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An exact analytic calculation is presented for the cross section of the nonrelativistic Comp-
ton-type inelastic scattering of photons by electrons bound in the ground state of a hydrogen-
like atom. The matrix element of the process was taken to be of the Kramers-Heisenberg-
Waller form. It was integrated by the Coulomb-Green's-function method, developed previously
by the author in connection with Rayleigh scattering. This is based on replacing the sum
over intermediate states by the Green's function which is expressed in terms of the integral
representation in momentum space given by Schwinger. The final continuum-state wavefunc-
tion was also described by an integral representation. Thus the evaluation of the matrix ele-
ment requires the carrying out of momentum-space integrations, followed by two contour
integrations. Its final form was expressed in terms of hypergeometric functions of four vari-
ables of Lauricella's type JD. At small photon energies, where the dipole approximation is
valid, the result simplifies considerably. The low-energy end of the scattered-photon spec-
trum is considered in detail in connection with the infrared divergence problem. The shape
of the spectrum is discussed and a comparison with previous results is given.

I. INTRODUCTION

When a photon undergoes inelastic scattering by
an atomic system, the latter may be excited or
ionized. In the case of inelastic scattering accom-
panied by excitation, which we shall call Raman
scattering, the final energy of the photon is di-
minished by a discrete amount determined by en-
ergy conservation. In the central-field model of
the atom the process is due to the transition of an
electron from its initial state to one of the unoc-
cupied discrete states.

The process of inelastic scattering accompanied
by ionization can be considered to be a Compton
scattering. Whereas in the conventional case the
electron is taken to be free, in the present case it
is initially bound in the atom and then ejected into
the continuum by the impact of the photon. ' If the
atomic nucleus is considered to be fixed, only en-
ergy is conserved in the process but not momen-
tum. Consequently there is no longer a connection
between the directions of the momenta of the final
photon and of the ejected electron. Also, for every
scattering angle the energy of the final photon
varies continuously from zero to " maximum value

determined by the conservation of energy, in con-
trast to the sharp value it has when the electron is
considered to be initially free. In the case of an
isolated atom, on the high-energy side of the edge
of the continuous spectrum, the discrete lines of
the Raman transitions are expected to appear. '

The differential cross section for Compton scat-
tering by a bound electron may be written2

where so= eo/))) and ~ ie the matrix element of the
process. In the nonrelativistic case including re-
tardation OK is of the Kramers-Heisenberg-Wailer
type, given by3

We denote by &, and &3 the momenta of the initial
and final photons, s& and s~ their respective po-
larizations, p the asymptotic momentum of the
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ejected electron; p and»2 point in dO and dQ, re-
spectively. P is the momentum operator. Sub-
script 0 denotes the initial atomic state (energy
Eo) and subscript c denotes its final ionized state
(energy E,). The infinitesimal positive quantity
q appearing in the denominator of the first sum
prevents the occurrence of a singularity when
integrating over the continuum. Energy conserva-
tion requires that

&q+vq = E, +gq .
The expression of 5K in Eq. (2) refers to the

case of a hydrogenlike atom. The extension of
Eq. (2) to a many-electron atom is straightfor-
ward. However, in the approximation of the cen-
tral self-consistent-field model, when the scatter-
ing process involves a one-electron transition, the
matrix element is again given by Eq. (2).4

The matrix element BR can be derived in the
framework of nonrelativistic quantum mechanics
by considering the interaction of the atom with the
radiation field as a perturbation. In order to de-
scribe the desired transition to lowest order, a
first-order calculation has to be carried out for
the A~ term of the interaction Hamiltonian, where-
as the A ~ P term has to be treated to second order.
The contribution of A is given by the first term of
Eq. (2), the sums over intermediate states repre-
senting the contribution of the A ~ P term.

One can also derive the one-electron-atom re-
sult of Eq. (2) by starting from the exact relativ-
istic matrix element for a bound electron. By ap-
propriately taking the nonrelativistic limit and ig-
noring spin effects one ends up with Eq. (2).'~

All nonrelativistic treatments of Compton scat-
tering by bound electrons which have been given so
far are based on the A approximation of the matrix
element hatt, that is

Indeed, it was recognized that for &y'» ~Eol the con-
tribution of the A ~ P term to the matrix element is
small in comparison to that of A . This circum-
stance concurred happily with the fact that the
sums over intermediate states were difficult to
handle. However, at low energies the situation is
reversed, since the A approximation of Eq. (4)
vanishes in the dipole approximation (I »q —»» I/
nZm «1), whereas the A P contribution does not.

For reasons of simplicity the first case to be
considered was that of a hydrogenlike atom. It
was Wentzel who first approached the problem
and derived some general results starting from
Eq. (4), but eventually considered only the case
when (o.Zm/p) «1. Schnaidt and Bloch'0 gave ex-
act evaluations of Eq. (4) and analyzed their con-
sequences from various points of view. It was then
shown that the effect of the binding of the initial

electron is that of broadening the Compton line for
a free electron and of shifting its maximum to-
wards smaller wavelengths.

By ingenious semiclassical arguments DuMond

derived a formula for the spectral distribution of
the Compton line, relating it to the momentum dis-
tribution of the electron in the bound state. "'
His result was rederived and refined in the frame-
work of quantum mechanics by Eisenberger and
Platzman, '

by starting from Eq. (4) and applying
the impulse approximation.

Considerable attention has been given to the
probability of the inelastic scattering of the photon
into an elementary solid angle dQ&, regardless of
what happens to the electron involved. If one does
not distinguish between inelastic scattering with ex-
citation or ionization, both Baman and Compton
scattering will contribute to the cross section doj
dQ». Starting from Eq. (4) and making some more
approximations, which are plausible at nonrelativ-
istic energies, the result for der/did» can be ex-
pressed simply, in terms of the "incoherent-scat-
tering function. "'

The experiments done in the range of validity of
the nonrelativistic theory have been carried out
with x rays and light elements. The efforts have
been concentrated mainly in two directions. One
of them was of studying the detailed profile of the
Compton line and its relation to the electronic
momentum distribution of the scatterer. Such
studies were persistently followed in the thirties
by DuMond, Kirkpatrick, and Boss.' However, it
is only the global electronic structure of the scat-
terer which was revealed by these experiments, as
one could not distinguish the contributions to the
Compton line of the individual atomic shells.
These studies were resumed in recent years with

high accuracy. '
The other experimental direction pursued was of

trying to isolate the contribution of the K-shell
electrons by using favorable experimental setups.
For the light elements considered (Z& 6), the n
= 2 atomic electrons are valence electrons and

quasifree in the polycrystal. They will yield a
rather sharp Compton line which, for sufficiently
small scattering angles, will lie almost entirely
in the interval between», and», —E» (E» is the
binding energy of the K shell). Besides, the situa-
tion was such that (», —»2) - (nZm) and in this
case one can show on the basis of Eq. (4) that the
K-shell spectral distribution has a maximum at its
high-energy edge &~ —E„. This maximum will
appear as a secondary peak in the global Compton
profile. The existence of such a peak has been
reported and investigated by several authors. '7

At high photon energies (», comparable to m) and
for high-Z atoms a relativistic calculation is
necessary. The complexity of the problem is con-
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We shall first rewrite the Kramers-Heisenberg-
Waller matrix element in an alternative form in-
volving the Green's function for the atomic field
considered. The Green's function can be charac-
terized by its eigenfunction expansion

S u.(ra)u.*(rl)
2p gy 1 'n E.—Qn

(5)

It is an analytic function of 0, except for points E„
belonging to the spectrum of the Hamiltonian.

Taking into account Eq. (5), 01l' can be written

m=(s, s, ) O-Z„,s„[ll„(Q,)+11„(Q,)], (5)

siderably higher than in the nonrelativistic case.
Therefore rather uncertain approximations have
been developed for the relativistic matrix element'
(free intermediate and final electronic states, the
"form-factor" approximation, the "incoherent-
scattering-function" approximation). However,
Whittingham has recently carried out an exact
computation for the case of a purely Coulomb atom-
ic field.

In this vrork we shall give an exact analytic
evaluation of the nonrelativistic Kramers-Heisen-
berg-Wailer matrix element of Eq. (2) for the
Compton scattering by an electron bound initially
in the ground state of a hydrogenlike atom. '. In
fact our problem is that of evaluating the sums
over intermediate states. To this end we shall
follow a method used in previous works on the
elastic scattering of photons by atomic hydro-
gen. ' ' It consists in expressing the sums over
intermediate states in terms of momentum-space
integrals involving the Green's function for the
Coulomb field and of using for the latter the inte-
gral representation of Schwinger. ~ An integral
representation is used also for the final, contin-
uum wave function of the electron. Hence, mt con-
tains terms involving momentum-space integrals
followed by two contour integrals. All but one of
these integrals can be carried out explicitly. The
remaining one is a contour integral which can be
expressed in terms of generalized hypergeometric
functions of the Lauricella type ED. Therefore,
the matrix element BR appears as a linear combina-
tion of such functions. A discussion of the result
is given. It is shown that for vanishing energy of
the final photon an infrared divergence occurs.
This is considered in connection with the problem
of photon attenuation. It is also shown that in the
dipole approximation the analytic results simplify
considerably. In a subsequent paper we present
a detailed description of the dipole approximation
together with its numerical computation. 23

II. MATRIX ELEMENT

@ = f u.*(r)up(r)e' "1 "2"dr,

rl„(Q)=—
I ~~ u,*(ra)e ' 2' Pa,G(ra, r„Q)

V

X Pl(8 1 up(1'1) dl'1dra 1

and II„(Q) is obtained from II,~(Q) by interchanging
i with j and K, with —Ka. The quantities Ql and Qa

are given by

Eo+Kl+i&=
l ~ol +Kl+2&

Qa = &o - Ka = —
I Eo I

—Ka ~

In the following we shall work in momentum

space. Taking the Fourier transforms of the quan-
tities involved, and II,, become

's = f u~ (p Ka) up(p —Kl) dp i
(1o)

H$$ (Q) pl) passu.*(pa K2)G(p, p; Q)
4

x up(pl —Kl)dpi dpa ~ (11)

Let us denote by v&, v2, n the unit vectors of

«, K2, p, respectively. Rotational invariance
arguments indicate that one can write

Qsli Sa)lio (Q) = (Sl ' Sa) (P(Q) + (Sl ' Va)(sa ' Vl) Q(Q)
tt ~

+ (s, n)(s, v, ) 6I(Q) + (s, v, )(s, n) s(Q)

+ (s, n) (s, . n) v'(Q), (12)

where 6', g, S, 8, q are functions of 0 and of
scalars constructed from K&, K3, p. Applying the
prescription given above for obtaining II„., one
gets

Zs„s„II„.(Q) = (s, s ) 6'(Q)+(s ~ v, )(s, ~ v ) g(Q)

—(sa ~ n) (s, va) (R(Q) —(s, ~ v l) (s, ~ n) 8 (Q)

+ (s, n)(s ~ n) f'(Q), (13)

The quantities O', Q, etc. , are obtained from 6',

etc. , by changing Kg into —Kj and K2 into —Ky.

The matrix element % can therefore be written

3)I =8 (sl ' 82) + +(sl ' va)(sa ' vl) + 6(sl ' n)(sa ' vl)

+ s(s, ~ va)(sa n) + h (s, ~ n)(s, ~ n) . (14)

The five scattering amplitudes occurring here have
the following expressions:

a= s-s (Q, )-a(Q, ),
5I = —[g(Q, )+ g(Q2)], e= —5I(Q, )+S(Q,), (15)

where n = —s (Q, ) +6t(Qa), g = —[r(Q, )+V(Q2)] .
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From now on we shall specialize to the case of
a Coulomb atomic field. The ground-state energy
eigenfunction is

(p) (8y5/ 2)1/2 ( p2 + p2)-2 (16)

where X = eZm. The final, continuum-state eigen-
function should have the asymptotic behavior of a
(distorted) plane wave plus an incoming spherical
wave, like in the case of the photoeffect. The ex-
pressions of the cross section Eq. (1) and of the
matrix element Eq. (2) have been written assuming
that it is normalized per energy interval and ele-
ment of solid angle. Although it can be expressed
in closed form, it is convenient to use the following
integral representation:

4pe' ' " I'(1+iI nl)
( )f/21c~. P2 (2 )g Pm

g-1 " 1

f(p, —pg)'+ [~+ip(1 —C)]'}'

(i7)
where p is the asymptotic momentum, p2, is the
momentum-space variable, n= x/ip, and q is an
infinitesimal positive quantity. The principal value
of the power n occurring in the integrand should
be taken (- v & arg g/(g —1) & m). The contour of in-
tegration is a closed loop encircling in the counter-
clockwise sense the branch points g =0 and g =1
but leaving out the pole of the integrand.

For the Coulomb Green's function G(p„p&,' Q)
we use the integral representation derived by
Schwinger

(0+) .
2

2v 2sinvw l, dp p [X (pq —pp) +(pq+X )(pq+X )(I —p) /4p]
(i8)

where

& =l(/X, X = —2mQ,

and X is chosen so that

(is)

X, =-i(2m~, -X')'", X,=(2m~, +~')"'. (22)

III. CALCULATION OF SCATTERING AMPLITUDES

ReX& 0 . (20)

The contour integration in Eq. (18) starts at p = 1
(where one should take p '= 1), encircles the ori-
gin p=0 in the counter-clockwise sense and re-
turns to 1. The form of G(p2, p, ; Q) given in Eq.
(18) is valid for a,ny Q.

The parameters of the problem are related by
the energy-conservation equation (3). Since we
we are dealing with a purely Coulomb field, Fo
= —&'/2m, and

p'+&'=2m(~~ —~, ) .

G(p~, p„' Q) appears in II,/(Q, ), II,/(Qz) with val-
ues of Q given by Eq. (9). Taking into account
Eqs. (19) and (20) one finds for the corresponding
values of X

As discussed in the Introduction in connection
with Eq. (4), the integral 8 of Eqs. (7) and (10) was
evaluated exactly a long time ago. By inserting
Eqs. (16) and (17) into (10) one finds

6= 8&[(((:~—~&)'+ (n —1)p (~, —((,)]

& [(~g —~2)'+ (& —ip)']" ' [(~, —/(, —p)'+ &']-"-'

where
(23)

I(/=(32/v)(2x pm) e' ' " I (1 —ilnl ) . (24)

Our problem is that of evaluating the sums over
intermediate states, which have been expressed in
Eq. (6) in terms of II,/ of Eq. (11). Introducing
Eqs. (16)-(18)into Eq. (11) and interchanging the
order of integrations, one finds

(26)

where

" .'l. l [(pa —~a)'+ /
']' [x'(pi -p2)'+ ~(pf+x') (p~+x')]' [(I i —~i)'+ ~')' (26)

We have abbreviated

o = (I —p)'/4p,

(('2= (('2+pg, //
= e —it(1 —f) .

The integration contour in the g plane can be de-

(28)



1352 MIHAI GAVRILA

formed so that it lies very close to the real axis
and hence, for any fixed&, one can satisfy the
condition

Rep, &0 . (»)
The momentum-space integral Eq. (26) can be

expressed in terms of the following one:

.'I.I [(p2-~2) +] ][x (pl-p2) +~(Pi+x )(PS+X )1 [(pl-~l) +~1 (so)

Indeed, denoting by J'(X; ]], ]]() its value when z2 is replaced by &2 of Eq. (28), one can easily establish the
equality

1 B2gf ( B2 ZI
Z „„r„Z.—„—„. , ——„(s, p)Z „

j ~ j BK1f' BK2j +] ~ BK1f B~
(sl)

Use has been made here of the fact that K& ~ s& = K, S2 = p.
Combining Eqs. (25) and (31) we may write

Z s„s„II„(n)=, . dp p-'() d~
f, j 256m 2sing~ „,

1 —p g B d 1 —px Z sr; ~21, —— J' ——(ss p)ZS« — JI . (33)
BKg~ BK2j dp p p, BK~, Bp, dp p

The integral J'(X; X, g) was encountered and
calculated in a previous work. We have given
there [Ref. 21(a), Eq. (23)] also an expression for
the derivative

d 1 p

where

c = [(x+ ]].)'+ g', ] [(x+ p, )'+]]',]

—2p[4(](q Ka)x'+(a'+](& x')(p, '—+KB x')]

This can be written in the following form:

J(x;X, p) =d 1-p 2 16' 1
dp p

' ' X c (33)

+p'[(X —X)'+](:&][(X- p)'+](].] . (34)

From these equations it follows that

2 25 Bl,.ss, — 8) =12311 ((Sr' Ss)P(p ) +16(SI 112)(S2' Kl)X p (p
i,j BKy] BK2j dp p

—4(s, rrl)(22' Ks)p(p') (p ](X—2) +K]I —Sp(K]+2 —X )2](X22) +K]]]),

(s5)
Zsrr J):61211(Bl' Ks)P(P ) (X{ [(XP2) +Kl] ](XBS) ssr]]

BKl& Bp dp p

—p$p'[(x- x)'+](',] —2p(]).'+~i —x')+ [(x+&p+&i]]
I)

(36)

where e' is obtained from c by replacing ](z with (4z. In deriving Eqs. (35) and (36) we have used the equal-
ity K, s, =o.

We have thus obtained the derivatives needed in Eq. (32). If one takes into account also the definition
Eq. (28) of ]4& and p., Eq. (32) becomes

Z sy(s2, 11(,(n) = . dp p2g 2 sln~T „

x sy ' 82 p c + 16X sg '
K2 +g sg ' p 82 ' Ky p c'
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]]rrr si+t(si tr)1(ss tr)&n'](& —t]'ssr] —]]t:st)'ss]I]n]s')'I, 0t)
e (~-I)

and c' can be written

c' =P+y& (38)

P = [(X+&)'+]]',] [(X—ip)'+~,']
—2p[4(~, . ~,)X'+()'+~', —X') (g,'-p'-X')]

+ p'[(X —&)'+~q] [(X+ip)'+]]:~], (39)

y=2 X+) +&g ~ y2 +p +ipX

—2p(2(~, p)X'+(X'+g', -X') [(j y, )+P']}

+n ( ]Xt ] +si]](p ' Ks)st' —irSX]) . (40)

In Eqs. (3V)-(40) we have ignored the q contained

in the definition of p, because, from now on, this
will give rise to no difficulties.

So far we have dealt with the momentum-space
integrals. We next turn to the integral over g.
This is a closed-contour integral and it can be
evaluated by the residue theorem. Indeed, it is a
sum of terms of the following form:

)f"' (0 —1) " ' (P+yK) "dK,

where &=0, 1, 2; q=0, 1; and x=2, 3. In the do-
main situated outside the integration contour and

extending to infinity, the integrand is analytic ex-
cept for a pole at g = —p/y, and vanishes at least
as fast as 1/g for I & I

-~. The residue theorem
can therefore be applied, and leads to

(0+)r snsntt r(tt)= iNpx
2
-',

l]
n '((sr s )Rnntt" '(ttsr]

2 sing~

+ (sg ' Ka)(s2 ' gg) 16X p n[2]6 —y(n- 1)]P" (p + y)
" + (s~ ~ p) (s~ ]];,) 16X p n(n + 1)P" '

(P + y)

+(s, ~ qa)(sa p) —. p[[(X+A) +wq] —p [(X—X) +vq]](n+1)(2P —yn)P" '(P+y) "

+(s, tr)(sr tr) . S] I]X+t)'ss]] — ] Xrr- ])'+t]](srnstN) ns(mttr) rts')dn . (4"t]
i/i

Taking into account Eqs. (39) and (40), p and ]6+y can be written

p= [«+&)'+~i] [(X-ii )'+~2] (1 —]» (1 np» -P+y= [(X+»'+~i] [X'+(I]+~a)'] (1 —&'p) (1 ~'p)

where

8 +g = 2[4(~, ]],)X'+ (X'+~', —X')(]].", —P' —X')] [(X+X)'+ ~', ]
' [(X-iP)'+~', ] ',

(7l = [(X—X) +g,] [(X+iP)'+g,] [(X+X) +g,] '[(X—iP) +g, ] ',
h'+q'=2(4~, (p+~, )X'+ (a'+~', —X') [(j+~,)' —X'] }[(X+X)'+~,'] ' [X'+ (j+~,)'] ',

(42)

(43)

(44)

« = [(X-~)3+.',] [(X+~)'+",]-' . (46)

Thus, Eq. (41) becomes a linear combination of
integrals of the following form:

f,
"'p "'[(1—(p)(1 —W)]" '

x [(1 —]'p)(1 —q'p)] " 'dp, (46)

where g=1, 2, 3; b=O, 1, 2; c=1, 2, 3. These in-
tegrals cannot be expressed in terms of elementary
functions. Nevertheless, they are expressible in
terms of known transcendentals, namely the hyper-
geometric functions of several variables of Lauri-

cella's type FD. In the general case these depend
on a number of complex variables g&, . . . , g„and
parameters a, b&, ~ ~ ~, b„, c, and admit the fol-
lowing integral representation 6:

F~(a,' bt t t bn t c i &t t ' ' ' t &e)

- teaI'(c) ie
" . &(1 ), . ~

I'(a)r'(c —a) 2sinva „

x(1 —~, p) '& ~ ~ ~ (1 —x„p) '~dp, (4V)
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valid provided that Rec &Hea. The integral equa-
tion (46) can obviously be written in terms of Eq.
(47).

Equation (41) is thus expressible as a linear
combination of F~ functions. Comparing it with

Eq. (12) one finds

Fo(2 —7'; 1 —n, 1 —n, 1+n, 1+n,' 3 —7'; t) q3 f ', q')
[(x+&) +«y] [(x ii)) +«2] [x +(p+«2)'1

(48)

«&«2X ). n+1 Fo(3 —&; 1 —n, 1 —n, 2+n, 2+n,'4 —w, $, )7, 5', )7')

[(x+x)'+ «', ]' [(x—ip)'+ «', ] [x'+ (p+ «, )'J 3 —~ x'+ (p+ «, )'

n —1 F (3 —v';2 —n, 2 —n, 1+n, (+n;4 —r;1, 33', n ,)I'
s -~ (x- ip)'+«,'

3 —- [(X+&)'+«',]' [(X- ip)'+«2J [X +(p+«g)'J' (50)

«~X (X —x)'+ «', (n+1)(n+ 2)2st „,»„., . .», — F(4-~; n, --n, s+n, s+n, 5-~; l, g, 5', q')
j(X+Xj +Kgj jX +(p+Kpj j x +(p+/(2j 4-7

(X+Z)'+ «', (n+1)(n+2)
FD(2 —~; —n, —n, s+n, 3+n;3-~; 8, )7, t', q')

X +(p+K2) 2 —~

FD(4 —7'; 1 —n, 1 —n, 2+ n, 2+ n,' 5 —&; t', )7, 5 ', q')(X- ~)'+«', n(n+1)
X- sP +~p 4 —&

+ 2 a
(X+a)'+ «', n(n+ 1)

(2 —v; 1 —n, 1 —n, 2+n., 2+n; 3 —v; 1, 31', 3 )I, (3,1')
X —ip + K'2

p'X(n+1)(n+2) (X- &)'+ «g
(Q) = —2St

[( 2 p 3 p 2 4) Fo(4 7'' n n 3+n 3+n 5~''5 '() 5 'g )

' n (2 —v; —n, —n, 1!+n, 3+n; 3 —v'; nn(3')I. , ,',(x+x)'+ «',
(52)

The number of FD functions occurring here is ten;
however, only seven are distinct. Their variables
are determined by Eqs. (42)-(45); their explicit
form is rather complicated and we shall not write
it down. The quantity + appearing above is given
by

(X- ip)'+ «2
x'+ (p+ «, )'

(5s)

the principal branch of the power n should be taken
(of argument in the interval —2), +p).

Equations (48)-(53) combined with Eqs. (42)-(45)
contain our main result. From this, one can ob-
tain the quantities (P(D), g, (O), etc. , as indicated in
Sec. II, by changing && into —vz, &z into —vz, and
interchanging «, , «2. For &(Q, ), g(Q, ), etc. , X
should be taken equal to X, of Eq. (22), whereas
for & (02), g(02), etc. , X should take the value Xz.
We have thus obtained an exact analytic result for
the scattering amplitudes 8, , 6, X), g of the
process, Eqs. (14) and (15).

IV. LOW-ENERGY LIMIT OF SPECTRUM

P +A =2mry . (54)

Now, this is precisely the energy-conservation
equation for the photoeffect from the ground state.
We shall assume in the rest of this section that p
and n = X/ip are fixed by Eq. (54).

One has to deal separately with the amplitudes
depending on X, and those depending on X~. Be-
ginning with the case of X„ from Eqs. (22) and
(54) we get

Xg ZP y +g Ã o (55)

We shall now consider what becomes of our
formulas when the scattered photon has vanishing

energy, &2- 0. This limit can be handled analyti-
cally and will yield a noteworthy result.

In the following, only the dominant terms of the
amplitudes will be given. Therefore, in general,
we can set from the beginning &~ = 0 in the energy-
conservation equation (21), which thus becomes
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Consequently, by eliminating X~ and r~ from 6'(Qq),
g(Q, ), etc. , one can express these only in terms
of p and Kl. However, special care must be given
to the quantity [X + (p+«e)e] occurring in the de-
nominators, since this vanishes when setting K2=0
and using Eq. (55). If one uses Eq. (22) and the
complete energy-conservation equation [Eq. (21)],
one gets to lowest order

Xg+(p+«e)'= —2m«e[I —(~e p/m)] .

The behavior of the variables f, g, (', g' for K2- 0 can easily be obtained from Eqs. (42)-(45).

Since &+g=0, $g =0, it follows that $ =0, g=0.
On the other hand, «'+q' is of order 1/«e and tends
to infinity, whereas f'g' remains finite. Therefore
«'=0, q' =«'+q' (tending to infinity). e More pre-
cisely, to lowest order

q' = kg[(p —«))'+ x'] [(x —ip)'+ «', ]
'

x{-2m«e[1 —(ve' p/m)]} ' . (56)

We shall now take advantage of the fact that the
three variables p, g, 5' vanish in the limit K2- 0.
Consider the general expansion formula2

( ~ b . . . b ~ ~ . . . 3 ~ (a)~1 + ~2 + e (b1)~1(b2)tn2(be)~e ~g p me
DKQy lp '''

p 4y Cy &lq ''
p &4 ~ I +1 ~2 +3

(C/mi+ m2+m3 mi ™2™3'T

1 2

(a+mg+me+mpy b4p c+mq+mp+mp, 'x4), (57)

where (a)e=a(a+I). (a+p —1). This is valid for Ix&1, Ixel, Ixpl &1, whatever the value of x4. By trans-
forming adequately the 2F1 functions involved and noting that we are interested in the case when the param-
eters have the form: a= n+n, bq=be=P —n, be=b4=P'+n, c= o+1+n with n, P, P'=0, 1, 2, . . . , one can
write further

F (aD+n, P —n, P'—n, P +n, P'+n; n+I+n, ' «, q, «, q ) =(1 —q') e™Z
mlm2m3 ml + m2 + m3

I
(p —n)~q(p —n)~e(i} +n)~p «~&q"e«'~peF, (1 p~+n, n+ I+n+

&
m+m+ em'ge'/(q' —I)) . (58)

ml I m2 .fm3 f

FD=(-q ) "eF&(1,p +n, a+I+n;q'/('g' —1))
(»)

Taking into account the dominant behavior of
eF, when the variable approaches 1 (see Ref. 30,
p. 110), we get the following results: If P & n,

Fp = (-q') e™(o. + n)/(a —P'); (60)

if P=u,

The variable q /(g —1) of the functions eF, in
Eq. (58) tends to 1 as «e-0. The dominant be-
havior of 2F1 is given for this case by known gen-
eral formulas (see Ref. 30, p. 110). From these
it follows that, whatever n and P, the order of
magnitude of 2F, with respect to K2 does not in-
crease when the sum ml+m2+m3 increases. This
means that in all cases the leading term of FD cor-
responds to ml= m2= m3=0 and therefore

(62) yield the dominant behavior of all the FD func-
tions occurringin6'(Q, ), q(Q, ), etc. For the domi-
nant behavior of these quantities themselves in the
limit K2-0, one finds

S'p(Qq) = —Ip N n [(X —ip) + «g] [(p —Kg) + X ]
' f,

(68)
(R p(Qg) —i —,

' N X«,(n+ 1) [(X —iP) + «,]

x [(p —«,)'+ y'] 'f, (64)

Sp(Q() = —Ie N (n+ 1)— 1—
m m

x [(p —«g) + ji. ] f,

v'p(Q, ) = —I'-, N (n+1) P V2 ~ P
mK2 m

FD = (n+n) (—g') "ln(- q'); (61)
with

x[(p —«g)'+ &'] f (66}

if P &cy,

, „r(p'- a) r(c+ I+n)
I"(P'+ n)

(62)

By specializing the values of the parameters u,
P, P, and taking into account Eq. (56), Eqs. (60)-

(x —ip)'+ «g

(p —Kl) + ~
(67)

v'p(Q~) behaves like I/«e, whereas 5'o(Qd~ @o(Qi)~
3 o(Q, ) are indePendent of «e QP(Q~) turns out to
be of order K2 and is not given.
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Let us now consider the case of Xp. From Eq.
(22) we get

(68)

Consequently, Eqs. (42)-(45) modified so as to
give $ + q, $ ll, $ '+ ll', $' lI' (see end of Sec. II),
yield )+i}=0, $i}=0, $ +l} =0, $'i}'=0. From
here it follows that $ =0, r, =0, $ =0, i} =0, and
therefore in all cases FD = 1.

We get thus the dominant behavior

(p p(Qp) lpN[(A —zp) + Ki] [(p —Ki) + X ] f ~

s p(Q, ) = -,'N Kl p(li+ I) [(p Kl) + ~ ] f
(69)

&& ((n+ 2) [(p —Kl) + X ] —n[(& —ip) + Ki] '],
(70)

I'p(Qz) = ,'Np (n+—1)(n+2) [(p —Kl) +X ) f, (71)

with f given by Eq. (67). These quantities are in-
dependent of zp, whereas Q p(Qz) and Q(Qz) are of
order K2 and have been omitted.

In what concerns the quantity 6, it is finite for
K~-0 and its value can be easily obtained from Eq.
(23).

Summing up, we see that for K~-0 the dominant
term of the amplitudes is &p(Ql) of Eq. (66), which
behaves like I/zp. Hence, from Eqs. (14) and (15)
we get

3}Ip — Ip(Ql) (sl I'l) (sp ' n) (72)

Sgo can be expressed in terms of the matrix
element of the photoeffect from the ground state.
Indeed, in our notation this is given by

'

[e'""(» )P]c 0I'4 N (n+ I) (p ~ el} [(p —&i)'+ &'] 'f,
(73)

where the quantities involved are related by the
energy-conservation equation (54). Comparing
with Eqs. (66) and (72) we get

5}Ip —— (s, ~ p) 1 — ' [e'"i'(si P)]„.
Kpm m

(74)
Although this result was proved here for the

case of a Coulomb field, it remains true for any
atomic field. This can be shown by starting di-
rectly from Eqs. (2) and (6) and using some of the
properties of the Green's function.

It is well known from the case of scattering pro-
cesses involving free electrons that whenever a
soft photon (energy z-0) can be emitted, the ma-
trix element behaves at low energies like I/x and
is proportional to the matrix element of the pro-
cess in which this photon is absent. 3 Equation
(74) represents an example of this situation for
the case of a bound electron, the process in which
the final photon is suppressed being here the photo-
effect.

V. DIPOLE APPROXIMATION

We shall now consider the dipole approximation
of our general nonrelativistic result, when the en-
ergies of the incident and outgoing photons are
sufficiently small so that one can neglect zl/y,
Kz/Z with respect to 1. This is equivalent to re-
placing by 1 the exponentials appearing in the

Kramers-Heisenberg-Wailer matrix element Eq.
(2), or to setting xi= gp= 0 throughout the calcula-
tion.

As a result one finds thai the quantities 6, g,
6t, 5, given by Eqs. (7), (23) and (49)-(51) van-
ish in the dipole approximation and that lp (Q) = (P(Q),
q'(Q) =9'(Q). Therefore, Eqs. (14) and (15) become

NI = e(s, ~ s,)+ 8(s, ~ n) (s, ~ n), (75)

(76}e= —[6 (Ql)+6'(Qp)],

8 = —[v (Q,) +v'(Q, )] .
Setting Kl= Kp=0 in Eqs. (42)-(45) one gets

(77)

2(x —x) (x+ ip)
(x+~)(x-ip) '

(x- ~)'(x+ ip)'
(x+~)'(x-ip)' '

2(x- x) (x'- p')
(x+ ~) (x'+ p')

(X- X)'
(x+z)' '

(78)

Equations (78) and (79) can be easily solved to de-
termine $, q, $, it . One finds that three of the
variables are equal; let x be their common value:
g=l}=$ =x. Let us also denote l} =y. The values
of x and y are

x= (X- ~) (X+ip)/(X+ X) (X—ip),

y=(x-x)(x-ip)/(x+~) (X+A) .
(80}

x- ip 't" 1
6 Q=N

X+ iP& (X-ip)'(X'+ p') (I+ ~)4 (2-~)

&E(2 —~; 3 —n, I+n; 3 —r; x, y), (81)

x —zp
" p'(n +)I(n+2)1'(Q)=2N .

( ) (I )

Now, from the integral representation Eq. (47)
of the function F~ it follows that

En(a; bl, bp, bi, b4,'c;x, x, x, y)

= Fl(a i bi+ b2+ b3, b4 c i&iyx) ~

where F& is the standard notation for the FD func-
tion of two variables, called Appell function.

From Eqs. (48), (52), and (53) we finally get
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1
Fg(2 —r; 3 —n, 3+n; 3 —v; x, y)

The exact formulas we have derived in Sec. III
have a rather complicated analytic structure. Al-
though the hypergeometric functions I D involved
have reasonably well-known properties and are
eventually amenable to a form suited for numeri-
cal computation, this operation is by no means
trivial. The situation is considerably complicated
by the large number of parameters in the problem
(for every Z, ~~ there is a continuous variation of
Kg, Vp 11).

On the other hand, there are limitations of a
physical nature affecting the result. Since our
starting point Eq. (2) is a nonrelativistic formula
without spin, one would expect it to be valid for
z, «m and (nZ) «1. However, some arguments
have been presented showing that already for Kg

= nZm relativistic corrections become important.
This tends to show that the Kramers-Heisenberg-
%aller matrix element can describe correctly only
the lowest-order retardation corrections beyond
the dipole approximation. Therefore, for the time
being, we have attempted only the numerical com-
putation of the dipole approximation, Eqs. (V5)—
(V7), (81), and (82). ~

The basic cross section of the process is given
by Eq. (1). However, if the outgoing electron is
not recorded, the incident photon beam is unpo-
larized and no attention is given to the final photon
polarization, the relevant cross section is

d o 1 g „d~a
dzzdQz 2 - » ~ dzzdQ&dQ

~Ha "
(83)

This yields the shape of the scattered photon spec-
trum for every scattering angle. A further inte-
gration will give the over-all spectral distribution
of the photons scattered in all space

dQp . (84)
dna „' diaz d Qz

Let us now consider the shape of the spectrum
as given by our general formulas. For low ener-
gies ~z, where the dipole approximation is valid,
the quantity e of Eq. (7) vanishes and the matrix

1 —7' 1
Fg(4 —&; 3 —n, 3+n; 5 —~; x, y)

(82)
where N is given by Eq. (24). ~'

Thus, in the dipole approximation the matrix
element DR reduces to a considerably simpler form.
The scattering amplitudes 8 and 8 are now angle
independent, the whole angle dependence of Eq.
(V5) being concentrated in the scalar products.

VI. DISCUSSION

do (& 0 d(7
d Az

~

dzq &&q
(85)

This should yield the analog of the (nonrelativistic
limit of the) Klein-Nishina cross section, for the

case of bound electrons. However, taking into
account the 1/Kg behavior of Eq. (83) for zz-o,
do/d Q~ cannot be evaluated because of the log-
arithmic divergence of the integral. 5 This is an

aspect of the infrared divergence problem of quan-
tum electrodynamics. ' It shows that when one
wants to calculate the attenuation of a flux of pho-
tons passing through matter, the contribution of
the Compton effect from bound electrons cannot be
considered alone. Let us briefly discuss this
point in the following.

At the nonrelativistic energies we are concerned
with, the attenuation is due mainly to photoeffect
and Compton scattering. The corresponding cross
sections have to be added in the expression of the
attenuation coefficient. The cross section of the
photoeffect is of order o.(nZ)s whereas that of
Compton scattering by bound electrons is of order
o. (o.Z) . This indicates that if one wants to add

consistently the two, one also needs to consider
the first-order radiative corrections to the photo-
effect, which are of order n~(o. Z)'. Now, like
other radiative corrections, these are divergent
in the range of soft virtual photons. The diver-

element reduces to that given by Eqs. (V5)-(7V).
Then, for g~ increasing from zero, the matrix ele-
ment Eq. (V4) together with the cross section Eq.
(83) decrease like 1/a2. The numerical analysis2'
shows that the decrease is monotonic up to the end
of the spectrum.

As the energy z& increases, the term q becomes
more and more important and will eventually dom-
inate the rest of the amplitudes. For not too
small scattering angles, the term produces a max-
imum in the cross section Eq. (83), near the Comp-
ton frequency for the scattering by free electrons.
This maximum moves towards lower frequencies
as the angle increases. Now, even though the
term 6 may give the dominant contribution for
most of the spectrum, this is not true for the low-
energy end (gz approaching zero), where it is domi-
nated by the 1/~2 behavior of v'(0, ). The 1/~3 rise
of the cross section for g~- 0 cannot be predicted
from the approximation Eq. (4), hitherto consid-
er ed,

For high, relativistic energies g&, the process
is no longer described by the matrix element of
Eq. (2) but the spectrum retains essentially the
same shape. ' '

The total intensity of the photons scattered under
a certain angle should be calculated from the cross
section
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+tot +oh +
dQ dQ

~lC~ gp 2

dQ 2 (86)

The introduction of the cutoff & is equivalent to at-

gences can be eliminated by attributing a small
mass y, to the photon. Let us denote by do»/d Q

the photoeffect cross section containing the radi-
ative corrections.

Concerning the contribution of the Compton ef-
fect, consider the case when the outgoing electron
is scattered in dQ, regardless of what happens to
the final photon. The cross section describing this
case is d o/d~zd 0 [defined in a manner similar to
Eq. (88)] integrated over z, . To prevent the oc-
currence of the divergence for g2-0, let us provi-
sionally integrate over K2 starting from an arbi-
trarily small value e.

By adding the two cross sections one gets

tributing a small mass p, to the photon; conse-
quently there is a certain relation between these
quantities. If one takes it into account, p, and &

will drop out of Eg. (86) and one will end up with

a finite result. " One then can integrate over dQ
to obtain 0„,which appears in the total attenua-
tion coefficient. Thus, it is only by combining
photoeffect and Compton effect that one can get a
meaningful result. Also, notice that of the two
terms contained in Eg. (86) it is the Compton term
which gives the leading contribution for high z„
even though it is of a higher order in n.
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