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The dipole approximation of the nonrelativistic cross section for Compton scattering by
electrons bound in the ground state of a hydrogenlike atom, obtained by the present author, is
computed and discussed. In this approximation the cross-section differential with respect to
the angles and energy of the scattered photon is proportional to CI+C2 cos 8, where g is the
scattering angle of the photon. The coefficients C&, C2 are combinations of Appell functions
Ef depending on the atomic number Z and the energies of the initial and final photons K f K2

by means of the dimensionless variables k;=w;/Z P, i = 1,2, where %is the rydberg. In
order to compute the Appell functions, these were first continued analytically and expressed
in terms of other hypergeometric functions of two variables, which under our circumstances
admit convergent series expansions. These were then summed numerically. The incident
photon energies considered lie in the interval 1.05 ~ k& (20. For each value k, the coefficients
C( and C2 were computed for a number of values of k2 (0 —k2 —k~ —1). Special attention was
given « the end points k2 =0 and k2 =ki. Ci and C2 turn out to be monotonically decreasing
functions of k2 presenting the infrared-divergent behavior 1/k2 for k2 —0. The limitations of
the result due to retardation corrections are considered.

I. ANALYTIC EXPRESSIONS OF MATRIX ELEMENT
AND CROSS SECTIONS

In a previous paper (I) we derived an exact
analytic expression for the nonrelativistic matrix
element of Compton scattering by an electron
bound in the ground state of a hydrogenlike atom.
The matrix element was obtained in terms of gen-
eralized hypergeometric functions of four variables
of the type FD. It was shown that the result sim-
plifies considerably in the dipole approximation,
when z,/X and therefore also «,/X are small enough
and can be neglected with respect to 1. In this
case the matrix element reduces to a combination
of hypergeometric functions of two variables of
Appell's type I'&. The result is contained in Eqs.
(1), (75)-(77), and (80)- (82) of I.

In this work we present the numerical evaluation
of the dipole approximation of the matrix element
and cross sections. We have computed the Appell
functions F, (x, y) involved by series summation.
This is the fastest and most accurate method
available. However, this can not be done directly
because the variables x and y do not satisfy the
necessary convergence conditions ( Ix I & 1, ly I & 1).
Therefore an analytic continuation of the F, func-
tions in terms of convergent series expansions
must first be carried out. This is presented in
Sec. II. The limiting cases K, -O and Kp Kg —Ep
(the high-energy end of the spectrum) are considered
separately in Sec. III. Finally, the numerical
results are presented and discussed in Sec. IV.

We shall start by redefining the matrix element
of the process Eq. (75) of I, according to

iaaf = ( Iiv I/iv) (x'/2m)"'5tI, (1)

where N is given by Eq. (24) of I. If we redefine
all the quantities occurring in Eqs. (V5)-(VV) of
I in the same manner, we get

M =A(s, s2)+E(s, n) (s, n), (2)

k( = (2m/X ) z; = y(/Z~(R, i = 1, 2 (4)

where 8 is the rydberg. Then the differential
cross section of Eq. (1) of I becomes

d"=~o (k2/k|) l~ I'dk~dQ. dQ (5)

However, we are primarily interested in the
cross section Eq. (83) of I, referring to the case
when the ejected electron is not recorded, the in-
cident photon beam is unpolarized and the final
photon polarization is not detected. From Eq. (2)
we get

f fm I'dQ= —,', IE f'

+4~(s, s,)'[IAI'+ —,', IEI'+-,'R (A*E)],

and hence Eq. (83) of I becomes

d o= ~2ro(C, +C, cos 8)dk, dQ~,

with

C, = 4~(k~/ki) I IA I'+ -'IE I'+-'It (A*E)]

C~ = 4'(kz /k, ) [ IA
I

+ iv2IE
I

+ —', Re(A*E)]. (8)

A= —[P(Qi)+P(Q2)], E= —[T(Qi)+ T(Qq)]. (3)

Further, we shall introduce new, dimensionless
energy variables for the photons, defined by
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From Eq. (6), we find for the spectral distribu-
tion of photons scattered in all space, defined in
Eq. (84) of I,

do = 2v xo (C, + —,Cm) dk2 . (9)
Taking into account Eqs. (81) and (82) of I and

the redefinition of Eq. (1), we get

64 1-io " 1
( ) [2 (I Rlrlnl )]1/2 I 'o (I go) (I + o2) (1 )4(2 )

T 0 128 1 —io " (n+ 1) (n+ 2)cr r
[2v(1 —e "")]' 1+io' (1+0' ) (1+v)

1 1 —v 1
x F,(2 —w; 3 —n, 3+n; 3 —v; x, y) —

4 F, (4 —v; 3-n, 3+n; 5 —v; x, y), (11)
I

o = p/X.

Using this and Eq. (19) of I, the variables x, y
given by Eq. (80) of I can be written

x = (1 —~) (1+ia)/(1+ ~)(1 —io),

y = (1 —~) (1 —io)/(1+ r)(1+ io) .

(12)

(13)

The energy-conservation equation (21) of I be-
comes now

(p/X) =k, —k~ —1 . (14)

From here it follows that the range of variation of
k2 is O-k, - k, —1. Equation (14) yields also

where F& is one of the Appell functions. %e have
abbreviated here

I

respective planes and how it depends on k, , k3.
This will allow us to choose the right analytic
continuation of the F, functions, in terms of con-
vergent series, Now, the variables x, y behave
quite differently in the two cases required 0&, 02
[see Eq. (9) of I]. We shall therefore consider
them separately.

Let us begin with the evaluation of P(Q, ), T(Q, ).
In this case, from Eqs. (19) and (22) of I and Eq.
(12) and (14) we get

1
(k 1)+1/2 ~ 1 k I ( )

1 1

Denoting by x&, y& the values of the variables Eq.
(13) corresponding to this case, one easily finds
that

n= x/ip= -i(k, -k, - I) '" . (15) (17)

II. METHOD OF EVALUATION

As mentioned before, we want to carry out the
numerical evaluation of the Appell functions F& by
series summation. To this end we need to know

the position of the complex variables x, y in their

Moreover, since k~ varies in the interval 0 &k,
&k&-1, we have 0 ~ )x, ) &1, and therefore
~ & )y, )

& 1. We also have —m
~ argx, & 0.

The formula of analytic continuation we need in

the present case is

I'(c) I'(bz —a), x
F,(a; b» b2, c; x, y) = &(b, &, , (-y) F, a; b, , 1+a —c; a —b3+1;

, r(c)r( -ba)
( y)~2G, b„b, , 1+b, c, a b, , x,

1
(18)

This contains the function G2(a, , a2, b, , bm, x, , x2)
which also belongs to the class of hypergeometric
functions of two variables. Equation (18) is valid
provided that b~ —a is not an integer, and theprin-
cipal branch of the complex powers of (-y) is
taken ( l arg (- y ) I & 7/).

On account of what has been said for x, , y& the
variables x,/yq, 1/yq, —x» —1/y, occurring on
the right-hand side of Eq. (18) are smaller in
modulus than 1. In this case the corresponding
functions F& and G2 can be expanded in convergent

1

double series of their variables. In fact, as we
shall presently see, no double series expansion is
needed for F, because it reduces in our case to a
simpler form.

In what concerns the function G2, when Ix, I & 1,
Ix, l &1 this admits the following expansion:

G2( 1& 2r ls b2i x1& 2)

00 00 xm xn
= Z Z (ag)~ (a2)„(b1)g~ (b2)~ . ', ', . (19)

m=Q n=Q
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As usual, we have denoted (a)~= I'(a+ p)/I"(a), which
holds for P & 0. We shall transform Eq. (19), tak-
ing into account that the coefficients occurring in
it can be written

&& 3F,(ao, bg —m, 1 —bo —m; —xo) . (22)

Equations (10)and (ll) show that the Appell func-
tions we need are of the following form:

(bs)„~ = (-1) (b, —m)„/(1 —b, )~,
(ba) -. = (-I)" (bo) /(l-ba-m). . (21) E(n, P, y) —= E,(n —v; P n-, y+n; o.+1 —7; x, y),

Inserting these into Eq. (19), the sum over n can
be recognized to be a oE, function and one finds

Go(a, , ao; b~, ba, x&, xa)

(a )„(bo)„(-xg)
(1 —b,)„m!

with o.', P, y positive integers. In the case we are
now considering 7 = 7.

1 x x1 y y1 ~

Transforming Eq. (23) according to Eq. (18) one
gets on the right-hand side the function

xz 1 ( xgE,
f

o.'—~, ; p n, -0; a —y+1 n —-~q, —,—= oF,
f

o —v, , p n, o.'—y+-1-n —~, ;
yt

(24)

This equality follows readily from the integral representation Eq. (47) of I. Therefore we have

I'(a+ 1 —vg) I'(y —&+n+7))
( ).. .P I'( + )

where 0 E, stands for the Gauss function appearing in Eq. (24) and

(25)

G, =- G,(P-n, yen; y —o.'+n+wg, n —y —r, —n; —xg, —I/yg) . (26)

The series expansion in powers of (x,/y, ) of the 3F, function in Eq. (24) is rapidly convergent and very
convenient for numerical computation. Further, by expanding Eq. (26) according to Eq. (22) one gets

where

(P —n) „
G, =- (a —y —r, -n)m b„xg,,-0 (n —y- ~i n+~)r. -

b „=,E,(y+ n, y - a+ n+ 7, —r, 1 —a+ y+ 7, + n —x. ; I/y, ) .

(27)

(28)

The coefficients b„can be calculated from the recurrence relation '

b
1 —Q+ 7y —f' 1 2 —o+ 7( -~—+1b —b„a1 —&+ y+++7 y

—t' 2 —&+ p+ tl + 7'
y

—f' (29)

once bo, b, have been determined from the series
expansion Eq. (28). For ko approaching kq —1,
when Ix~ I, Iy& I approach 1, the convergence of
the series Eqs. (27) and (28) becomes poor and the
summation time consuming. Because of that, the
largest value of 0& we have considered was ka
= 0. 98(k, —1) and a different procedure was needed
to evaluate the case ka= kj 1.

Let us now describe the evaluation of P(QS),
T(00). From Eqs. (19) and (22) of I and Eqs. (12)
and (14) it follows that

1 kq —ka-1
+I

Further, Eq. (13) shows that in the present case
the variables x~, y& have the properties

fx, f

= fy, f

& I, yg=x, . (31)

The fact that x~, y& are in the unit circle cen-
tered at the origin makes the evaluation of the
Appell functions F

&
straightforward. One can use

their double series expansion, which we shall
write in the form

Ei(a; b&, b~, c, x, y)
"

(a), (b ), 3Fi(a+p, bo, c+p; y).
p-0 p p ~

(32)

The, F
&

functions occurring here can be determined
from their series expansion about the origin. '

The functions F& needed are again of the type
considered in Eq. (23), this time with r = 70, x = xa,
y=ya.
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The methods we have outlined enable the compu-
tation of the scattering amplitudes Eq. (3) over
nearly the whole spectrum of k, .

III. LOW- AND HIGH-ENERGY ENDS OF SPECTRUM

The two ends of the scattered photon spectrum,
k~= 0 and k~=k& —1, should be given special atten-
tion. For k2= 0 we know from the general case
with retardation that one of the amplitudes is singu-
lar [see Paper I, Sec. IV]. For k, = k, —1 the
quantity n appearing in the parameters of the Ap-
pell functions of Eqs. (10) and (11) tends to infinity
[see Eq. (15)].

Obviously, in order to obtain the limit k~- 0 of
the scattering amplitudes we have to take the di-
pole approximation of the results derived in I,
Sec. IV. From Eqs. (63)-(71)of Iandtheredefi-

nition implied by Eq. (1), we get the following
dominant behavior:

P,(Q, ) = -4[2'(I-e-"'" )]-"'
n

x n (n —1) (n+1) e+ 1

To(Qi) = (2/ko) (1-n)n 'Po(Q~),

Pp(Qo) ——n Pp(Q(),

To(Qo) = 2(2+ n )n (n + 1) Pp(Q() .

(33)

(34)

(35)

(36)

Tp(Q, ) again displays the I/ko singularity for ko- 0,
characteristic of the infrared divergence.

In order to treat the limit ko-k, —1 (or P--0),
we shall consider the general form of our F&
functions, given in Eq. (23). This we shall trans-
form according to

03+7 g —X
F(n P y) = (1-y) F, a —~; a+1 —P —y —v. , P-n; n+1 —r;' X-1 (SV)

Now

y —x 2(1 —w)

y —1 (1+n) (1 —io) '

y n(r —1) (1 —io)
(y —1) 2~(1+n)

(38)

(39)

For P-0 (In I
-~) the dominant behavior of Eqs.

(38) and (39) is

(y —x)/(y —1) = 2(1 —7)/n-0,
y/(y —1) = (r —I)/2v .

(40)

(41)

x P,(n —r, a+1 —P —y- r, n+1 —7; g, q) .
(44)

Returning now to Eqs. (10) and (11) these con-
tain the factor

Equations (38)—(41) hold for both eases X, and Xo.
While the variable Eq. (40) tends to zero, the

parameter P —n = —n of E, in Eq. (SV) tends to
infinity. This is a case of "confluence" for the
Appell function F&, taking place according to the
general formula

lim E,(a; b, I/e; c; f, e)7) = Q, (a, b, c; $, '{}) .
(42)

The limit {t)q is one of the confluent hypergeometric
functions of two variables introduced by Humbert.
In our case, on account of Eqs. (40) and (41) we
have to take '

c= —(1/n), g= (~ —1)/27, q= 2(7 —1) . (43)

It then follows from Eqs. (3V) and (42)

lim F (n, P, y) = [2r/(I + 7 )]'

[(1—ia)/(1+in)]" = [(1—e-)/(I+ eg )]'~'.
The limit of this factor for p - 0 (e - 0) is e o'.

With this and Eq. (44) we find the following limits
for Eqs. (10) and (11):

(2m)'i 1+ 7 (1+r) (2 —7)

x {3I),(2 —z, —1 —v, 3 —7; $, q), (45)

(2o)'I 1+ y (1+7)

x 2 (4-7, —1-7, 5-7';(1 —7 )'

x Q ", oF, (c — ba, rc;+$)/(g —1) . (48),=o (c).

In the case of P (Q,), T„(Q,), 7 is given by Eq.
(16) and the variables fq, qq are complex. We

have

1
4,{3—v, —3 —v, 3 —v-, 3, 3)), {43)

with $, )7 given by Eq. (43).
For the evaluation of the functions P& we start

from the expansion'

{t)i(a, b, c; f, q)

= Z ", o~E( ar+, b, c+r; g), (4V)
(a)„n"

ro cr
which holds for any $, )7. This we shall use in the
modified form
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f1/((1 —1)= (1 —v1)/(I+ v, )~ 'q, = 2(r1 —1) ~ (49)

and therefore

Thus, the variable of 2F, in Eq. (48) is situated
right on the circle of convergence of its series
expansion about the origin. Nevertheless, because
a certain condition concerning its parameters is
fulfilled, the series expansion is still absolutely
convergent. ' Consequently, it can be used for the
computation of 2F, .

In the case of P„(Q2), T~ (Q2), 7. is given by Eq.
(30), which now becomes

-1/ 272= kg (50)

The corresponding variables $2, 1!2 are real and
satisfy the inequalities

0& $2/($2 —1)&1, —2 & 1!2 & 0.

Therefore we can again evaluate the 2F, functions
of Eq. (48) by summing their series expansions.
Note that P (Q, ) and T„(Q2) are real.

IV. RESULTS OF COMPUTATION AND DISCUSSION

With retardation included, the differential cross
section d o/dv2dQ2 of Eq. (83) of I has a compli-
cated angular dependence which is intricately con-
nected to the dependence on I(,", , ~2, and Z. How-

ever, in the dipole approximation the angular de-
pendence reduces to the simple expression given
in Eq. (6). Moreover, the dependence of the co-
efficients C& and C2 on Ky, K2, Z is concentrated
in the two dimensionless variables k&, k2 given
by Eq. (4). Their range of variation is: k, &1 and
O~k2~k, —1. However, instead of k2 we shall use
in the following $, defined as

$ = k2/(k1 —1) . (51)

This has the property that it varies in the interval
0 & $ & 1, whatever the value of k1.

We shall now comment on the computation. First
we have computed the quantities P(Q, ), T(Q, ), P(Q2),
T(Q2) according to the methods described in Secs.
II and III and then the coefficients C&, C2 from
Eqs. (3), (7), and (8).

Since we are working here in the nonrelativistic
dipole approximation, the validity of the results
is restricted by the conditions that aZ «1 and

x, «X or k, «2/oZ. Therefore we have considered
only low values of kj, extending from 1.05 to 20.
For every k& we have computed the coefficients
C1, C2 for a number of values of $ extending from
$ = 0. 001 to $ = 1.0. The series involved were
summed with a relative error smaller than 10 ';
this is the error also for Cj, C2. The computa-
tional errors are therefore much smaller than the
corrections of a physical nature affecting the re-

was used. This is the Taylor expansion of F,
about the points x&=x2=xo', it is convergent if

ix) -xpl &1
l1 —xpl

and X2 —XO~ ( 1
I1 -xp I

For our purposes we have taken xo= (1 —v. )/(I+ v)
with 7. equal to 7& or ~„as needed. For any k,
the convergence conditions are fulfilled only if $

is situated in the neighborhood of 1. The numeri-
cal results obtained in this way for the scattering
amplitudes agree with the ones of the main com-
putation within the relative error of 10 '.

Secondly, the main program for P(Q, ), T(Q, ),
P(Q2), T(Q2) was applied to the case of the very
small value k2= 10 and several values of k, . The
results were compared with those one obtains
from the exact formulas for k2= 0 given by Eqs.
(49)-(52). It was found that the former agree with
the latter to a large number of digits.

Finally, the alternative expansion of the p1 func-
tion"

p, (a, b, c; (, 1!)

,F1(a+x, c+ 1'; 1!) (53)
( ).

was used to check the results for P„(Q1), T„(Q,),
P (Q2), T (Q2). This holds for I) I &1 and any 1!.
With $, 1! given by Eqs. (43), (16), and (50) the ex-
pansion is convergent for sufficiently small k&.

In this range the results thus obtained agreed with-
in the relative error of 10 with the ones one gets
from Eqs. (45) and (46).

We give in Table I examples of the variation of
the quantities P(Q, ), T(Q, ), P(Q2), T(Q2). The
values for $ = 0 were obtained from Eqs. (33)-(36),
the values for $ = 1 from Eqs. (45)-(48), and the
rest of the values by applying the methods described
in Sec. II. Notice that for smaller values k~,
like k, = 2, the quantities listed in Table I, with the
exception of ImP&, are monotonically increasing
or decreasing functions of $. However, when k,
becomes larger (see the illustrative example of

k, =10) only ReP, , ReP, , ReT, , retain their
monotonical variation, the rest of the quantities
presenting maxima and minima.

suit (retardation, relativity and screening).
A number of tests were carried out to check the

computation. First, in order to check the values
for P(Q, ), T(Q, ), P(Q2), T(Q2), the alternative
expansion of the Appell functions

F,(a; b, , b2; c; x, , x2) = (1 —xo)' ' "
x Q " 2E,(c —a, c —b, —b2, c+n; xo)

(a)„
n=o (c)n

( bl) ( 2) - x1 x0 x2 x0
(52)r!(n —x)! 1 —xo 1 —xp
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TABLE I. Typical behavior of scattering amplitudes.

ReP& ImP& ReP2 ImP2 RBT) ReT)

0.000
0.001

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
0.980
l.000

-0.0830
-0.0831
—0.090 5
—0.0971
-0.1044
—0.1125
—0.1217
-Q. 1325
—0.1452
—0.1604
—0.1792
—0.198 2
—0.2052

0.000 0
—0.0001

-0.0047
—0.0068
—0.0078
-0.0077
—0.0064
—0.0034

0.0022
0.0125
0.0320
0.0691
0.1063

0.000 0
0.000 0

0.006 3
0.012 9
0.0200
0.027 9
0.0367
0.046 8
0.058 7
0.072 7
0.089 7
0.106 1
0.1106

Q. 0830
0.083 0

0.0827
0.082 6
0.0824
0.081 9
0.080 9
0.078 8
0.074 9
0.067 7
0.053 6
0.0264
0.000 0

Ag =10

—165.472 7

—1.430 8
—0.6190
—0.341 5
-0.1935
—0.0944
-0.0167

0.051 7
0.1185
0.1895
0.2549
0.277 7

166.740 3

2.0110
1.1328
0.828 8
0.669 8
0.567 5
0.490 9
0.4244
0.355 6
0.266 5
0.1351
0.0190

0.083 0
0.082 8

0.069 8
0.0554
0.0394
0.0211
0.0000

—0.0249
—0.0547
—0.090 9
—0.1356
—0.1794
-0.1917

—0.2490
—0.2490

-0.2483
—0.2479
—0.2473
—0.2458
-O. 2427
—0.2364
-0.2248
-0.2033
—0.1608
—0.079 3

0.0000

0.000
0.001

—0.00148
—0.001 48

—0.001 97 —0.005 92
—0.001 98 —0.005 90

0.00444
0.00444 -14.82640 4.966 79

0.025 19
0.025 15

-0.01384
—0.01332

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
0.980
1.000

—0.001 61
—0.001 76
-0.001 95
-0.002 22
-0.002 62
-0.003 24
-0.00432
-0.00642
-0.01150
-0.023 75
-0.030 43

—0.00241
-0.00285
—0.003 36
—0.003 97
—0.004 74
—0.005 75
—0.007 12
—0.009 05
—0.01149
—0.00943

0.003 06

—0.004 32
—0.003 60
—0.003 12
—0.002 70
—0.002 26
-0.001 68
—0.000 72

0.001 16
0.005 88
0.017 65
0.02416

0.004 27
0.00445
0.004 81
0.005 33
0.006 05
0.007 04
0.008 44
0.010 48
0.01319
0.01176
0.000 00

—0.156 52
-0.08315
—0.059 02
—0.047 13
—0.040 03
-Q. O35O6
—0.030 71
—0.02505
—0.012 73

0.018 85
0.036 94

0.065 75
Q. 040 80
0.033 20
0.030 31
0.029 69
0.030 70
0.033 34
0.037 99
0.04445
0.037 71
0.000 06

0. .022 82
0.022 24
0.022 23
0.022 48
0.02281
0.023 01
0.022 62
0.020 30
0.01112

-0.01774
-0.03501

—0.01282
—0.01336
—0.01443
-0.015 99
—0.018 14
—0.021 13
—0.025 34
—0.03143
—0.039 57
—0.035 28

0.000 00

Table II contains some of our results for the
coefficients C&, C, . ' In most cases the accuracy
of the computation is higher than is reported. We
have omitted the last digits of the results without
rounding off.

It is apparent from Table II that the coefficients
C&, C, are monotonically decreasing functions of

This happens although they are constructed
from quantities which do not all have this type of
behavior, as was shown in Table I. C, is always
larger than C2. This was to be expected from the
comparison of Eqs. (7) and (8). For small values
of $ (e. g. , $ = 0. 001) one notices that C& =

3C2 .
Again, this was to be expected from Eqs. (7) and

(8) and the fact that for small $ the amplitude E is
the dominant one. For larger k, (e. g. , k, &5) and

$ in the vicinity of 1, Table II shows that C, and

C2 become nearly equal.
The spectral distribution yielded by Eq. (8) is

itself a decreasing function of $, for any scattering
angle 8. This is peculiar to the dipole approxi-
mation and does not remain true at higher ener-
gies k& . The most important retardation correc-
tions come from the term 6 contained in the am-
plitude ~ of the exact matrix element [see Eqs.
(14) and (15) of I]. In order to have a better idea

of the validity of our results we have calculated
the corrections given by this term. To lowest
order in the photon momentum transfer q= Ky —Ka

(which is sufficient at the low energies we are con-
sidering), 0 of Eq. (23) of I becomes proportional
to p q. Then C, and Cz of Eq. (8) are replaced
by the angle dependent quantities: C, = C, + (q /X )D
(i = 1, 2), where D is a function of p/X.

The evaluation of the corrective term (q2/X2)D
shows that it is an increasing function of ( and that
the increase is faster at large scattering angles
e. Besides, its magnitude at $ = 1 is rapidly in-
creasing with k, . Now, it happens that even when
the dipole approximation condition (a, /X) «1
[and therefore (q/X) «1] is satisfied, the retarda-
tion correction term (q /X )D maybecome compara-
ble or larger than C, , Ca for $ = 1. For Z= 1 this
is already the case for k& = 10, and for larger Z
this happens for even lower k&. However, this
occurs only when $ is close to 1, because for
smaller $, Cq and C, always dominate (q /& )D.
Therefore, at higher energies k&, for a complete
treatment of the $ = 1 end of the spectrum one
should take into account also the retardation cor-
rections due to 6. However, in order to do this
consistently some other corrective terms contained
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in the matrix element R of Eqs. (14), (15), and

(48)-(52) of 1 should also be considered. Since
the contribution of 6 is dominant, it is to be ex-
pected that the overall effect of these corrections
will be to enhance the cross section in the vicinity
of $ = 1, over the value predicted by the dipole
approximation.

For the time being, in the low-energy range
considered here, there are no other theoretical
results for comparison. However, a number of
experiments were carried out with light elements
(Z ~ 6) at low energies, studying the spectral dis-
tribution in the vicinity of $ = 1. These were

briefly described in I, Sec. I. The experimental
conditions were such that (a,/X) ~ 0. 4 and therefore
the dipole approximation is not fully applicable.
From this and the fact that $ was in the vicinity
of 1, it follows that in order to compare with these
experiments one would have to take into account
also the retardation corrections mentioned above. "
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A dielectric model of diatomic molecules has been used to calculate the ground-state force
constant and the dipole moment. An attempt is made to use atomic parameters only, but the

calculations show that this is not possible with the model. Good agreement with experiment

is obtained when one molecular parameter is adjusted, e.g. , the position of the bond charge.

I. INTRODUCTION

There has recently been considerable interest
in describing diatomic molecules in an approxi-

mate but simple way. Such approximations may
either be of a computational nature, neglecting
certain types of terms which one believes to be un-

important, as in the complete neglect of dif fer en-


