cross sections.

I. INTRODUCTION

It is desirable to obtain an analytic representa-
tion of the multichannel theory wherever possible to
avoid the heavy labor of the numerical solution of
the close-coupling equations. In addition, an ana-
lytic representation facilitates the study of the scat-
tering as a function of laboratory parameters and
is more easily generalizable to classes of prob-
lems; thus, it may be of more direct use to the
experimentalist than a numerical representation.
Also, the inversion of scattering data to determine
the potential parameters is greatly facilitated.
Olson and Smith! have pursued this approach in

cases where well-defined curve crossings allow
the use of the Landau-Zener inelastic probability
in conjunction with the quantum-mechanical addi-
tion of amplitudes to yield analytic results for the
cross section in which a maximum use is made of
experimental data. It is the purpose of this paper
to derive analytic formulas for the multichannel
problem (using the two-state approximation as a
convenient example) in which the criterion of valid-
ity for the method of solution used is that the par-
ticle velocity be large relative to the energy defect.
It is found that diagonalization of the close-coupling
equations for two open channels yields a constant
mixing parameter and two eigenphase shifts. The



