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A new expansion of the wave function in Laguerre polynomials for hydrogenlike atoms in
a magnetic field has been developed. This expansion reduces the Schrodinger equation to an
infinite set of algebraic equations for which a fast, accurate, and unambiguous calculation of
the bound states of a hydrogen atom in a magnetic field is possible. Four quantum numbers
(I, C, M, N) are used to label the energy levels of the system in cylindrical coordinates. When
the magnetic field is zero, the new labeling of the states is equivalent to the standard (n, l, m)
quantum numbers obtained for the Coulomb potential in spherical coordinates. Numerical
results are presented for the first 14 energy levels with principal quantum number n =1, 2, 3.
Several energy-level crossings occur in the region 0 & y &1, where y = Scu~/2+ and @ is the ef-
fective Rydberg energy.

Calculations of the energy levels of hydrogen-
like atoms in a magnetic field are essential for
many problems in solid-state physics involving
excitons or shallow donors. This paper presents
a new method of calculating the bound energy levels,
the general form of the wave functions, and
uniquely labels the discrete energy levels of hydro-
genlike atoms in a magnetic field.

In semiconductors, with relative static dielec-
tric constants & from 10 to 50 and effective-mass
ratios from 0. 01 to 0. 1, the strength of the mag-
netic field relative to the Coulomb energy &=@&A,/
2 ranges between 0. 5 to 1000 for B = 10T. Here
the cyclotron frequency is ~, = eB/m and the ef-
fective Rydberg is 8 = Ze m/(32m v a2). For values
of y between 0 and 1 the bound Coulomb energy
levels lose their identity because of the strong
admixture of levels necessary to satisfy the per-
turbed Schrodinger equation. For values of y» 1
the binding effect of the magnetic field in the xy
plane is so large that an adiabatic approximation
is appropriate. ' Larsen' and Pokatilov and
Rusanov have performed variational calculations
for 0 y' 3, for the first few lowest levels. Re-
cently Cabib, Fabri, and Fiorio have integrated
the Schrodinger equation numerically and obtained
very accurate values for the 1s and 2s energy
levels for y ~ 5. These calculations did not answer
two pressing questions: (i) How does one classify
and label the bound energy levels? (ii) What is the

general form of the wave function? Satisfactory
answers to both questions are present here. I
outline the calculation here and present some of
the results in tabulated and graphical form. An

extensive report containing more detailed results
is being prepared for publication.

The Hamiltonian for this problem is

H= (1/2m)(p+ 2eB&& r) —Ze /(4m~a)

It is well known that the above Hamiltonian is in-
variant with respect to arbitrary rotations around
an axis which contains the Coulomb center and is
parallel to the direction of the applied magnetic
field B. Therefore, the projection of the angular
momentum along the direction of 8 is conserved.
Using the cylindrical coordinates (p, y, z), with
the origin on the Coulomb center +Ze and the z
axis along the direction of the magnetic field B,
the angular dependence of the wave function can
be separated out,

C, (y) (2+)-1/2e wb

The z component of the angular momentum is L,
=5M, and the quantum number M = 0, + 1, + 2, . . . .
Defining the effective Rydberg as the unit of en-
ergy, y as the unit of magnetic field, and a
= Swah /(Ze m) as the unit of length, the Schro-
dinger equation reduces to the mell-known form

B M
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—-yM $ p, z=O. 2
(R

The wave function for the bound states is written

((p, z)=zcp "e Iris e 2le-l r Q I.I//l(2IyI p2)

where

~ Z Z ~.,„p f.,"„'(4I.I"'r), (3)
0=0 n=0

e ' "I, "(2IyIp )

where N=O, 1, 2, . . . , represents the asymptotic
behavior of the wave function for the bound states
when r- ~, p/r- 0. However, when we attempt
to separate out this form, Laguerre polynomials
of order (N —1) are encountered. Hence we are
forced to use the expression

N

f.." (2IyI p') g.(p, r) .
m=0

The function g„(p, r) should approach a constant
value in the limit r-~, p-~, p/r-0. The double
summation

g (p, r)= 5 Z A„,„p~L,„"„'(4I~I"'r)
A=O n=0

reduces the set of coupled equations for g„(p, r) to
an infinite set of linear algebraic equations for the
coefficients A ~„. For 0& m & N —1 the coefficients
A~~„depend on A(~,»„„. For m = N the equations

o= 2(C+ IMI +2N)+1

(p2 + z 2) 1/ 2

C=0, 1, M=O, +1,+2, . . . , N=0, 1, 2, . . .

and I-,' '(x) is the generalized Laguerre polynomial
of order s and argument x.

The rationale for the selection of Eq. (3) as the
wave function is the following: (i) Equation (2) is
invariant with respect to reflections along the z
axis. Therefore the wave function must have a
definite parity, which is selected by the term z
with C =0, 1. The remainder of the wave function
must be a function of z . Terms containing ~ z I

are not allowed since P, g(x, y, z) must be continuous
across the xy plane. At this stage we find it con-
venient to introduce a new set of variables (p, r)
where r= (p2+z2)'/2~ p. (ii) The term p" isolates
the regular behavior of the wave function as p-O.

-lylp(iii) The term e " ' isolates the asymptotic be-
havior of the wave function as p-~, p/r-1. (iv)
The term

for A»„are homogeneous and the requirement for
a nonzero solution, i.e. , that the determinant of
the coefficients of the equation be zero, determines
the allowed values for I & l and the eigenvalues F-

of the energy bound states.
The roots ~& ~

of the secular equation are classi-
fied in order of decreasing magnitude by an index
%=0, 1, 2, . . . .

Four discrete parameters or quantum numbers
(K, C, M, N) are necessary to classify the energy
levels of the bound states. Note, however, that
combinations of M, N, and C occur. In order to
understand this better we examine the closed form
solution which we obtain for the bound levels of
the Coulomb potential for y = 0. When these wave
functions are compared with the standard hydro-
gen-atom wave functions in spherical coordinates,
we find a one-to-one correspondence. The rela-
tionship between the quantum numbers (n, l, m) and

(K, C, M, N) is

n= C+ IMI +2N+K+1

f=c+ IMI+2N,
m~ =M

(4a)

(4b)

(4c)

Here, as well as in Eq. (3), the quantum num-
ber N indicates the highest power dependence (2N)
of the variable p. We can use the correspondence
given by Eqs. (4) to relate the wave functions at
zero magnetic field, y= 0, with those for y4 0.
Note, however, that the limiting process
lim(y - 0') tjzc~//(y) does not necessarily reproduce
I)'«»(y= 0). This effect is first noticed with the
levels 3d(0) and 3s. For y-0', first-order degen-
erate-level perturbation theory, applied to the n
= 3 manifold, produces a 9&& 9 matrix which couples
the 3s and 3d(0) levels. Consequently, for y-0'
the perturbed levels are a combination of the 3s
and 3d(0) unperturbed levels. The Ss and 3d(0)
levels were calculated for the values y= 10 ',
10,. 10 ', 10, 0. 02, 0. 03, 0.04, 0.05. The r atio

I~.E(3.)]/I.~.E(M(0))1

was compared with the value resulting from the
first-order perturbation calculation 3. 786. We
find that, for y-&-10, the numerical calculation
agrees wi. th perturbation theory. For y & 10, the

3d(0) energy level is a quadratic function of y, but
the energy of the 3s level deviates from a quadratic
dependence on y for y ~ 10 . The 3s and the 3d(0)
levels cross for 0.03&y&0. 04; for y& 0. 04 they
behave as shown in Fig. 1. For pure hydrogenic
wave functions this level crossing would be for-
bidden. However, the present wave functions are
nonhydrogenic and this accidental degeneracy is
possible.

The above discussion. demonstrates that we have
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3d(+2) Bd(+ I)
TABLE II. Tabulation of the 18, 2g, 2p(0, +1), 3s,

3p(0, +1), and 3d(0. +1, +2) energies in units of the ef-
fective Rydberg E/@, for different values of y = 5~/(2(A, ).

1.0 2. 0 3.0

E
R

—O. I I I

-0.25

3S

Sp(0)
3p(- I)

~d(- I)

~p(o)
Sd(-2)

2p(- I)

lg
2g
2p(0)
2p (-1)
2p(+1)
3s
3p(0)
3p(-1)
3p(+ 1)
3d(0)
3d(-1)
3d(+ 1)
3d(—2)
3d(+ 2)

—0.995 05
—0.196 17
—0.224 82
—0.301 69
—0.10169
—0.049 86
—0.039 78
—0.062 36

0.13763
0.024 32

—0.11562
0.084 37

—0.175 67
0.22432

—0.662 33
0.678 97
0.479 99
0.086 82
2.086 82
0.867 27
0.819 52
0.748 89
2. 748 89
2. 293 89
0.586 86
2. 586 86
0.293 89
4. 293 89

—0.04442
1.651 94
1.404 61
0.800 83
4. 800 83
1.86116
1.806 12
1.71492
5.71492
5.057 57
1.50947
5.50947
1.057 57
9.057 57

0.670 95
2.634 63
2.359 96
1.592 97
7.592 97
2. 857 06
2. 789 69
2. 694 61
8.694 61
7.885 51
2.462 16
8.462 16
1.885 51

13.885 51

Is

FIG. 1. Plot of the 14 energy levels with principal
quantum number n = 1, 2, 3. The energy, measured in
units of the effective Rydberg, El(R, is plotted vs the
normalized magnetic field y =h~~/(2R).

TABLE I. Comparison between the variational cal-
culation of Larsen (L), the numerical solution of the
Schrodinger equation of Cabib, Fabri, Fiorio (CFF), and
the present calculation (P). The error bounds of EcFp
apply the last quoted digit.

~/=0
1$
2g
2p(0)
2p (-1)

7-1
ls
2g
2p(0)
2p(-1)

E

—0.995 05
—0.196 14
—0.224 76
—0.301 62

—0.662
+0.683
+0.480 7
+0.0882

EcFF

-0.99508(+5)
—0.1962(+1)

—0.66241(+ 9)
+0.6793(+3)

—0.99505
—0.19617
—0.224 82
—0.301 69

—0.662 33
+ 0.678 97
+ 0.479 99
+ 0.08682

obtained a general expression for the wave function
and a unique labeling of the energy levels.

%e next evaluate the infinite determinant and ob-
tain the roots I & ~. At this stage we approximate
the infinite summation over k by a finite number of
terms with restriction 0 k k ~. This is equiv-

alent to the use of a finite number of Coulomb
wave functions to approximate the wave function
Eq. (3). We have calculated the first 14 levels
with principal quantum number n= 1, 2, 3 for k,„

12. This amounts to the evaluation of determin-
ants of order No = —,

' k ~(k +1) or Nn( 78. Ap-
proximately 30 to 90 sec per energy level is re-
quired with the MIT time-sharing computer. For
some of the levels we have studied the convergency
of the solution as a function of k ~. As expected
we find that the speed of convergency becomes
poorer as ~e I -0. This is so because the wave
functions have a longer range and more terms are
necessary to approximate the regular behavior of

$(p, s). The approach to the exact value is oscil-
latory, and error bounds can be established by
studying the behavior of s(k ) as a function of

k,„. For k =12 all the levels studied are at
least accurate to four digits. For the 1s level and
for jy I& 1 we have obtained an accuracy of 10 to
10 . Our results are compared with a few repre-
sentative results of Larsen and Cabib et al. ~ in
Table I. Our energy levels are always lower than
those of Larsen, as expected from a variational
calculation and fall well within the error bounds set
by Cabib et al. ~ In Table II, we present the energy
levels for y = 0. 1, 1, 2, 3 for all 14 levels. Figure
1 shows the same levels for 0& iyi &1. This figure
shows that there exist a number of energy-level
crossings as a function of y. This happens when
the Coulomb levels lose their identity and start
to resemble the pure magnetic levels. For ex-
ample, the crossing of the 3d(- 2) and the 2P(0)
level occurs because the large magnetic moment
of the 3d(- 2) level makes the upturn due to the
second-order magnetic effect more difficult. Since
the 2P(0) level has no magnetic moment, the sec-
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ond-order effect of the magnetic field is the only
one operative.

We expect that some of the experimental results
on shallow-donor spectroscopy and exciton ab-
sorption in a magnetic field may require reanal-
ysis in view of the present findings.
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The rotational spectrum of H2 0 in the ground vibrational state has been investigated by
means of high-resolution microwave spectroscopy. We report the measurement of ten new
rotational transitions in the 1.0- to 0.4-mm wavelength region. Among these are several
low-J lines which are of significance in the atmospheric absorption of electromagnetic radi-
ation in the microwave region. The frequencies of newly observed transitions are (in MHz):
5g 5 4g 2, 322465. 17; 4~ 4 3~ g, 390607.76; 42 3 33 p, 489054. 26' 62, 4 7~ 7, 517181., 96;
64 3 55 p~ 520 137,32' 5g 3 44 p, 537 337, 57~ lj p 1p g ~ 547 676 ~ 44~ 64 2 5g g ) 554 859. 87~

53 & 44 ~, 692079. 14; and 2~ ~
—2p 2, 745320. 20. Assignments were based on a weighted

analysis of combined microwave and infrared data.

INTRODUCTION

Recently we reported microwave investigations'~
of the rotational spectra of HD"0 and Hz'60 in the
millimeter and submillimeter wavelength regions.
In the present paper we report measurements of ten
previously unobserved submillimeter wave transi-
tions of H2' 0 in the region from 1.0 to 0.4 mm.
Only two rotational lines of this isotopic species
have been previously observed, neither of which
falls in the submillimeter wave region. Among the
newly observed transitions are several low- J lines
which are of significance in the atmospheric absorp-
tion of electromagnetic radiation in the microwave
region. 3 The measurement of higher-frequency
transitions of Hz' 0 has been made possible by a
recent extension of the operating range of our tun-
able microwave spectrometers to a wavelength ot
0. 368 mm and an accompanying order-of-magnitude
improvement in sensitivity in the previously covered
subm ill imeter region. 4

Lines attributed to the isotopic species H~' 0

in natural abundance have been identified in the
rotation-vibration spectrum of water vapor in a
number of past infrared investigations. Rao and

his co-workers' have recorded several rotation-
vibration bands of the infrared spectrum of H~"0
in isotopically enriched samples. One of the two
previously observed microwave lines of H~' 0,
the 6, ,-5» transition measured by Powell and
Johnson, 7 occurs in the centimeter wave region;
the other, the 3, 3 2p p transition reported by
Steenbeckeliers and Bellet, occurs in the milli-
meter wave region.

RESULTS

Submillimeter wave energy for this investigation
was produced by a klystron-driven crystal har-
monic multiplier and detected by an InSb photo-
conducting detector' operated at 1.6 K. Accurate
measurements of the klystron frequency were made
with a frequency multiplication chain referenced to
WWVB. Typically, a klystron oscillating in the
50-GHz region was used as the fundamental source.


