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The electron-impact double-excitation cross sections for several states of lithium, beryl-
lium, magnesium, and calcium are calculated using the Born-Oppenheimer scattering approx-
imation. The energy dependence of the total cross sections and the angular dependence of the
differential cross sections for these parity-unfavored transitions are reported. The maximum
values of the total cross sections for excitation of the lowest states {np) 3P& of beryllium, mag-
nesium and calcium are found to be comparable in magnitude to those for single excitations in
the same energy range (- ~ap), Those for the {np)(3d) 'D„and 3D„excitations are found to be of
the order of 10 7tap for magnesium and 10 ~ap for beryllium. The highly excited (1s) (2p) P~
state of lithium has a maximum cross section of 4x10 57tap. The highly excited (1s)(2p) 4P

for aQ these transitions are proportional to sin 8 and so they vanish in the forward and back-
ward directions. The polarization of the dipole radiation emitted by these doubly excited
states is described. Target wave functions are constructed using the Hartree-Fock method.
For the S 3P transition in magnesium and calcium, pseudopotential methods were also
used to construct the target wave functions. The resulting cross sections agree closely
with those computed with Hartree-Fock orbitals.

I. INTRODUCTiON

The existence of doubly excited atomic config-
urations was established several decades ago by
experimental observations of their characteristic
emission spectra. Selection rules prevent direct
photoexcitation from the ground state to these ex-
cited states. However, their production by elec-
tron impact is possible and has been studied both
theoretically ' and experimentally. ' Indeed, it is
because of the recent experimental activity in this
area that we have decided to proceed beyond the
previous theoretical studies which pertained to
helium and construct theoretical estimates for the
excitation cross sections of other atomic species.
In their study of the doubly excited states of heli-
um, Becker and Dahler discovered that the mag-
nitudes of the cross sections generated by the
simple Born-Oppenheimer (BO) approximation
were in substantial agreement with those gotten
from more sophisticated and presumably more
reliable distorted-wave (with exchange) and close-
coupling (two-state) calculations. The angular
dependence of the differential cross sections was
found to depend only weakly upon the quality of the
wave functions for the target atom and not at all
upon which of these scattering approximations was
employed. Therefore, in this extension of pre-
vious investigation we rely exclusively upon the
BQ approximation. In a subsequent communication
these results will be compared with close-coupling
calculations.

We first derive a formula for the amplitude of
scattering to a doubly excited state of an N-elec-
tron atom. This is used to compute the cross
section (in BO approximation) for one doubly ex-

cited state of lithium (N= 3). We also examine in
considerable detail target atoms (the alkaline
earths) which consist of two valence electrons plus
an inner core of electrons which do not participate
directly in the excitation process. Under these
circumstances the scattering process reduces, at
least approximately, to a three-electron problem.
In the examples studies here —several doubly ex-
cited states of beryllium, magnesium, and cal-
cium —we generally have used Hartree-Fock orbit-
a],s for the initial and final states of the target
atoms. However, for the 'S,- P transitions of
Be and Mg we have also made use of pseudopo-
tential methods to construct approximate orbitals.

Finally, we have investigated the rather peculiar
threshold behaviors of certain double excitations
and examined the polarization of radiation emitted
from these states.

A. Double-Excited Atomic States

Some atoms possess &0und doubly excited states
with energies which lie below the first ionization
threshold. Much more common, however, are
quasibound doubly excited states which have ener-
gies in excess of this threshold. In this case the
atom may autoionize, that is, it may spontaneously
emit an electron because of coupling between the
excited (discrete) state and the adjacent continuum
(corresponding to the free electron plus ion). The
rate of this autoionization process depends upon
that portion of the total Hamiltonian which couples
the quasibound state to the continuum. According
to first-order perturbation theory this rate is
given by 4@I. V&) I p&, with

v„=(e„~a-e,~e, &,
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and where pz is the density of final states. Here,
Ho is the largest part of the Hamiltonian H of
which the quasibound state 4', is an eigenfunction.
4& is the wave function for the ion-plus-free-elec-
tron state to mhich the quasibound state decays.
In general, V= H —Ho is some part of the inter-
electronic repulsive term plus the spin-orbit
coupling terms. If the interelectronic repulsive
term couples the quasibound state to the continu-
um, the autoionization lifetime is found to be on
the order of the collision time, 10 sec, for the
excitation process. These we classify as true
autoionizing doubly excited states. The calcula-
tion of the corresponding cross sections is some-
what complicated by interference between the
scattered and ejected electrons. If the interelec-
tronic repulsion term does not couple the quasi-
bound state to the continuum, then the spin-orbit
terms of the total Hamiltonian provide the only
means for autoionization. The autoionization life-
time for this spin-orbit mechanism is on the
order of a microsecond. Quasibound states which
are able to autoionize only by this second path will
usually decay more readily by electric-dipole
photoemission for which the lifetimes typically
vary from 1 to 10 nsec. Since this is several or-
ders of magnitude longer than the collision time
for the excitation process, me can treat double ex-
citations to these "nonautoionizing" states to be
transitions from one bound state to another.

The selection rules for the dominant mode of
autoionization will be those associated with a sca-
lar interaction such as the Coulomb repulsion be-
tween two atomic electrons. If Russell —Saunders
(LS) coupling is assumed, one then finds that a
doubly excited state will be subject to autoioniza-
tion only if it has the same parity, spin, and or-
bital angular momentum as the adjacent continu-
um. If there are no adjacent continuum states
which satisfy all three of these selection rules,
the state can be called nonautoionizing. The states
we investigate here are all either bound or non-
autoionizing.

B. Parity-Unfavored Transitions

The theory of electron-impact excitation predicts
that for certain doubly excited states the forward-
scattering amplitude mill be identically zero. '
These transitions are called "parity unfavored. "
Within the Russell-Saunders coupling scheme,
parity-unfavored transitions are those for which
hJ+ bII is an odd integer. Here ~J is the total
orbital angular momentum transferred from the
scattering electron to the target atom and bII is
the change of parity of the target. For transitions
in which neither the initial nor final target state
is an S state, the value of ~J will not be unique.
In these cases there are both parity-favored and

Simpson, Mielczarek, and Cooper were unable to
detect excitation of this state in forward-scattering
experiments but they did observe parity-favored
double excitations within the same range of ener-
gies. This is the only experimental information
which exists concerning the angular dependence of
the cross sections for parity-unfavored atomic
transitions. However, the total inelastic cross
section for this particular transition of helium has
been measured by the trapped-electron method. '

The differential cross section for this parity-un-
favored transition was calculated by Becker and
Dahler who found it to be proportional to the square
of the sine of the scattering angle 8. The cross
sections for all of the parity-unfavored transitions
considered here also contain a factor of sin28 and
so vanish in the forward and backward directions.
Finally, we have verified for several cases the
conclusions of Becker and Dahler that within the
two-state approximations very few partial waves
are involved in parity-unfavored transitions (e. g. ,
only l' = 1- l = 1 for 'S,- 'P, transitions) and that
for parity-unfavored processes the change of the
projection quantum number for orbital angular mo-
mentum must be nonzero.

II. 80 CROSS SECTIONS FOR IMPACT EXCITATION OF
N-ELECTRON ATOMS

We neglect the dependence of energy upon spin
so that the Hamiltonian for a projectile electron
together with an N-electron target atom is given
by

HN+ HN+1+ ~N+1 '

Here T„,1 denotes the kinetic-energy operator for
the (N+ l)th electron and

—2N g 2

+N+1 ~=1 + ', N+1
(2)

To this approximation, solutions of the Schroding-
er equation (H —E) 4 "~ (1, . . . , N+1)= 0 can be
labeled with the good quantum numbers S and M~
pertaining to total spin and to its projection.

The characteristic functions and associated
eigenvalues of the atomic-energy operator H~ are
denoted by C'„&"~(1, . . . , N) and E„, respectively.
These unit normalized functions can be written
in the form

parity-unfavored contributions to the cross sec-
tion. For transitions into or from a target S state,
bJ will equal the change in total orbital angular
momentum of the target, that is, ~=br. . For ex-
ample, the helium (ls) 'S -(2p) ~P, transition is
parity unfavored with

6J+ bII = hL+ AII = 1+0 .
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qgpttlv (I, , N) ],

where 8 is the antisymmetrizer, p„(1, . . . , N)
an energy eigenfunction defined on the space of the
electronic position coordinates, and q'„" "(1,
. . . , N) the appropriate eigenfunction of electron
spin. The functions 4'„v v may be used as a basis
for the expansion

e'"~ (1, . . . , N+1) =m ( Z Z C""
v mmv

x C „'~"~(1, . . . , N) P'"(N+ 1)F„(N+ 1)) (4)

of the wave function for the entire system of N+ 1
electrons. In (4) the sum on the index v includes
the continuum as well as the discrete states of the
target. The symbols F„(i) and p'"(i) refer to

(T„,~ —k„)F„(N+ 1) = (N+ 1) ~ G„(N+ 1),
with k„=E —Ev and

(8)

space and spin functions of a single electron and
C'v' „ is a vector -coupling coefficient.

The equations satisfied by the functions Fv are
constructed according to the prescription

Caves C, svmv (1 N) y (N+ 1)
lmvmM S

mm„

x (H-E)l 4'"&(I, . . . , N+1))g.g=0,

where ( )„,~ indicates summation over all spin
variables and integration over the spatial coordi-
nates of all but electron N+ 1. These equations
may be rewritten in the form

(N+1) G„(N+1)= —(N+1) Q C "' (4™(1, . . . , N)Q™(N+I) lH„,ql4 ~(1, . . . , N+1))~,~

NZ Z-Z C„"'„.„C'„"'„„(C„'""(1,. . . , N)Q' (N+1)l
mm„m'm &

x (T„„+H„E)l@'," "-(2, . . . , N+1) y' (1)F„(I))&.&.

The solutions of (6) which we desire are those
appropriate to scattering by the atomic ground
state (v = 0) of an incident electron with momentum

These boundary conditions stipulate that the
functions F„be solutions of the integral equations

and where

v0 kv~ k0

with

F„(r)= f„,e'"o'+ F„"(r), (8) f„,(k„, k, ) =— (N+ 1)
4m

d'r'8 '""'"G (r')

(N+ 1)'"
4m

3 exp(ik„ I r —r'
I )x d r

I r —r'
I

G„(r
4

(10)

is the amplitude for scattering into the fina) state
(v, k„). It follows from (7) that this amplitude
consists of a contribution

(N+ 1) If„0(k„,ko) = ( Z C'"~ 4'" &(I . , N)y' (N+l)e'"~'n+l H„',& ly "s)
'It'

mvm

together with a sum of terms each of which is proportional to a matrix element of the form

f =(8 "' P (» ~ ~ ~ N)l Tx+i+H~ —El F~(l)$ (2, . . . , N+1))

= (F„(l)$,(2, . . . , N+ l)
l T„,&+H„—E

l

e'""'""'~g„(1,. . . , N) )* —T„„. (12)

The first of these two terms vanishes identically so that

N+1
—i„„=T„„=Z (i& ([e'"&'&'&y„'(I, . . . , N)] V&[F„(I)y„(2, . . . , N+1)]

p=1

—[F (1)g~(2, . . . , N+ 1)]V&[e~"&'&+&P„(1, . . . , N) ] ]) .
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The multiply excited final states (v) of interest to
us here are either truly bound or are nonautoioniz-
ing states embedded within a continuum. In either
event the corresponding wave functions are square
integrable so that each term in (13) with p&N in-
tegrates to zero. A similar argument applies to
the contribution from p= N+ 1 provided that the
state p „ is square integrable. The only contribu-
tions to T„,which one cannot immediately conclude
will vanish are those coming from the portion of
E,(l)$„(2, . . . , N+ 1) for which the state of elec-
tron N+ 1 is unbound. The way in which we have
(arbitrarily) separated the total Hamiltonian into
an unperturbed part and a perturbation has led us

to select for an initial state the product of a bound
atomic-state function and a plane wave representa-
tive of the incident electron. Because of the in-
distinguishability of the electrons, it is then con-
sistent to express an ionic term as a superposi-
tion,

F z (1)f d gk-„(tc)Q„"(2,. . . , N)e~"'N+x

(14)
of plane waves. Here p, now refers to some par-
ticular discrete state of the product ion and the
variable k„ to the momentum of the ionized elec-
tron. %e therefore conclude that for a continuum
state, T „„is given by

T»„=j d gk"„(g)(V„,q'([e'"&'N+&P„(1, . . . , N)] V„+z[E„f (1)g'„"(2, . . . , N) e'"'&+&]

-[F - (I)y'-(2 . .. N)""'" &]~.,i[e'""'"'e.(I, ". »] ])
= f d gk-„(g)(y„(l, . . . , N) ~F„ f, (1)P'„"(2, . . . , N))„,g(K —k„)5(K -k„),

and so it vanishes.
An alternative to the procedure adopted here is

to include in the "unperturbed Hamiltonian" the
Coulomb interaction between the incident electron
and the atomic nucleus. This results in conclu-
sions and formulas, the details of which are given
in the Appendix, similar to those presented above.

The BO approximation is obtained from (11) by
replacing the exact wave function 4' "~ with a
(totally antisymmetric) function which represents
the asymptotic form of the initial state. This is
accomplished by restricting the summation in (4)
to the single term with v=0 and by selecting for
Fo(r) the plane wave 8'"o'. The resulting formula,

f„o(k„,ko)= ( 2 C'"'~ 4»" "(1 . .. , N)Q' (N+ I)e'"&'&'& ~H„,&
~

fftv

x 2 C o ~ [Coo o(1, . . . , N)Q (N'+ I) &e"o "+Ns +N'c~oo( o,2N+1)y~'(I)e&"o"i])
Wm'

(16)

includes as special cases BO scattering amplitudes
which have appeared in the literature. '

For single excitations and especially for S-S
transitions, the BQ approximation often grossly
overestimates the effects of exchange and gener-
ates unreliable predictions for the angular de-
pendence of the differential cross section. ' This
usually is attributed to complications arising from
the core interactions 2N/r„, q. In fact, it is pos-
sible to obtain nonzero contributions to the scat-
tering amplitude simply by adding a constant to
the potential of interaction. This undesirable fea-
ture is absent for double excitations where the
oniy contributions to the scattering amplitude arise
from electron-electron interactions. It is rea-
sonable to surmise that it is the absence of these
troublesome core-scattering terms which is re-
sponsible for the past success of the BQ theory in
correctly accounting for the magnitude and angular
dependence of the cross sections for double excita-.

tions.
Calculations based upon the first BO approxima-

tion, (16), can account for the simultaneous ex-
citation of three or more electrons only if the tar-
get wave function specifically includes spatial cor-
relations among the electrons. However, even in
the absence of such correlations, the second BO
approximation (or a close-coupling calculation
which includes one or more intermediate states)
will produce nonzero estimates of the cross sec-
tions for these multiple excitations. Similarly,
the second BO approximation provides for the pro-
duction of final doubly excited states by means of
two sequential single-excitation processes. For
example, these second-order contributions to the
scattering amplitude for the S,- oP,(2p) transi-
tion of helium are given by

f~ o (k„, k o) = (3 i /4o) [ ( V„~ —V „pp)

+(fJ'„~- v„'~)], (»)
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where p and q refer to the triplet and singlet states
P„(ls)(2p) and P„(ls)(2p), respectively. The

terms appearing in this formula are defined as
follows:

1'.~=ff1 dl dl'd2'e '"""&4.(23)II'(»& IO.(23)&i~~(1 —1')&4.(2'3')IIfi (a a ~ &lto(3'1')&i a e'""",

1".~= jjjfd'ldl'd2d2'e '""' &e.(23)lffi(aa&le. (»»ia &.*(2-1')&e.(2'3') Ifii ~a a &Iso(3'1') &i a
e'"'"",

(18)
f .~ = 1 f f dl dl' d2 e ""' &e.(23)

I ~i&»& I e,(») &» el (2- 1') &e,(2'3')
I
fIi &'a & I

eo(2'3') )i """

where subscripts on the matrix elements ( I I ) in-
dicate upon which variables the resulting function
depends (that is, over which variables integrations
are not to be performed) and where

di = d i';, HI(~„&—- 2(& i iyy. i 2i i)

and

8~(m —n) = i'„„'e"&'™~.

We expect these contributions to be small com-
pared to the first BO approximation but there may
be situations for which this is not so. In either
event calculations based upon formula (1V) are
likely to be unreliable because it is for single-
electron transitions of the sort involved here that
BO approximation is known to be inadequate. We
have not succeeded in evaluating the complicated
integrals appearing in f~ but partial results
which were obtained gave evidence of unsatisfac-
tory angular dependence. Close-coupling calcula-
tions should be performed since they would permit
one to obtain a more accurate picture of the im-
portance of intermediate-state contributions to
cross sections for double excitation.

A. Formulas for BO Scattering Amplitudes

In the calculations which follow we approximate
the energy eigenfunctions g„(1, . . . , N) by products
of one-electron orbitals. The 4th member of the
orthonormal set of one-electron orbitals associated
with the state» is denoted by g „„(j), where the
argument j refers to the position coordinates of
electron j.

1. Two-Electron Targets

The singlet and triplet wave functions for a two-
electron target may be written in the forms

4 „(12)= &&&'„,„a(12)&ncaa(12)

and where

&l'„'(l2) = 2 ' '(o.,P a
—o.a8, ), etc. ,

denote the familiar two-electron spin eigenfunc-
tions. By substituting into (16), we obtain the
formula

f'„o(k„,k, ), , = (y'„„,(12)e'" '
I

xIia
I 0 oioa(12)e"a'" Poioa(23)e' o ')

(20)
for a singlet- singlet transition. In the case of a
double excitation there is no contribution to this
amplitude from the first term to the right of H, .

The amplitude for a singlet triplet transition is
given by

f„(k„,k ) = (3 i /4 )

x & &)I „i„a(12)e'""'a
I
IIa

I $ Oi Oa(23) e ' ') .
(21)

By expanding the plane waves of Eqs. (20) and

(21) in spherical harmonics, we find that (i) the
amplitude for transition from the configuration
(ns)a to (n'P)a involves only initial and final P
waves and (ii) that the amplitude for (ns) - (n'P)
(n "d) depends upon cross couplings between in-
cident and final P and d waves. When configura-
tion interaction is included the situation becomes
slightly more complicated.

2. Three-Electron Targets

The wave function for a quartet (s„= —,) state may
be written as the product

4'„~ ' "(123)=3 '~
[&)& „,„a(12)g„a(3)+( „,„a(23)g„a(1)

+ &I& „,„a(31)g„a(2) ]&l„~ ' ~(123) (22)

and

C '„"~(12)= &)& „,„a (12)rj„'"~(12),

respectively, with

0'„i„a(ij)= 2 ' '( g„i(i)4„a(j)+ &)„a(i)|)„,(j ) ),

(19) of a completely antisymmetric spatial function with
one of the completely symmetric spin functions

&3ga)m„
P

To obtain wave functions for the doublet states
of three electrons we begin with three-electron
spin functions, rI„' ' "(ij Ik), which are antisym-
metric in their first pair of arguments. Next, one
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of these is multiplied by a spatial function which
is symmetric in the same pair of position coordi-
nates. The associated completely antisymmetric

function then can be expressed as a linear combi-
nation of these product functions. Proceeding in
this fashion we obtain the doublet functions

(123)=3 ' [(',„a(12)g~(3)sl„" ' "(12lS)

+ g'„g„a(23)g„s(1)q„"~ ' "(23
l
1)+ g'„g„a(31)g~(2) q'„'~ ' "(31

l 2)] .

The scattering amplitudes for doublet- doublet and doublet-quartet transitions are found to be

(23)

2i]af o (k ko)p-p= &0'„g„a(12)0s(3)e""'s lHs l4'oioa(12)0'osao(34)+0'oioa(42)0 osao(31) 0'o~oa(23)0'osao(14)])

(24)
and

-1/g

f „p (k„, ko)D o=
4

(e'"" " [( „,pa(12)g„s(3)+ g „g„a(23)(„s(1)

+ q.i.a(») y~(2)]IHs l""' [q'o~ oa(34)q~(2) —q'o»a(24) q~(4)]) (28)

with

0'.iso(s» = 2 ' [S.i(f)e'""~~(.iU)e'""&] .

When g„,= („a the functions Coo(12) and
@„' ~ ' "(123) given by (19) and (23) must be mul-
tiplied by 2 . Corresponding alterations must
then be made in the formulas for the scattering
amplitudes. Furthermore, depending upon the an-
gular-momentum coupling scheme which is chosen
to represent the state v, the two- and three-elec-

tron functions displayed above may include implicit
summations (weighted by vector-coupling coeffi-
cients) over projection quantum numbers.

III. APPLICATIONS TO SPECIFIC ATOMS

A. Lithium

Here the process of special interest is the par-
ity-unfavored doublet to quartet transition from
the ground state S,(ls) (2s) to the excited state
sP, (ls)(2p)a. The ground-state wave function

4~o"a' '(123)= 3 '" [$„(1)p„(2)$„(3)s)p"'o(12 l3)+ $„(2)p„(3)p„(1)p'p"" o(23 l1)

+ 4»(3)4&.(1)Aa.(2) s)o
' (31 l2)] Yoo(1) Yoo(2) Yoo(3) (28)

is obtained from (23) by setting

and (27)

P„s(r) —= Pa, (r) Ypp(y )

=- (4~'/SN)'" ["'" —(»/~) e "")Y-( ).

4,i(r) =( (r) =-0 .(~) Yoo(~) =-(4~')'"e "Yoo(~)

In order that these orbitals be orthonormal, one
must select A and N equal to (o.+ pb) /(p+ n) and
1 —48A(1+ b) + SA b, respectively.

The parameters of 40" ' o are chosen so that
the expectation value of the energy is a minimum.
This criterion results in a value of Eo= —14.80 Ry
(0. 12 Ry above the experimental energy) and the
parameter values a = 2. 69, b = 3. 19, and p, = 0. 67.

The wave functions for the final state may be
written

C„M (123)=3 Q C~ m M [P~,(1) Y~m (1) gas(2) Y~ (2) P„(3)Yoo(g)
m] mg

+ two cyclic permutations of electron labels]p„~ ' "(123), (28)

with Pa~(r) = (~s') ' re and where M~= (0, +1) is the
projection quantum number for orbital angular mo-

mentum. For convenience we select for n in Q,
the same value of 2. 69 as was used for the 1s
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orbital of the ground state. Then, with y taken
equal to 0. 90 we obtain an upper bound of E„
= —10. 36 Ry (0. 07 Ry above the experimental val-
ue) for the energy of this excited state.

With these approximate wave functions we ob-
tain from (26) the scattering amplitudes

f ~~ (k„, ko) = —(o ) Js(2P i ko) Jss(ls; 2s, 2P; k„)

and

M", (4)=e ' '&„,,„+e' '6„, M

ZM(nl;k)= f, dr rj'(kr)p„, (r)

.(nl;n' I', n"l";k)= f dr rj (kr)

x P„,(r) Y .(n'I', n"l";r)
(30)Y,(n'l', n"l";r)=r fo"dr' r' ' ' p„., (r')

x p„„,„(r ) + r-" f" dr r' "'P„,, (r )P„„,„(r') .

Finally, the function

I(k)= fo drj, (kr)e "{406 —e (r 6 +6r 6 o

+20r 6 +40r6 '+406 o) —(3A/g)

x [8p —e '"(r p +4r p +8rp + Sp ')]} (31)

has been evaluated numerically for different val-
ues of k„= (E —E„) ~, the momentum of the scat-
tered electron. In these formulas, 5= y+ p, p= y
+ pk, and ko= (& —Eo)'".

It follows from (29) that the differential cross
section is given by

x I'Mz (p) sin8

= ——",'v ko(y'+ k,') '(o.' p'/2N)"'I(k„)

x I'M (p) sin8, (29)

where 8= arccos(k„ko),

are those which connect the (ns) S~ ground states
of these atoms to the excited states (np)2 P~,
(np)(3d)'D„, and (np)(3d) D„; here n= 2, 3, and 4
for Be, Mg, and Ca, respectively. To calculate
the cross sections for these processes we could
use the general N-electron target formulas given
in Sec. II. However, because the atomic cort„
is so weakly coupled to the valence electrons, its
states will be virtually unaltered by these transi-
tions. Therefore, it should be an excellent ap-
proximation to treat these dynamical events as if
only the two valence electrons were involved. To
test the validity of this assumption we have used
Froese's Hartree-Fock program. In every case
the core orbitals for the ground and doubly ex-
cited states were found to be substantially the
same. Theref ore, we are justified in treating
the alkaline earths as two-electron targets with
cores which may be ignored except for the roles
they play in shaping the valence orbitals.

We were unable to construct the singlet and
triplet D states of calcium with the Froese Har-
tree-Fock program. To use this program it gen-
erally is necessary to begin with fairly accurate
initial estimates for the orbitals. Where self-
consistency is difficult to achieve these original
estimates are especially crucial for success. The
valence d orbital of calcium is bound to the atom
by a small and slowly varying potential because
of almost perfect cancellation of the screened nu-
clear attraction by the centrifugal potential. This
is particularly significant in the vicinity of the
maximum of the orbital because the d orbital will
then exhibit very little curvature and a corre-
spondingly low kinetic energy. Consequently, the
orbital will extend far out from the nucleus. The
long-range and relatively low binding energy of
the orbital makes self-consistency extraordinar-

a (8) = 2(k„/ko)
~
f, (k„, ko)

~

= (3/8v) er sin 8, (32)
6.0—

where 0~ refers to the total cross section, the
maximum value of which is 3. 7x10 ma&. Al-
though this cross section is small, it is only one
order of magnitude less than that for the helium
'S,(ls) - P~(2P) transition which already has been
observed by Schultz and Burrow and to which it
is compared in Fig. 1. The angular dependence of
the scattering is identical for the se two parity-
unfavored processes.

2.0—

40

Li—

4.8 5.2
Eo

I

5.6
l

60

B. Beryllium, Magnesium, and Calcium

In each of the alkaline earths two valence elec-
trons lie outside a spherically symmetric core.
The most important parity-unfavored transitions

FIG. 1. Total BO cross sections for the (a) He (1s)
iSg- (2P)23pg and {b) Li (1s)2(2s) 2Sg- (1s)(2P)24Pg transi-
tion plotted vs energy (in Ry) of the incident electron.
Cross sections are in units of 10" 7tgo for He and 10 +Qo
for Li.
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ily difficult to attain. Since the Froese program
presumably is capable of generating exact orbitals
we conclude that our failure to obtain satisfactory
results for these D states is due to the inadequacy
of our original orbital estimates.

The energies of the states for which we are able
to generate Hartree-Fock wave functions appear
in Table I. The ground-state energies agree to
several decimal places with those reported by
Clementi. ' Where comparisons are possible the
Hartree-Fock excitation energies can be seen to

agree moderately well with experiment.
The antisymmetrized two-electron target wave

functions are obtained by substituting appropriate
self-consistent field (SCF) orbitals into (19), mul-
tiplying by an appropriate vector-coupling coeffi-
cient, and then summing over the projection quan-
tum numbers for the individual electronic orbital
angular momenta in order to generate eigenfunc-
tions of the total orbital angular momentum and
of its projection. This results in the set of func-
tions

Sg: 4o (12)= Qns(I) Pns(2) I'oo(1) Yoo(2) q (12)

oP: C~~M (12)= p C",~ M $„~(l)&j&„~(2) Y, ,(1)Yg (2)q' (12),
mlm2

'D„:@oooM (12)= 2 ~~o Z C~'o
M [Qo~(1) Q„~(2) Yo (1)Y, (2) + $„~(1)go„(2)Y, (1) Yo (2) ]g (12),

mlm2

'D„:4o, , (12)=2-'" Z C",', ,[y„(1)y„p(2) Yo.,(i) Y, ,(2) —y„p(1) y, „(2)Y,(1)Yo, (2)]R' (12) .
mlm2

By inserting these functions into formulas (20) and

(21) we obtain the scattering amplitudes and dif-
ferential cross sections:

ls 3~ fpj's
= —3 AI'gg(Q) sin8

~(8) = 3(2k„/k, )A'sin'8,

f Fry
= -[(Bcos8+C) I'ui(Q)

ls
2

+ B sin8 I'g~ (g)] sin8

io(8) = (2k„/k, )(B'+C'

+ 2BC cos8) sino8,
(34)

Sg- D„:(

f1~ = —3 [(Bcos8 —C) I'~L, (g)
2

+ Bsin8 I'Ml, (Q) ] sin 8

o(8) = 3(2 k„ /k ) (B + C'
—2BC cos8) sin 8

where the functions A, B, and C are defined by the
formulas

A = Jq(np~ ko) ~qq(ns; ns, np;k, ),
B = ( ~)"'d, (np; k,)J„(ns;ns; 3d; k „),
C ( 3 )(~)' J (3do; ko) dred(ns; ns; p; kn„)

(38)

The precise forms of the valence orbitals as-
sociated with a particular electron configuration
depend upon the value of the total syin. For ex-
ample, the 2p and 3d SCF orbitals for the singlet
and triplet (2p) (3d) D-states of beryllium will not
be quite the same. Comparisons between the
singlet and triplet orbitals of helium have been re-

ported by Trefftz, Schluter, Dettmar, and Jor-
gens. " The radial dependences of some singlet
and triplet orbitals of Be and Mg are displayed in
Fig. 2. Because of the differences between singlet
and triplet orbitals, the values of the B and C in-
tegrals appearing in (34) will not be equal for the
singlet- singlet and singlet- triplet transitions.
However, were it not for these differences the dif-
ferential cross sections for the transitions as-
sociated with specific initial and final configura-
tions would be related in the manner

g( S - D„; 8) = 3(r( S~- D„;o -8) .

Furthermore, if these differences were to be
neglected, then the total cross section

v ('S —D„)=8o(2k„/k )(B +C )

for the singlet- triplet transition would be pre-
cisely three times greater than that for the singlet- singlet process (although, of course, the thresh-
olds for the two will differ)

From Fig. 2 we see that there is little difference
between the radial p functions for the singlet and
triplet states. However, in both cases the singlet
d function is substantially larger than the triplet
near the nucleus. Figure 3 reveals that the cross
sections for the Be and Mg singlet- singlet pro-
cesses are larger than for the corresponding sin-
glet- triplet transitions. This is a consequence
of the very considerable differences in the values
of the B and C integrals for the two types of tran-
sitions. The large amplitude of the singlet d or-
bital in the vicinity of the nucleus enhances its



1444 K. C. KUI ANDEB AND J. S. DAHI E H

TABLE I. Hartree —Fock energies for several states
of Be, Mg, and Ca. The excitation energies which ap-
pear in parentheses in the "experimental" column are
estimates (not experimentally available) we have used in
subsequent calculations of the cross sections.

as in the case of beryllium the relevant transition
2s- 3d involves a change of principal quantum
number.

C. Target Wave Functions Generated by Pseudopotential
Method

State

Be Sg
Os) (2s)'

Be Pg
(1s)2 (2p)2

Be~D„

(ls)2(2p) (3d)

Be Du
(1s) (2p) (3d)

Mg'S,
XL (3s)'

Mg SPY

.XL(3p)2

Mg D„.
XL ',3p) (3d)

Mg 3D„
SCL (3p) (3d)

Ca 'S,
ZL(3s) (3P)

(4s)'

Ca 3P~

)2(3p) 6

(4p)2

HF Energy

—29. 146

—28. 673

—28.384

—28.377

—399.229

—398, 769

—398.576

—398.551

—1343.516

—1343.214

0.473 0.543

0. 762 (0.847)

0. 769 0.853

0.460 0.527

0.653 (0.745)

0.67.8 0.760

0.302 0.351

Excitation energy
Calc. Expt. It is possible to approximately account for the

effect of the core upon a valence electron by in-
troducing a spherically symmetric effective po-
tential, called a pseudopotential, the functional
form of which depends only upon the orbital angular
momentum of that particular electron. This
pseudopotential not only represents the effective
shielding of the nuclear charge by the core elec-
trons but also must account for the orthogonality
constraints imposed by the Pauli principle.

Using the methods of Szasz and McGinn we have
constructed Hellmann-type pseudopotentials for
the s and p valence orbitals of magnesium and
calcium. [Unfortunately, this method is not im-
mediately adaptable to the valence d orbitals of
magnesium and calcium because there are no core
electrons of this same (d) symmetry type to pro-
vide the necessary repulsive forces. ] We found
that for the accuracy desired in the present cal-
culations (see subsequent results) it wasunnecessary
to use separate pseudopotentials for the s and p
orbitals. Once the potentials for a particular
atom (Mg or Ca) had been determined it was then
a simple task to construct approximate wave func-
tions (from Slater-type orbitals) for the ground
S~ and doubly excited P, states. The BO cross

overlap with the s orbital of the ground state and
so results in a large transition probability. This
effect is much more pronounced for magnesium
than for beryllium. In Fig. 4 the differential cross
sections are plotted for the singlet- singlet and
singlet- triplet transitions of magnesium at 0. 91
Ry above their respective threshold energies.
Both cross sections are zero in the forward and
backward directions as is expected for these
parity-unfavored transitions. The singlet- sin-
glet and singlet- triplet cross sections peak at
angles which are, respectively, somewhat less
and somewhat greater than 90 . If the cross
term 2BC had been negative this angular depen-
dence would have been reversed.

The maximum values of the total cross sections
are listed in Table II. For the 'P, states of the
alkaline earths these cross sections are roughly
as large as the cross sections for single excita-
tions which fall within the same range of energies.
The cross sections for excitation of the magnesium
D states are greater by almost an order of mag-
nitude than for the corresponding transitions of
beryllium. This is easy to understand because the
first involves the orbital excitation 3s- Sd where-

0.8

0.4

l2 l6 20

0.8

0.4

-0.4- T

FIG. 2. Comparison of the radial dependence (in units
of ao) of the Hartree-Fock p and d orbitals for the D„
and SD„states of beryllium (upper figure) and magne-
ium. The d orbitials which have significant amplitude
quite far out are multiplied by a factor of 10.
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2.0—

1.0-

(a) sections computed from these target wave func-
tions were found to be in excellent agreement with
those based upon the Hartree-Fock functions.
Let us now consider these calculations in some-
what greater detail.

D. Construction of Pseudopotentials

We assume for the valence electron in the (ns) 'S,

ground state and the (np) P„excited state of Mg'
(n=3) and Ca'(n=4) an energy operator of the form

jj,= —g —4/r+2A„r e n", (35}

'0

3.0—

2.0—

08
Eo

1.2 I.6
I

2.0 where A„and K„are the characteristic parameters
of this "Hellmann pseudo-Hamiltonian. " These
quantities are determined by requiring that the ex-
pectation values of the pseudo-Hamiltonian for the
states with the radial wave functions

4~(r)=(4&5"'e "" and 4.p(r)=(o ~n)"'«"""
be equal to the experimentally observed energies
for the corresponding ionic states. These expecta-
tion values can be written

@-=&0-1'oo~Hi
~

0-1'oo&

= u„'-4u„+ 2A„o.„[o.„/(o.„+Z„)]',

00

4.0-

I

04 08
Eo

1.2 I.6

(c)

I

20

We further require that E„,and E„~ be the varia-
tional extrema (with respect to n„and y„) associated
with the selected forms of the two wave functions.
These four conditions permit the calculation of the
parameters A„, K„, n„, and y„. In the case of
Mg (n= 3), where E„=—1.105 and .E»= -0.VV6, we
find that ho = 5.0 and Ko = 0.89. For Ca' (n = 4)
where E4, = —0.8V3 and E4 = —0.64, it is found that

2,0- 0.10—

1.0- 0.08

0
0.8

Eo
1.2

l

l.6
I

2.0
0.06

(e)

0.04
FIG. 3. Total BO cross sections (in units of ~ao) for

the (i) (ris) ~S (np) I', (ii) (ns) 8 - (np)(3d) D„, and
(iio (es) S~- (nP)(3d) D„ transitions plotted vs the energy
of the incident electron (in Ry). (a) is for beryllium
(g =2) where the D cross sections have been multiplied
by a factor of 102; (b) is magnesium +=3) where the D
cross sections have been multiplied by a factor of 10;
and (c) is for calcium. The dashed lines in (b) and (c)
denote the cross sections for transition (i) with pseudo-
wave-functions used in place of the Hartree-Pock
orbitals.

0.02

0 0 1Fg~

8

FIG. 4. Differential-scattering cross sections (in
units of gao) for the (a) DN and (b) D„states of magnesium
at an incident-energy electron of 0.91 Ry are plotted
vs the scattering angle e.
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TABLE II. Maximum values of total cross sections
(ln units of ~&p).

He
Be
Mg
Ca

3'
1.9x10 4

2 ~ 5
2. 1
4. 7

1.4xl0 '
2, 8x10 2

2. Ox10 i

3.2x10 '
2. 7x10-2
l..lx10 ~

where the values of the parameters A„and K„are
those which we have just determined. Two-elec-
tron wave functions are constructed by inserting
radial functions g„, and &f&„' (of the forms used in
the preceding subsection) into the formulas (33)
for 40 and 4 f g~ The parameters in these trial
orbitals are then determined by minimizing the
expectation values of 8& for the two states. The
results of these simple calculations are collected
in Table GI.

F. BO Cross Sections from Pseudopotential Wave Functions

The two-electron variational wave functions as-
sociated with the pseudo-Hamiltonian H~ can be
used to evaluate integral A of (35). In Fig. 3 we
compare cross sections (for the 'S, -'P, transi-
tions of Mg and Ca) computed in this manner with
those based upon Hartree -Fock wave functions for
the target atoms. The remarkable agreement be-
tween the two calculations demonstrates the de-
pendability of the pseudopotential method. This is
further illustrated in Figs. 5 and 6 where we see
that the Hartree-Fock and pseudopotential wave
functions are substantially the same outside of the
atomic core. There are striking dissimilarities
near the atomic nucleus because, unlike the
Hartree-Fock functions, our pseudopotential wave
functions are not orthogonal to the core orbitals.

We previously have observed that the scattering
amplitudes for double excitations depend ex-
clusively upon matrix elements of the Coulomb in-
teractions among the valence electrons. Since
the orbital amplitudes within the core contribute
very little to integrals of this sort we expect the
values of the scattering amplitudes to be the same

A4 = 3.30 and K4= 0. 46. Our potential parameters
differ from those reported by Szasz and McGinn
because we use somewhat different criteria to fix
the parameter values.

E. Construction of Two-Electron Target Wave Functions

The pseudo-Hamiltonian for the (ns) S, ground
state and the (np)

2 P, doubly excited state of
Mg(n=3) and Ca(n=4) is taken to be

a, = —', —', -4/', 4/', -
+2A„['t'e ' ""&+~,'e '"""2]+2/rt2, (37)

whether calculated with the Hartree-Fock or
pseudopotential wave functions. Because the
simple procedure we have followed here produces
pseudopotential orbitals of such high quality out-
side the core, this same scheme should be a
valuable and easily applicable tool for investigat-
ing double excitations of other atoms. The situa-
tion for these particular transitions is peculiarly
fortunate for in most problems (for example,
single excitations) there generally will occur
electron-nuclear interactions which cause great
sensitivity to the behavior of the valence orbitals
within the core. There then would be little rea-
son to trust the reliability of calculations based
upon pseudopotential wave functions, or at least
upon such unsophisticated functions as those
which have proved to be so satisfactory in the
present application.

The choice of a different form for the d pseudo-
potential should make it possible to apply these
same techniques to the cross sections for exci-
tation of the D„and D„states of calcium. We
tried to represent the shielded nuclear attractions
upon a valence d electron by a linear combination
of exponential terms in order to simulate the
shell structure of the core. However, the re-
sulting pseudopotential orbital was localized far
too near the nucleus. It appears that an entirely
different form for the pseudopotential may be
needed to handle the calcium d orbital.

TABLE GI. Characteristic parameters and expectation
values for thoro-electron states.

Magnesium Calcium

ns screening parameters +
Calculated value of E(SP
Experimental value of E(~$~)
np screening parameter y
Calculated value of E(3P~)
Experimental value of E( Pg)

0.425
—1.63 By
—1.67 Ry

0.625
-1.17 By
-1.14 Ry

0 ~ 350
—1.25 Ry
—1.32 Ry

0 ~ 500
—0. 96 Ry
—0.97 Ry

IV. FURTHER CONSIDERATIONS

A. Polarization of Impact Radiation

Doubly excited states can decay by photoemis-
sion to singly excited configurations or to other
lower-lying doubly excited states. When the atoms
are excited by a directed beam of electrons the
subsequent radiation will be polarized. To com-
pute the degree of this polarization we have made
use of the theory of Oppenheimer and Penney as
described by Percival and Seaton. "

Suppose that the electron beam is directed along
the z axis and that we observe the radiation which
is emitted from the excited gas in a direction at
right angles to this beam. The intensities of



DOUBLE EXCITATION OF ATOMS BY ELECTRON IMPACT 144V

06-

04-

0.2.

P= 100 g(Qp+ Qg -2Qp) /(hp Qp+ hg Qg+ hp Qp),

respectively. In these formulas

q„,=(h/hp) f idedysine~f, , (S, y)~'

(40)

-02-
4

I

IO

-04-

0.2-

-0.2-

IO

FIG. 5. Comparison of the radial dependence (iv

units of ao) of the Hartree-Fock and the (nodeless)
pseudo-wave-functions for the valence electrons in the
ground states of magnesium (upper figure) and calcium.

100g(Qp Ql)/(hp Qp + h1 qg) (39)

emission which are polarized parallel and per-
pendicular to the direction of the beam will be
designated as I " and I, respe ctively, and the
"percentage polarization" is defined by

P= 100(I"-I )/(I" +I ) . (38)

Let it be assumed that prior ta excitation the
atoms are in S states and their electron spin (if
any) and those of the intersecting beam electrons
are randomly oriented. For these conditions,
Oppenheimer'4 derived a relationship between the
polarization P and the cross sections Q„ for ex-
citation to a final state with a specific value Ml.
of the quantum number for the projection of atomic
orbital angular momentum. In this theory of Qp-
penheimer and Penney the polarization is depen-
dent upon the representations chosen for the ex-
cited state and for the final state ta which it
radiative ly decays. In particular, the apprapriate
choice of angular momentum coupling scheme is
governed by the relative magnitudes of the natural
linewidth and of the fine- or hyperfine-structure
splittings. When the magnitudes of these are ap-
proximately equal there is no unique choice of
coupling scheme and the Oppenheimer-Penney
theory produces ambiguous predictions for the

13polarization. Although Percival and Seaton have
developed a modified theory which is able to cope
with these awkward situations, we shall have no
need for it here.

For excited P and D states the percentage polar-
ization can be expressed in the farms

and the values of g ho h1, and h& for the transi-
tions of interest are collected in Table IV. These
pure numbers are determined solely by require-
ments of angular-momentum conservation (as ex-
pressed by Wigner and Racah coefficients) and

have been computed here on the assumption that
the observed radiation is characteristic of emis-
sion from an experimentally unresolved multiplet-
to-multiplet transition. For lithium and beryl-
lium we have assumed the hyperfine splitting in
the upper excited state to be less than the natural
linewidth. In all cases the fine-structure split-
tings are larger than the natural linewidths.

From Eqs. (29) and (34) we see that the partial
cross sections Qp are zero for parity-unfavored
transitions. Therefore, the polarization of the
radiation which accompanies the transitions
(np) P - (ns)(np) P„will be independent of beam
energy and equal to —10.06/p. Specific cases to
which this prediction shouM be applicable include
the 4300-A line of calcium, the 2780-A line of
magnesium, the 2650-A line of beryllium, and the
320-A line of helium (the polarization of which

24probably is unmeasurable). The (ls)(2p) P~- (l,s)2 (2p) 4P„emission line of lithium likewise
will exhibit an energy-independent polarization
equal to 9.06/p. However, just as in the case of
helium the polarization of this highly energetic
transition, with a wavelength of 212 A, will be
extremely difficult to measure. Polarization

0.2

IO

-0.4

0.6

04

0.2

-0.2

IO

FIG. 6. Comparison of the radial dependence (in units
of ao) of the Hartree-Fock and the (nodeless) pseudo-
wave-functions for the valence electrons in the doubly
excited P states of magnesium (upper figure) and
calcium.
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20— B. Threshold Law for Parity-Unfavored Transitions
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-IO
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FIG. 7. Energy dependence of the calculated percent-
age polarization of dipole radiation emitted from the (a)
Be- D„, (b) Mg- Du, (c) Be- D„, and (b) Mg- Du states.
These are plotted vs the energy (in Ry) of the scattered
electron.

To determine the behavior of the scattering
amplitude near the threshold we expand the plane
wave e'"" '"s ~ appearing in Eg. (11) in spherical
harmonics and obtain

yl' m' (km) yl' m' (rN+1) I N+11 + (44)

For parity-unfavored transitions m'& 0 and so
the sum in (44) consists only of terms with l') 1.
Since 4' & varies slowly with energy just above
threshold, the energy dependence of f„p is due pri-
marily to the Bessel functions j;(k„rs f) Thus,
we conclude that

f„(k„,k)= — — 2 ( 2 C "~
4m l' m'

mmmm

x 4 '„~"~ (I, . . . , N) Q'"(N+ 1)4v i' j p (k„r„.,)

f p(& kp)y p cons x k„~ (45)

measurements for emission from the D states
of helium, which are also subject to this same
difficulty, are further complicated by the very
small excitation cross sections of these states.

From Eqs. (34) and (40) we find that the polar-
ization of radiation from the singlet and triplet
D states of the alkaline earths are given by

21@2—15(,2

P 100 2 2

(nP)(3d) D„- (ns)(3d) D (42)

and

1491a2-1065C'
64gvg2 5645g2

(np)(3d) D„- (ns)(3d) D~, (43)

respectively. Figure 7 displays our theoretical
predictions for beryllium and magnesium of these
energy-dependent polarizations.

A straightforward analysis based upon the defi-
nitions (35) of the integrals B and C reveals that
the ratio C/B becomes unbounded at the excitation
threshold k- 0 and in the high-energy limit k-
as well. (Although these conclusions have been
derived here on the basis of the Born approxima-
tion, we expect them to be valid under far less
restrictive conditions. ) Thus, we expect the per-
centage polarization for these D states to assume
the same numerical values in each of these limits.
For beryllium and magnesium the threshold values
of I' are —18.86% for the triplet state and
—42. 86% for the singlet. In principle, these same
values should be observed at very high beam en-
ergies but in practice there will be complications
due to cascading and to the very small high en-
ergies limits of the excitation cross sections.

TABLE IV. Polarization parameters for several
optical transitions.

Excited
state

Final
state hp h2

15 149

4
Pg

4 211 464

3
Du —213 529 1129 1342

Du 10

where l is the lowest contributing term in the sum
on the partial wave index /'. From this it follows
that near threshold the total cross section will be
proportional to kP" = (E —E„)"~P. For the

parity -unfavored transitions considered here. the
lowest-order contributions are due to p waves.
Therefore, we expect the cross section to vary
as (E -E„)P~P for low energies and hence to ex-
hibit a zero slope at threshold. This means that
the threshold energy must be exceeded by some
finite amount before any significant rate of tran-
sition can be observed. In contrast to this the
cross section for a process to which there are
s wave contributions has an infinite slope and a
finite value at threshold.

Only the p-wave contributes to the 'P, excita-
tion and we expect the k„' energy dependence to
persist for quite some distance beyond threshold.
Support for this expectation is provided by the
BQ cross section for the P, excitation of cal-
cium, which exhibits the k„' dependence to ap-
proximately one-third of the peak height. Hope-
fully, this behavior might be observed experi-
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mentally.

C. Discussion of Results

The magnitudes of the BQ cross sections cal-
culated here are surely reliable to within a fac-
tor of 2 and their angular dependence is very
nearly exact. Therefore, it is safe to conclude
that the cross sections for doubly excited states
with high threshold energies or which involve
changes of principal quantum numbers will be
much smaller than pro. The cross sections for
doubly excited states which are bound or which
at least have low excitation thresholds and do not
involve changes of principal quantum number
will be of the order of mao2 or larger and hence
comparable in magnitude to the cross sections
for single-electron excitations. Processes be-
longing to this second category surely must con-
tribute significantly to the measured total in-
elastic scattering cross sections.

We have seen that cross sections for double
excitation computed from pseudopotential valence
orbitals are very nearly identical to those com-
puted from Hartree-Fock functions. This is a
clear indication that the form of the valence or-
bitals within the core is of no consequence in
double-excitation processes. This is as it should
be because there are no core interaction contri-
butions to the operators which appear in the scat-
tering amplitudes for these transitions.

The formulas derived here could be applied to
other atoms simply by altering the values of the
various screening parameters and of the excita-
tion energies. In fact, formulas (34) can be ap-
plied without change to the (ns)2 'S, -(ng) P~
transitions for all the alkaline earths. However,
for atoms heavier than calcium there are sig-
nificant deviations from the LS coupling scheme.
One must allow for these in the description of
the target states as well as in the concept of the
parity favorability of the transitions. Both boron
and aluminum can undergo parity-unfavored tran-
sitions from their ground (ns) (np) P„configura-
tions to (np)34S„states which are embedded within
ionic continua. The cross-section formulas for
these processes are similar to those for lithium
which we have considered here. The theory of the
doubly excited states of zinc, cadmium, and
mercury, whose ground states are of the form
(ns) 'S~, closely resembles that for the alkaline
earths. The doubly excited states of the alkalis
are generally to be found high in the continuum
because of the combination of a low first and a
high second-ionization potential. Bound doubly
excited states of the transition metals are known
and have been listed in tables of atomic energy
levels such as those of Moore. The electron-
impact cross sections for excitation of these

states could be calculated by using the 1V-electron
atom theory presented here in Sec. II.

Doubly excited states of other atoms certainly
exist but their descriptions vary from those dis-
cussed above not only because more electrons are
involved in the transitions but, more importantly,
because the concept of being parity favored be-
comes irrelevant for states of higher angular mo-
mentum.

We have discovered that the polarization of the
impact radiation emitted from a doubly excited
P state is independent of electron energy, where-
as that characteristic of a D state does vary with
the energy of the beam. The numerical values of
the energy-independent polarizations of the I'
states are determined solely by considerations of
angular momentum coupling and therefore are in-
dependent of our scattering theory. Deviations
from these predicted values could come about only
from incorrect characterizations of the states
involved.

We have used our calculated cross sections
Q~ to predict the energy dependence of the polar-
ization for D states. It is, in fact, only the ratio
Q2/Q, whose energy dependence appears in the
formula for the percentage polarization. There-
fore, if our scattering theory is capable of cor-
rectly predicting the ratio of these partial cross
sections, the predicted polarizations would be
correct even if the absolute magnitudes of our
cross sections were wrong. If the only mode of
decay of these excited states is by emission of
polarized photons, then the total intensity of radia-
tion must be proportional to the total excitation
cross section. By measuring the total light emitted
as a function of electron energy one then could ob-
tain the energy dependence of the total cross sec-
tion provided that one accounts for cascading.
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APPENDIX

In electron-atom scattering it generally is
realized that physically more appealing scattering
matrix elements are obtained by expressing the
scattered -electron wave functions asymptotically
as Coulomb waves instead of the normally chosen
plane waves. The computationally more tractable
plane-wave approximations suffer from post-
prior discrepancies and nonvanishing contribu-
tions from constant potentials which arise from
the lack of orthogonality between the symmetrized
initial and final states. By including the scat-
tered-electron-nuclear interaction in the unper-
turbed Hamiltonian, the initial and final states be-
come eigenfunctions of the same operator and the
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undesirable features of the plane-wave approxi-
mations are avoided. In this Appendix we derive
the scattering amplitude in the Coulomb-wave ap-
proximation.

The interelectronic repulsion operator, HN, &

=H„'„—V„,g, where V„,g= —2N/~„.„ is used as
the perturbation. The Eg. (6) can be rewritten,

(T//„+ V„,~ -k„)E,(N+1) = (N +1)'/ »G„(N+1),

(A1)
where G„(N+1) differs from G„(N+1) of Eg. (7)
in that HN, & is replaced with HN, & and T„,j+H„-E is replaced with T„,, + V„,j +H„-E. Boundary
conditions require E„ to be a solution of the in-
tegral equation:

E„(f')= 6„,y„=,(f') + E„-(r), (A2)

with

y) (2 )-3/2 //~/2a„
ki,

V

N ln2k„~"
E„"(x)- —exp i k„r+ " J„o(k„,ko).

P

Here

N+1
(A6)

is the amplitude for scattering into the final state
(v, k,). Again there is a contribution of the form

x e' & Eg + —;l, i +k„y'-k„'I, A3
V

and where

y„',(k„,k,)= ( Q C' „'„C„'" (1, . . . , N)y-(N+1)y'„-(N+1)~e„„~+ "),
mp~

(A6)

where the operator H N„now only includes the interactions among the electrons. The remaining

contributions to the scattering amplitude are from terms of the type

F,.=(q'-„(N+1)y, (1, . . . , N) ~r„,+V„., +aN-z~E. (1)y.(2, . . . , N+1)), (A7)

which are again trivially zero except for the continuum target states of Eq. (14). These must now be
represented by

E„„(1)jd'~ h„; (X) P„"'(2, . . . , N) g» (N+ 1) .

Then,

f,„=T„"„'=J d'Tch-„„(%)(0„., ~ l[ g~(N+ 1) P, (1~ ~ ~ ~ N)l* ~~.i [Eg,.„~(1)P,' (2~ ~ ~ ~ ~N) g'(N+1)1

- [E .„(1)P'"(2, .. . , N) g.„(N+1)]&„„[g~„(N+1)P„(1,. . . , N)]*))

= f /f'KKf, (K)(pp(1, . .. , N)E„p (1) Q'„"(2, . . . , N))» g(/c —k„) &(Tc —k).

Therefore, we conclude that the terms t„, contribute nothing to the scattering amplitude.
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The Glauber amplitude for describing collisions of charged particles. with two-electron
atoms, resulting in transitions between spherically symmetrical states, is reduced to a read-
ily computable form. Application is then made to the 2~ S 1~ S transition in helium, for which
angular distributions are determined for 26. 5-, 34-, 50-, and 83-eU incident electrons.
Comparison with experiment shows that the Glauber theory is capable of accurately pre-
dicting the angular distributions for even our lowest-energy calculation. In particular the
theory predicts the recently observed structure in the differential cross section. The energy
dependence of the "apparent" generalized oscillator strength is also demonstrated for incident
energies in the range 300-1100 eV.

A number of recent papers have dealt with the
applicability and usefulness of the Glauber approxi-
mation with respect to collisions of charged parti-
cles with atomic systems. In particular, a fairly
complete study of the approximation as applied to
the elastic and inelastic (bound-state excitation)
scattering of electrons and protons by hydrogen,
has shown the Glauber theory to be quite accurate
in the energy range where the first Born approxi-
mation is known to fail and close-coupling theories
with their modifications are not feasible. Addi-
tional applications have been made to helium' '9

and lithium, and quite recently the theory has
been applied to impact ionization of hydrogen" by
electrons, and multiple scattering effects' in
electron-molecule collisions.

Although Thomas and Gerjuoy' have been able to
obtain closed form expressions for the scattering
amplitudes for the excitation of certain energy
levels of hydrogen by electrons or protons, it is
unlikely that such will be the case for many-elec-
tron atomic systems even with the simplest approxi-
mate wave functions. Using a particular form for
the atomic wave function, however, Franco ' has
been successful in reducing the (3Z+ 2)-dimension-
al integral occurring in the amplitude expression
(for scattering of charged particles by a Z-electron
atom) to a one-dimensional integral involving
products of the generalized qF2(a; b, c; x) hyper-
geometric functions. This expression is quite

where

x y(5, rz)lC, (r&, r2)), (1)

(2)

and q = 1/k, . Here 4', and 4'& are the wave func-
tions representing the target state before and after
collision. k; and k& are, respectively, the incident

appealing in its scope, but apart from (e, H) and

(p', H) collisions, its numerical tractability has
yet to be demonstrated. Thus, the essential aim
of the present article is to present a simplification
of the Glauber amplitude for the two-electx'on atom,
for certain excitations by charged particles. Spe-
cifically, the amplitude for excitation by electrons,
of ground state helium (1 'S), to the first meta-
stable state (2 'S) is put in a readily computable
form and evaluated. The differential cross sec-
tions for this process for selected energies in the
25-1100 eV range are presented and compared with
experiment and other theoretical values.

The collision amplitude F&, (f'I), where the atom
(two electrons in the field of a doubly positively
charged core, e.g. , He, alkaline earths, Hg,
etc. ) is excited from some initial state i to some
final state f by an incident electron, is given ac-
cording to the Glauber theory by

Fz;(q)= —' dbe'~' (4'z(r„rz) ll —y(b, r, )


