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constant, so as to match the experimental dipole
moments. Table III shows the results, and the
striking result is that small changes in 5, on the
order of a few percent, leave the force constants
largely unchanged, but alter the dipole moments
by more than an order of magnitude.

The conclusion is therefore the following: While
Phillips's model of diatomic molecules explains
the binding forces and charge distributions in
terms of a simple, physical picture, it does not
seem to be possible to determine all three of the
model parameters, b, Z„and q, from properties
of the atoms alone. In his work on hydrides,

Phillips choose to take the values of q from CNDO
calculations. I prescribed b, but my attempt to
determine b in terms of the covalent radii can not
be termed a success. If all I wanted was a model
of diatomic molecules, this would not be too seri-
ous, but, of course, what I really want is a model
which can also be applied to more complicated
molecules, based on the data for diatomic mole-
cules. And in view of the extreme sensitivity of
the charge distribution to changes in b, it is al-
most certain that the appropraite value of 5 for a
particular bond will not be the same in a diatomic
molecule as in a large molecule.
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The s-state eigenfunctions of the Schrodinger equation for an electron in a Hulthdn potential
ax'e shown to form a basis for an irreducible unitary representation of SQ(2, 1). The proper-
ties of this SO(2, 1) are then applied to a study of the difference between the Hulth6n potential
and a screened Coulomb potential. Results compare well with those obtained by Lam and Var-
shni using a direct integration.

I. INTRODUCTION

Recently, a number of authors~ have considered
the use of group theory in problems involving in-
tegrals of radial operators. In traditional atomic
physics, of course, group theory has been applied
only to the angular wave function and this extension
to studies of radial functions has necessitated the
development of new techniques (new at least, for
atomic physicists) and new viewpoints. As a re-
sult, work has been confined to studies of well-
known quantum-mechanical systems: the nonrela-
tivistic' ' and relativistice hydrogen atom, the
generalized Kepler problem, and the harmonic
oscillator. Although none of this work has yet
led to applications involving more complicated
atomic systems, each has contributed to a better

definition of techniques to be used and a better un-
derstanding of the problems remaining.

In this paper we wish to study, using group
theory, the solution to the SchrMinger equation
for an electron in a Hulthdn potential"

V„(r) = —e'[ne "/(1 —e ")] .
This potential is widely used in physics because
the s-state solution for such a potential can be ob-
tained in closed form. In addition to leading to a
soluble Schrodinger equation, the Hulthdn poten-
tial is a good approximation to the Yukawa-like
potential

and is, therefore, a physically meaningful poten-
tial. As a result of these two characteristics,
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the Hulthdn potential has been used in a number of
areas of physics ranging from nuclear physics"
to scattering theory' to atomic physics. ' ' In
atomic physics, the Hulthdn wave function has been
found to be very useful in variational problems'
where it may be used instead of, for example, a
Slater function. Lam and Varshni' have recently
used the Hulthdn potential and perturbation theory
to calculate the energy eigenvalues for an electron
in a screened Coulomb potential (Eq. 2).

In this paper, we will apply the group theory
of Hulthdn wave functions to the problem studied
by Lam and Varshni. ' In keeping with the phil-
osophy discussed in the first paragraph of this
paper, the goal of this study is not to obtain new
results specifically related to the probem stud-
ied by Lam and Varshni, but rather to further de-
velop the application of group theory to radial func-
tions.

II. SCHRODINGER EQUATION WITH HULTHEN

POTENTIAL

The Hulthhn potential (Eq. 1) is, of course, cen-
tral, which allows us to write the eigenfunction of
the Schrodinger equation in the form!!)„,„,
= I',„,(8, y)R„,(r)/r. The Schrodinger equationitself
can be split into separate angular and radial equa-
tions; the latter is given by

(
h2 d Ral(i+ I) e ne,+, — „„R„,(r) = Z„,R„,(r).

(3)

We wish to consider solutions to this equation for
l = 0; Eq. (3) can then be rewritten in atomic units
as

III. GROUP THEORY OF HULTHEN POTENTIAL

We define the three operators

~, =e' (1-y) y(1-y)———--(2-y) —,B -1/2 8 Cy i 8

By 2 2

-1/ 2 8 Cy Z 8
(8)

Z =e "(1—y) (y(1 —y) —+ + (1 y)
By 2 2 Bt

8J =i—.3 Bt'

Direct calculation shows that these three operators
form an algebra isomorphic to the complexification
of the algebra of SO(2, 1):

[Jz, J',]=aJ„[J„Z]= 2' (9)

We next find a basis for a representation of this
algebra on the space of functions y'. In particular,
we construct a representation for Do, the positive
discrete unitary irreducible representation of
SO(2, 1)." The basis functions y„ for this repre-
sentation can be normalized such that they satisfy
the equations

J39'n= ~9 n~

Z,y„=~[n(n~1)] q „„,S/2 (10)

where n is a positive integer. Using Eqs. (8) and

(10), one can construct an explicit form of the basis
state q„; we find

&& P( 1)„z (n —1)!I'(c+ v) a

(n —v)! (v —1)!I'(c+1)v! y

The scalar product in this space can be defined

where ~ is measured in units of ao, F- in units of
-me /!za, &= nao, and a„= (2E)'~3/5. Itis convenient
to change variables from r to y = 1 —e '", in which
case Eq. (4) becomes

y (1 —y) e
—

y
—+ ——e„-)R„e=o.(

2 d 2d 2y 2

dy dy & " (1-y)
(8)

Solutions to this equation are well known. They
are (normalized)

Cn

, z (n —1)!I'(c„+v) „()
(n —v)! (v —1)!v! I'(c„)

where c„=2/n&. The corresponding eigenvalue is
&„=—,'a„&, where

a„= z [2/(nb) —n] = —,'(c„—n)

(12)

wh ere dA= dtd y/y. zThefunctions y„areorthonormal
with respect to this scalar product. In addition,
we have

(~,q. I q. ) = —(q. l~~. )

(13)

(~zV. ! V. ) = (V. !~zV")

Finally, we can write the Casimir operator for this
SO(2, 1) algebra as

6= J,J + J3 —J3

8' 28 . 8-r-y ——zcy-
By By Bt

y2 8 2

4(1 )
c+z . (14)
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Lam and Varshni obtained approximate eigen-
values for the screened Coulomb potential [Eq. (2)]
by using the Hulthhn potential [Eq. (1)] as a zeroth-
order approximation, and evaluating the perturba-
tion

U(r) = V„(r) —V„(~)

= (e "/r) -5e '"/(1 —e '")

= —[5(1-y)/y][I+y/In(1-y)]
(18)

in first order. Expressing the matrix element of

the first-order perturbation in the notation of
Sec. III, we find

' Q, ))(r)dr=(- ","
) (p. !()())(&o.). ,

Then, we must have Gcp„=0.
When one makes the substitution c =c„, one finds

that

2 f/2
cp„= e int C~S

2)((c„—n) (c„+n)

and that Gq)„ is identical to Eq. (5). Of course, G

is defined in terms of the operators of Eqs. (8),
so in order to replace c by c„ in G, one must make
the same replacements in Eqs. (8). However, it
makes no sense to replace c by c„=2/n& in Eqs.
(8) since n is an eigenvalue of J~, i.e. , a function
of a particular basis state, and therefore should

not appear in the definition of the operators. One

can, of course, replace c by the operator 2/J~5,
which will have an eigenvalue 2/n5 thus removing
this objection. This replacement leads to a further
complication however, in that the operators of Eqs.
(8) no longer form an algebra if one changes c to
2/j'3&. Thus, we find that if we are to preserve our
algebra, c in Eqs. (8) must be a constant c oc(n).
C}ne is, therefore, led to the conclusion that if c is
chosen such that Eq. (15) holds for a particular
value of n, then the state J.(()„(Z (()„) will not be pro-
portional to the state R„g p(R ) p).

This difficulty is not unlike one which has already
been noted in the group-theoretical studies of hy-
drogenic radial functions. ' In hydrogen, the ra-
dial variable is not r but x/n; group-theoretical
studies of the radial function have to be carried
out in the space of a variable z() z(n). This space
coincides with the space of the hydrogenic functions
at only one point. As a result, hydrogenic radial
matrix elements diagonal in n are the only ones
which have been evaluated using group theory.
The same type constraint applies to the present
problem: We must work in the space of constant
c, i. e. , we can consider only matrix elements di-
agonal in n.

IV. GROUP-THEORETICAL FORMVLATION

OF LAM-VARSHNI PROBLEM

where

U(&)y'
1 y

I)(( —) )
~ In(1 —) ))

((()„IP,"'!q)„)=A(n, k)&(q, 0)

is rigorous. Such operators are easily found:

(,) g (k+v)! (2k+1)!
() k! (2k+ v+1)!v!

(18)

The first few coefficients resulting from this ex-
pansion are given in Table I for Po~' through Po '.

One now expresses V(y) in terms of the P,"'.
Clearly an expansion of V(y) in terms of positive
powers of y leads to an infinite series:

V(y) = —y[1+y/ln(1 —y)]

2 l 3 J 4 ~ 5(zy +TKy +z4y +vzoy + ) ~

In general, we can expect only the first few powers
of y to be of importance because the wave functions
themselves drop off rapidly with increasing y (y is,
of course, always less than or equal to 1). Com-
bining Eqs. (17) and (18), one obtains

TABLE I. The spherical tensors Po ' to order y6.

p 1) y2+y3+ 9y4+, y5+-y6+ ~ ~ ~(

p~2) 3+3 4+ & 5+ 25 6 ~ ~ ~ ~

p(3) 4+ 2 5+25 6+ ~ ~ ~

p&4) 5 5 6

p(5) .,6+. . .
0 y

and the subscript n to the matrix element on the

right indicates that it should be evaluated in the

space of c = c„.
In order to carry out the evaluation of the per-

turbation U(r) using group theory, one needs to ex-
press V(y) on terms of "spherical tensors" in
SO(2, 1). Spherical tensors are operators which
transf orm according to certain representations of
SO(2, 1). In our case, we are interested in opera-
tors P,' ' which transform according to finite-di-
mensional nonunitary irreducible representations of
the group. ' In particular, these operators are
defined by the commutation relations

[O'„P,"']= [(km q)(k+ q+1)]'~'P,"„,',
[g P 0))] qP(k)

where Iq f
& k.

We need to obtain spherical tensors which can be
expressed in terms of positive powers of y since
U(y) can be expressed in these terms. In addition,

we are interested only in operators Po ', since
the selection rule2'~
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TABLE II. The coefficients 8„.

-=n'a„'(p~ IJ'O'"'Ip&) .

x ((/), IP~+& lv), ) (22b)

(22c)

"g(y) &P(1) ~QP(2& +P(3) + (20)

correct through order y4.
Matrix elements of V(y) can now be easily evalu-

ated using the group properties of the states and
the 'ensors. One can use the Wigner-Eckart theo-
rem to write '

(q. IPO" I q.)=~(0, k0I0.)(q I
IP" I lq), (»)

where A. ( ) is a Clebsch-Gordan coefficient for
SO(2, 1) and ( !!!!) is a reduced matrix element
which is independent of n. Then we have

((/' lPO" I(/' )

(23)
(3&!

)
6(c + 10)

(c + 4)(c + 3)(c + 2)(c + 1) '

!P(s&! 24
(c + 4)(c + 3)(c + 2)(c + 1)

correct through order y in the expansion of the
g(A )

Q ~

In obtaining E(I. (22b) above, we have used the ex-
plicit form of the SO(2, 1) Clebsch-Gordan coeffi-
cient as obtained by Armstrong. ~'~ The coefficient
+~ is given in Table II for several values of k and
So

The matrix elements (()(), !P,"'!(/), ) are particularly
easy to evaluate due to the simple form of cp, :

(c/2v)1/2e(t(1 y)(c 1)/Ry

Then we have

(
(g)!

)
2(c~+10c+34.8)

(c+4)(c+3)(c+2)(c+1) '

A(0&&~ k010)&) ! (&&!

=A(01 ko!01) (~'I ' '~'

(k+ t)!
( (» —t —1)!(t + 1)!t!~(k —t)!

(22a)
V. RESULTS AND DISCUSSION

The perturbation U(x) can now be evaluated in

any&&s state by using E(ls. (17), (20), (22), and (23).
Results of this calculation are given in TaMe IG,

TABLE III. Energy eigenvalues as a function of screening parameter for various gs states.

Screening
parameter

0. 001
0. 002
0. 005
0. 01.
0. 02
0. 025
0. 03
0. 04
0. 05
0. 06
0, 07
0. 08
0. 09
0. 10
0..20
0.25
0.30
0.40
0. 50
0, 60
0. 70
0. 80
0.90
1.00

Our
results

0.499 00
0.498 00
0.495 02
0.490 07
0.48030
0.475 46
0.470 66
0.461 17
0.451 82
0.442 60
0.433 52
0.424 57
0.415 74
0.407 05
0.326 70
0.290 67
0.257 15
0. 1.96 98
0. 145 09
0.100 56
0. 062 67
0. 030 82
0. 004 51

—0. 016 67

1s
Lam-Varshni
(Hef. 14)

0.499 00
0.498 00
0.495 02
0.490 07
0.480 30
0.475 46
0.47066
0.461 17
0.451 82
0.442 60
0.433 51
0.424 56
0.415 74
0.407 04
0.326 58
0.29043
0.256 74
0. 196 10
0. 143 58
0. 09833
0. 05968
0.02708
0. 000 09

—0. 02165

Our
results

0. 124 00
0. 123 01
0. 12007
0.11529
0. 106 15
0. 10177
0. 09752
0. 089 39
0. 081 72
0. 07449
0. 06766
0. 06122
0, 055"l5

0. 049 43
0. 00819

—0. 003 57

Lam-'Var shni
(Ref. 14)

0.124 00
0. 123 01
0. 120 07
0.11529
0.106 15
0.10177
0.097 53
0, 08940
0.081 73
0. 074 50
0.06768
0.061 25
0.055 19
0.04948
0. 008 52

—0.003 06

Our
results

0.05456
0.053 58
0. 050 72
0.046 20
0. 03801
0. 03430
0.030 84
0.024 56
0. 01.9 07
0.01430
0.01017
0. 006 62
0, 003 61
0.001 08

3s
Lam-Var shni
(Ref. 14)

0. 05456
0. 053 58
0. 050 72
0. 046 20
0. 038 01
0, 03430
0. 030 84
0.02456
0. 019 07
0.01430
0. 01017
0. 006 63
0.003 61
0.001 09

0. 03026
0.-029 30
0. 026 54
0. 02235
0. 01532
0. 01238
0.00977
0.00542
0. 002 07

—0.00040

0.030 26
0.02930
0. 026 54
0.022 35
0. 015 33
0.012 40
0. 009 80
0.005 50
0.002 23

—0. 000 15

4s
Our Lam-Varshni

results (Ref. 14)
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where we have tabulated energy eigenvalues correc t
through first order [i.e. , E„of Eq. (7) plus the ex-
pectation value of U(r) j for a number of values of n
and &. Also given are results obtained by Lam and
Varshni by evaluating exactly matrix elements of
U(~).

The expansion parameter used in this paper is
roughly 1/c„=-,'n5; thus, for large values of n&,

we see some deviation from the Lam-Varshni re-
sults. We could, of course, achieve arbitrarily
accurate results by considering more terms in the
general expansions given above; however, since
we are interested in the properties of the group-
theoretical approach rather than in numbers, im-
proved accuracy was not our goal.

Considered as a group-theoretical exercise, we
see many similarities between this problem and
others which have been previously studied using
group theory. ~'~ The radial wave functions mul-
tiplied by a phase function e'"' form bases for ir-
reducible unitary representations of SO(2, 1). There
is also a requirement that one must work in the
space of constant n. This requirement appears in
a quite different guise here, however, than in the
hydrogenic problem. In the hydrogenic case, the
radial variable itself causes the difficulty; here itis
the constant c„. It should be recalled, however,
tha, t in the study of the harmonic oscillator, v no

difficulty was encountered in considering matrix
elements off-diagonal in n. Thus this difficulty
does not appear to be a general result of the group-
theoretical approach, but rather a function of the
par ticular central potential.

In order for the group-theoretical approach to be
used, it was necessary to expand the perturbing
potential in an infinite sum. This sum was then ex-
pressed in terms of spherical tensors in SO(2, 1).
Each of these tensors is, itself, an infinite sum.
Lam and Varshni, on the other hand, evaluated the
perturbation U(x) exactly by direct integration.
This emphasizes a difficulty of the group-theoreti-
cal approach, which is that one must work with
spherical tensors rather than directly with the quan-
tities of physical interest. On the other hand, in
the present work all matrix elements were evaluat-
ed in the very simple ground-state 1s configura-
tion, then related to matrix elements in more com-
plicated states via simple coefficients. Lam and
Varshni were obliged to work directly with integrals
involving very complicated wave functions. Thus,
one of the strengths of the group-theoretical ap-
proach is that calculations can be carried out in
the simplest state (usually the state of lowest n)
then related through simple proportionalities to
calculations involving more complicated wave func-
tions.
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