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A number of properties of the bound eigenstates of an electron in an exponential cosine
screened Coulomb potential, V(r) = —(e /s&r)e ~r cos(qr), are studied. Perturbation and varia-
tion methods are used to calculate the eigenvalues. Detailed results are presented for the
first four s states. For each state there is a critical value of the screening parameter g~
above which no bound states with negative energy exist. The value of g, for the ground state
is obtained from a two-parameter variational calculation. The total number of differentenergy
levels is finite for any value of the screening parameter p greater than zero, and is found to
be approximately linearly dependent on 1/p~. The square of the number of bound s states is
also shown to be linear with 1/g, . Positive-energy states are also discussed.

I. INTRODUCTION

The potential
2

V(r) = ——e "cos(qr),

where z is the dielectric constant and q is a screen-
ing parameter, is of importance in solid-state
physics. Under certain conditions' ' it describes
the potential between an ionized impurity and an
electron in a metal. When r « I/ko, where ko
= (2m*k ')'~ /S' for the nondegenerate case and ko
= (Sm n) ~' in the fully degenerate case, it repre-
sents the ionized impurity-electron potential in a
semiconductor. '~ Prokop'ev has used it to de-
scribe the electron-positron interaction in a posi-
tronium atom in a solid. %'e shall call this poten-
tial the exponential cosine screened Coulomb
(ECSC) potential.

While a fair amount of work has been done on
the properties of the well-known static screened
Coulomb potential

we have employed perturbation and variation
methods to obtain the energy eigenvalues, the
critical screening parameter, and the number of
bound states for the potential (1.1). In Sec. II we
carry out a first-order perturbation treatment with
the Coulomb potential as the unperturbed potential
and obtain a general expression for the perturba-
tion energy for any value of n and /. It is shown
in Sec. III that for s states better results are ob-
tained by taking the Hulthdn potential as the unper-
turbed potential. Section IV is devoted to a calcu-
lation of the eigenvalues by the variation method;
the critical screening parameter is also obtained.
Section V deals with the number of bound states
and a comparison of the results.

Throughout this paper we use atomic units, where
the unit of length is ao =kk /m~e and the unit of
energy is equal to -m*e'/g k . Here m* is the
effective mass and 5 =qao. In these units the ECSC
potential can be written as

V(r) = (I/r)e '"coeur.

V(r) = —e'e '"/r,

the ECSC potential has received scant attention.
The only investigation on the bound states in this
potential is that of Bonch-Bruevich and Glasko, '2
who have determined a few eigenvalues for the 1s
state in the high-screening region by a numerical
method and have also obtained the critical screen-
ing parameter.

The Schrodinger equation for the ECSC potential
is not solvable analytically. In the present paper

II. PERTURBATION CALCULATION WITH COULOMB
POTENTIAL AS UNPERTURBED POTENTIAL

e -6r 1
U(r) = — — cos5r ——. (2. 1)

The unperturbed wave function has the form

As a first approximation, we take the Coulomb
potential as the unperturbed potential. Then the
perturbation U(r) is given by
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4'. ((r)= &.2 1 t 2 1 '
&' 1+1 -n+l+1, 2l+2;—n-l —1 ' 2l+1 i n

(2. 2)

where 1E1 is the confluent hypergeometric function.
The first-order energy shift is

~~. , =(4. , (r)
~

U(r) i4. , (r))

n ' (n -I —I)!(2l+I)! [(4/n')+(46/n)+25'j'" n

2i " 1-n+l+1, -n+l+1; 2l +2; 2&2
—~, 2. 3

n

For small values of 5x the behavior of the Hul-
then potential

-6g

V(r) = (3.1)

is quite similar to that of the ECSC potential, and
in this section we shall use the Hulthdn potential
as the unperturbed potential. The Schrodinger
equation is analytically solvable for the potential
(3.1) for l = 0. The eigenvalue is given by"

E 1 2g2
2 (3. 2)

where 2E& is the hypergeometric function.
The calculated values of energies for the 1s, 2s,

3s, and 4s states, obtained on an IBM 360/66 in
"double precision, "are shown in Tables I-IV. Re-
sults for some further states are presented and
discussed in Sec. V.

III. PERTURBATION CALCULATION WITH HULTHEN
POTENTIAL AS UNPERTURBED POTENTIAL

1 -6y

U(r) = —e "cos5r—
] (3.4)

The final results, obtained through some lengthy
calculations, from this perturbation calculation
for the energies of the 1s, 2s, Ss, and 4s states
are given below:

where a„= 2 (2/n6 n) -and the normalized eigen-
function is

~ ( )
&(((.-()(e. n2- ))('"

2(P„+n -1)
n

( () -1 8 ( ((II (( +I 2)(( -
)

v=1 V

(3.3)
where P„= (2/n6) —n+1. In Fig. 1 we show the
ECSC, Hulthen, and Coulomb potentials. It will
be noticed that the choice of the Hulthdn potential
as the unperturbed potential is a better one than
that of a Coulomb potential for the same.

The perturbation U(r) can be then written as

TABLE I. Energy eigenvalues as a function of screening parameter for the 1s state.

Screening
parameter

0.0001
0.0002
0.0005
0.0010
0.0020
0.0050
0.010
0.020
0.040
0.060
0.080
0.10
0.20
0.30
0.40
0.50
0.60
0.70

Perturbation
(Coulomb)

0.499 900
0.499 800
0.499 500
0.499 000
0.498 000
0.495 000
0.490 001
0.480 008
0.460 061
0.440 200
0.420 463
0.400 883
0.306 235
0.218 619
0.139153
0.068 047
0.004 987

—0.050 624

Perturbation
(Hulthon)

0.499 900
0.499 800
0.499 500
0.499000
0.498 000
0.495 000
0.490 001
0.480 008
0.460 061
0.440 201
0.420 464
0.400 884
0.306 298
0.219028
0.140 595
0.071 714
0.012 585

—0.036 908

Vari ational
(one parameter)

0.499 800
0.499 500
0.499 000
0.498 000
0.495 000
0.490 001
0.480 008
0.460 061
0.440 201
0.420 464
0.400 885
0.306 332
0.219399
0.142 375
0.077 481
0.027 708
0.000 184

Variation al
(two parameter)

0.400 885
0.306 334
0.219411
0.142418
0.077 606
0.028 031
0.000 614
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4-5
E&, = —

8 (4 —5 )+
2 2 [ —ln(52+4) +21n(252+45+4) —In(65~+85+4)], (3.6)

1-45
E2, = —

8 (1 —45 )+ 4 [ —(1 —5) ln(25 —25+1) +4(1 —5) In(52+1) —2(3 —5~) In(25~+25+1)

+4(1+5) ln(65 +45+1) —(1+5) ln(105 +65+1)] (5& 1), 3.6)

4 -815
E~, = —

~~ (4 —815 )+ s [ —(1 —35)~(2 —35) In(4652 —245+4) +6(1 —35)(2 —35) In(185 —125+4)393665

—3(2 —35)(10—155 -185 ) ln(95 +4) +2(4-95~)(2-95 ) ln(185 +125+4) —3(2+ 35)(10+155—185 )

x In(455 +245+4) +6(1+35)(2+35) ln(905 +365+4) (1+35) (2+35) In(1535 +485+4)] (5 &
~ ),

(3.7)
1 -645

E4, = —~~(1 —645 )+ 8 [ —(1 —25) (1 —45) (1 —65) ln(4052 —125+1)

+ 8(1 —25) (1 -45) (1 —65) ln(205 —&5+ 1) -4(1 —25) (1 —45) (V —285 —365 ) In(85 -45+ 1)

+8(l —45)(l —452)(V —145 —245 ) ln(45 +1) —2(1 —452)(35 —3805 +5765 ) ln(85 +45+1)

+ 8(1+45)(1 —45~)(7+ 145 —245 )In(2052+ 85+ 1) —4(1+ 25) (1+45)(V + 285 - 3653) In(405~+ 125 + 1)

+8(l+ 25)2(1+45) (1+65)In(685 +165+1) —(1+25) (1+45) (1+65) ln(1045 +205+1)] (5-g).
(3.8)

The calculated energy values from the above
expressions are shown in Tables I-IV. Though
here we have obtained results only for the first
four s states, the method is quite general and can
be applied to any s state. The complexity of
algebra, however, increases with the value of g.
We may also note here that when 5 is small there
are large cancellations between the terms occur-
ring in Eqs. (S.6)-(3.8), and a 16-significant-
figure accuracy is not adequate. Most of the re-
corded results were obtained on an IBM 360/85 in
"quadruple precision" (32-figure accuracy).

IV. VARIATIONAL CALCULATION

The similarity in the behavior of the ECSC and

I

the Hulthdn potentials for small values of 5z sug-
gested that it would be appropriate to employ
Hulthdn-type wave functions for a variational cal-
culation. First we consider the results by a one-
variational-parameter calculation. The trial func-
tions chosen were of the form (3.3) with p, , a
variational parameter, replacing 5. For instance,
the 1s wave function is given by

[(4y 2) 1]1/2 (
-(1-g /2 &r -(1+v /2 ) t')

(4. 1)

The expressions for the energies of the 1s, 2s,
3s, and 4s states are

2

Eq,=, (4 —p, )~
———In[5 +(2+5 —p) ] +21n[5 + (2+5) ] —in[5 +(2+5+ p) ] ~

(p, & 2+5),18 2 8 ( 4 ]
(4. 2)

Eas= 4 (1 4p )( —2p, —(I -p) In[5 +(1+5 —2p) 1+4(l —p) In[5 +(1+5 —p) ]16', 4

—2(3 —p, )In[5 +(1+5) ] +4(1+ p, ) In[5 +(1+5+p, ) ]

—(1+p)min[52+(1+5+2') ]} (2p, &1+5), (4. 3)

Es, =
6 (4 —8lp. ) — p, —(1 —Sp, ) (2 —Sp) In[95 +(2+35 —Qp, ) ]39366',

+6(1 —Sp)(2 —Sp) In[95 +(2+35 —6p)2] —3(2 —Sp, )(10 —15p, —18p, ) In[952+(2+35 —Sp, ) ]

+ 2(4 —Qp2)(10 —Qps)in[952+(2+35)2] —3(2+Sp)(10+15p —18' ) In[95~+(2+35+Sp) ]
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, 8(( sz&(2+s&P(~[ga'i(2, M, 6&&']-((+sq&'(2+san&'(n[95' ~ (2+%+9'& (I (9v, 2+M&, (4 4&

E = (1 —64//. 2)( —36864ps —(1 —2g) (1-4[&,) (1 —6p, ) In[45 +(1+25 —8p) ]4s 11qg648 8

+8(1 —2[[[) (1 —4p) (1 —6[(&) in[45 + (1+ 25 —6p) ] —4(1 —2[/, ) (1 —4[(/. )(7 —28[&, —3Cp. ) ln [45 + (1+ 25 —4[/) ]

+ 8(1 —4[/, )(I —4i&, )(7 —14' —24 ', ) ln [45 + (1+ 25 —2[[)~] —2(1 —4[/, 2)(35 —380p 2+ 576[/, 4 )In [45~+ (I y 25)2]

+8(1+4[/, )(1 —4[/, )(7+14», —24[&, ) in[45 +(1+ 25+ 2p, )2]

—4(1+ 2p) (1+4')(7+ 28', —36p, ) in [45 + (1+25+ 4')~] +8(1+ 2p ) (1+4'() (1+ 6p ) ln [45 + (1+26+6') ]

—(1+2',) (1+4[&,) (1+6[/, ) in[45 +(1+25+8((/) ]/ (8[/, & 1+25). (4. 5)

The energies of these four states were obtained
by minimizing each with respect to JL(. separately.
The values of p, thus obtained are shown in Table
V, and the corresponding energies are shown in
Tables I-IV. The calculations were carried out
on an IBM 360/85 in quadruple precision"; how-

ever, even this accuracy was not enough for
5 =0. 0001, for which satisfactory results could not
be obtained and are not shown. %'e may note here
that the wave functions for the 2s, ss, and 4s
states with the given values of p, are not exactly
orthogonal to the eigenfunctions of the correspond-
ing lower states, but they are close to it, except
when 5 is large.

An important quantity for a screened potential is
the critical screening parameter ' at which the
binding energy of an electron in that potential be-
comes equal to zero. In order to more precisely
determine the critical screening parameter 5„we
have carried out a calculation with a two-parameter
variational trial function for the ground state, which
has the form'

4 i I / -[&(-(v/2& jr -[&&+(&(/2&&r)—e

For this wave function we derive

' 4x' 4~'
1,. ln Q + Q+2g p +2ln g + Q+2g —ln g + /+2/+ p

([/. —2 /(. & 5) . (4. 7)

Up to six significant figures, the energies cal-
culated from Eq. (4. 7) do not show any difference

TABLE II. Energy eigenvalues as a function of screening
parameter for the 2s state.

Screening
parameter Perturbation Perturbation Variational

(Coulomb) (Hulthbn) (one parameter)

from those obtained from the one-parameter wave
function for 5 &0.1, and these values are not shown.
For 5 &0.1, improved values were obtained. Values
for 5) 0. 1 are presented in the last column of Ta-

TABLE III. Energy eigenvalues as a function of screening
parameter for the 3s state.

O. OOO1

0.0002
0.0005
0.0010
0.0020
0.0050
0.010
0.020
0.040
0.060
O. O8O

O. 10
0.20

0.124 900
0.124 800
0.124 500
0.124000
0.123 000
0.120 002
0.115013
0.105 104
0.085 765
0.067385
0.050 222
0.034425

—0.023 671

0.124900
0.124 800
0.124 500
0.124 000
0.123 000
0.120 002
0.115013
0.105 104
0.085 768
0.067 408
0.050 310
0.034 668

—O. 019323

0.124 800
0.124 500
O. 124 000
O. 123 000
0.120 002
0.115013
0.105 104
0.085 769
0.067 421
O. 050 384
O. 034 935

0.0001
0.0002
0.0005
0.0010
0.0020
0.0050
0.010
0.020
0.040
0.060

0.055 456
0.055 356
0.055 056
0.054 556
0.053 556
D. 050 564
0.045 619
0.036 022
0.018 707
0.004 538

Screening
parameter Perturbation

(Coulomb)
Perturbation

(Hulthdn)

0.055 456
0.055 356
0.055 056
0.054 556
0.053 556
0.050 564
0.045 619
0.036 024
0.018 768
0.004 903

Variation al
(one parameter)

0.055 356
0.055 056
0.054 556
0.053 556
0.050 564
0.045 619
0.036 025
0.018 822
0.005 454



BOUND EIGENSTATES OF THE EXPONENTIAL. . . 1395

TABLE IV. Energy eigenvalues as a function of screening
parameter for the 4s state.

TABLE V. Best values of the parameter p, for the one-
parameter-variational results.

Screening
parameter Perturbation Perturbation

(Coulomb) (Hulth5n)
Variational

(one parameter)

Screening
parameter Parameter p,

2s 3s

0.0001
0.0002
0.0005
0.0010
0.0020
0.0050
0.010
0.020
0.040

0.031 150
0.031 050
0.030 750
0.030 250
0.029 252
0.026 275
0.021 436
0.012 539

—0.001 079

0.031 150
0.031 050
0.030 750
0.030 250
0.029 252
0.026 275
0.021 437
0.012 557

—0.000 670

0.031050
0.030 750
0.030 250
0.029 252
0.026 275
0.021 437
0.012 572
0.000 118

ble I, and the corresponding optimized values of
the parameters in Table VI.

To obtain the critical screening, two conditions
must be satisfied:

0.0002
0.0005
0.0010
0.0020
0.0050
0.010
0.020
0.040
0.060
0.080
0.10
0.20
0.30
0.40
0.50
0.60
0.70

0.000 01
0.000 04
0.000 13
0.000 37
0.001 49
0.004 19
0.01175
0.032 55
0.058 59
0.088 41
0.121 16
0.31348
0.535 86
0.781 41
1.054 82
1.376 79
1.904 43

0.000 08
0.000 10
0.000 24
0.OQQ 68
0.002 67
0.007 43
0.020 39
0.054 37
0.094 76
0.13943
0.187 80

0.000 20
0.000 30
0.000 35
0.000 98
0.003 81
0.010 43
0.027 81
0.071 30
0.123 85

0.000 60
0.000 62
0.000 74
0.001 28
0.004 89
0.01315
0.034 00
Q. 089 96

E(5, p. , X)=0; (4. 8)

&E(5, p, , Z) or BE(5, p, A.)
( )

ep. V. NUMBER OF BOUND STATES AND COMPARISON OF
RESULTS

l.0
Coulomb

0.9

0.8

0.5

0.4

0.3

0.2

O, l

2 3 4 6 7 8 9

FIG. 1. Product rV(~) as a function of r for the Cou-
lomb potential, the Hulthbn potential, and the ECSC po-
tential, for g =0.4.

The first condition, in conjunction with Eq. (4. 7),
yields p. = 2A. . Setting p, = 2X, minimization of E
with respect to A. was carried out. Thus we ob-
tained 5, = 0.V115 at A. = 1.238.

We would like to note here that for the sake of
brevity the results in Tables I-V are shown only
for a few values of 5; more extensive tables have
been deposited with NAPS. " The subsequent dis-
cussion takes cognizance of these extended results.

It will be noticed from Table I that for the ground
state, for low values of 5 (~ 0.05), there is little
difference between the three sets of results. How-
ever, as 5 increases the accuracy of results im-
proves in the following order: perturbation (Cou-
lomb), perturbation (Hulthbn), one-parameter
variational calculation, two-parameter variational
calculation. The last-named results are the most
accurate.

The only other investigation with which we can
compare our results is that of Bonch-Bruevich and
Glasko, ' who obtained their results by numerical
methods. These authors have used a special set of
units; when their results are converted into atomic
units we find that in most cases their results are
close to ours. For example, at 5=0.4793, they
get E = 0.028V, while our two-parameter variational
result is 0.028 77. At 5 = 0. 5298, their value is
E= 0.0149, compared to 0.01496 obtained from
Eq. (4. 7). Bonch-Bruevich and Glasko's results
lead to 5, =0.72, as compared to O. V115 obtained in
this paper.

The pattern of the results for the excited s states
(Tables II-IV) is quite similar to that of the ground
state. The Hulthen-perturbation results are better
than the Coulomb-perturbation ones and the varia-
tional results are the best of the three.
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200-
2

least-squares fit yielded the following result:

n* = 0.4425+ 0. 2919/5, . (5. 1)
I 80-

160-
lA
OI

~ l40-Q
th

a
C,

o l20-

O

sI IOO
Xl
E

80-

~W
n"

40-

20- l P-
/g

O, g
0 50

I

l00
I I I I I

l 50 200 250 300 350
I /&c

FIG. 2. Number of bound states n* and the square of
the maximum bound principal quantum number g*, as a
function of the critical screening length 1/p~.

For the static screened Coulomb potential (SSCP),
a number of authors have investigated the number
of bound states as a function of screening. '
It is of interest to examine this relationship for the
ECSC potential. The treatment given in Sec. II,
while not yielding very accurate values, has the
advantage that it can be used to obtain results for
any state. We have calculated the energies and
critical screening parameters of states up to n = 15
by this method. Some of the results for the ener-
gies are shown in Table VII. It will be noticed
from this table that the excited states are not de-
generate with respect to the orbital angular momen-
tum. The number of bound states n* was counted
for various values of 5, 's. The results are shown
in Fig. 2, where n* is plotted vs 1/5, . A linear
relationship is seen to hold between the two, and a

Another quantity of interest is the "maximum-
bound" principal quantum number g*, or the num-
ber of bound s states. The quantity (g~) is also
plotted against 1/5, in Fig. 2, and is seen to ex-
hibit a linear dependence on 1/5, . From a least-
squares treatment we obtain

(g *) = 0. 040+ 0.6078/5, . (5. 2)

For a given value of 5, the perturbed-Coulomb-
potential treatment gives binding energies which
are too small. In other words, for a given value of
5, the number of bound states obtained from this
method is smaller than the actual one. Thus the
coefficients 0. 2919 and 0.6078 in Eqs. (5. 1) and
(5. 2), respectively, should be considered as a low-
er bound in the two cases. The intercepts at 1/5,
= 0 are quite small in both cases, and within the
accuracy of these results may be considered to be
practically zero.

The ECSC potential differs from the SSCP by the
cosine factor. This factor leads to an oscillatory
behavior of the ECSC potential. It is of obvious
interest to compare the results for the ECSC poten-
tial with those for the SSCP. Generally speaking,
the binding of the electron is weaker in the ECSC

TABLE VI. Best values of parameters p and X «r the
1g-state two-parameter wave function.

Screening
parameter Parameters

0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70

0.180 36
0.357 29
0.473 31
0.595 16
0.867 49
1.177 00
l.571 50
2.260 80

1.002 41
1.004 58
1.007 29
1.010 58
1.021 48
1.039 19
l.076 10
1.188 11

FIG. 3. Schematic diagram of the behavior of the
ECSC potential as a function of y. As an aid to the eye,
the relative strengths of oscillations have been exag-
gerated, for example, in reality I V(B2)/V(R~) I =0.&2

rather than what is shown in the diagram.
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FIG. 4. Parameters of the first minimum: its posi-
tion 82, depth E&, and the zero-point energy 25iq as a
function of g.

potential than in the SSCP. There is a sharp re-
duction in the critical screening parameter 5,: For
the ECSC potential it is 0.7115, as compared to
1.19 for the SSCP. ' For a given value of 5, the
quantities n* and@*for the ECSC potential are
smaller than those for the SSCP.

Some Finer Points

1+ (1/5R) +tan5R = 0. (5. 3)

Equation (5.3) has, of course, multiple solutions;
the first five of these are 6R = 2. 1712, 5.4134,
8. 5844, 11.740, and 14.890. The potential barrier
at R, can enable levels with positive energies to
exist on its left side. The phenomenon is similar
to that found in diatomic molecules where levels
above the dissociation limit are known to exist for
large values of the rotational quantum number, be-
cause of the potential hill created due to the rota-
tional term J(J+1)/) . So far, in our case, we

The oscillating shape of the ECSC potential gives
rise to some interesting properties which we now
consider. In Fig. 3 we show the qualitative be-
havior of the ECSC potential; we shall find it con-
venient for our discussion. We wish to emphasize
that it is only a qualitative diagram; in reality the
amplitudes of the crests and troughs diminish much
more rapidly than what is shown in the diagram.
The positions of the maxima and minima can be ob-
tained by putting the first derivative of Eq. (1.3)
equal to zero, which leads to

have considered only those bound levels which have
negative energies with respect to the dissociation
limit. We must now consider these positive-energy
levels. In principle, a dissociation of the system
can take place from these positive-energy states by
tunneling through the potential hill, and this will
also lead to a broadening of the discrete levels.
However, these effects are expected to be impor-
tant for only those levels which lie near the top of
the potential hill. It is obvious that even for 5 & 5,
a given level can exist as a positive-energy level
till its energy becomes equal to the height of the
first maximum. This final value of 5 beyond which
no levels can exist (with negative or positive ener-
gies) will be denoted by 5&. Our two-parameter
variational wave function (4. 5) is not satisfactory
for obtaining positive-energy states and thus 5&.

However, by a graphical comparison of the two-
parameter variational results with those from the
Hulthdn perturbation, we estimate 5z -—0.8 for the
ground state.

The ECSC potential has numerous minima (at
R2, R4, . . . , etc. ) and if the depths of these wells
are sufficiently large, metastable states can be
formed in these. To obtain the precise location of
these levels would require the application of some
refined numerical techniques. However, some
order-of-magnitude estimates can be carried out
by approximate means. The shape of these minima
is similar to that of the potential-energy curve of a
diatomic molecule in the neighborhood of its mini-
mum, and it would be legitimate to estimate the
position of the first level by calculating the zero-
point energy from the second derivative of the po-
tential. In this way we find that the zero-point en-
ergy at the first minimum is given by

~ g~ = 5'i f4 e ' 2(5R2) '(5R 12)[+cos(5R2)

+ 5R, sin(5R, )j )'" . (5.4)

The depth of this well E„ is given by the energy
difference between the first minimum and the sec-
ond maximum:

-6R 2 -683
E, = coos(SBs) — cos(S((s)) . (S.s)

2 3

In Fig. 4 we show some numerical results for the
first minimum at R2. It will be noticed from Eqs.
(5.4) and (5. 5) that the ratio 2A(()/E~ is a, function
of 5 alone. We find from this ratio that 2k~ &E„
only when 5&9.46&10 . Similarly for the second
well at R4, we find that -', Nco&E„when 6 &9&&10 '.
From these results it would be reasonable to infer
that for 5 & 1& 10 bound states do not exist in
these wells. However, the possible existence of
levels for 5 & 1& 10 is a somewhat surprising con-
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elusion from this analysis; it is possible that our
method of estimating the zero-point energy in such
shallow wells is not satisfactory. A definite con-

elusion on this point can only be obtained by a nu-
merical integration of the Schrodinger equation for
the ECSC potential.
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A perturbation calculation, based on restricted Hartree-Fock approximation, is carried out
to second order in the residual interaction for the electric field gradient at the nucleus of
Li 2 P. It is shown that the second-order wave function is not required for the calculation of
the second-order correction. We find that the second-order correction is nearly equal and
opposite to the first-order (Sternheimer) correction.

I. INTRODUCTION

Atomic quadrupole hyperfine structure is caused
by the interaction of the nuclear quadrupole mo-
ment with the electric field gradient at the nucleus
due to the atomic electrons. Measurements of the
hyperfine spectrum can be used to determine nu-
clear quadrupole moments by calculating expec-
tation values of the electric field gradient.

A zeroth-order value of the field gradient q can
be obtained from restricted Hartree-Fock (HF)
theory. The first-order correlation correction to
this (usually called the Sternheimer correction)
is relatively easy to calculate and has been ob-
tained for a large number of atomic states. Re-
cently two contributions have appeared in the lit-
erature which go beyond the Sternheimer correc-

tion for the 2P state of the lithium atom (for this
state the Sternheimer correction is - —0. 11 of the
HF value). Calculations of correlation effects
beyond the first order are difficult because they
necessarily require a rather arbitrary choice of
a finite set of functions to represent the Hilbert
space. A perturbation calculation by Lyons et al.
evaluates the second-order correlation correction
to the field gradient in addition to the first-order
one. Nesbet has carried out an elaborate varia-
tional calculation where single-particle and pair
correlation effects are separately evaluated. An

interesting aspect of these calculations is that they
disagree on corrections beyond the Sternheimer
term, not only in magnitude but also in sign. The
calculation of Lyons et al. yields a second-order
correction which enhances the value of the first-


