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Scattering of Intense Light by a Two-Level System
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A general expression is found for the Green's function of a two-level system interacting
with a classical monochromatic field of arbitrary frequency and intensity. The Green's function
is first used to calculate the transition probability from the lower to the upper state as a
function of the frequency and intensity of the field and a comparison of the results is made
with experiment. It is then used to study the problem of scattering. It is found that the
spectrum of the scattered radiation consists of a line at the frequency of the field (Rayleigh
line) and two satellites symmetrically displaced from the Rayleigh line by an amount depending
both on the intensity and frequency of the field. In addition there are emissions at three,
five, etc. , times the frequency of the field, and accompanying satellites. The cross sec-
tions for the production of the Rayleigh line and its satellites, and for the third-harmonic
line and its satellites have been calculated for a range of values of the frequency and intensity
of the incident field.

I. INTRODUCTION

A theory for the scattering of radiation by an
atomic system, valid for arbitrary intensity and
frequency of the incident field, has not been worked
out to our knowledge. At low intensity and for
off-resonance eases a low-order perturbation cal-
culation of the cross section is adequate because
the initial wave function is not substantially changed
by the application of the field. ' However, at high
intensity, and particularly near resonance, the
wave function may change greatly in a time com-
parable to the emission time for a photon because
of rapid transitions induced by the field; as a re-
sult the cross section for scattering and even the
spectrum of the scattered radiation is considerably
different from the low-order perturbation theory
prediction. The present-day availability of in-
tense radiation fields produced by pulsed lasers
makes it imperative to reexamine the problem of
scattering if comparison with possible experiments
is to be made.

Because an exact treatment of the problem ap-
pears impractical, one is reduced to making some
simplifying assumptions. The primary one adopted
here is that only two states of the atom are ef-
fective in its interaction with the radiation: That
is, the atom is replaced by a two-level system
endowed with an electric dipole moment. Further-
more, the energy levels are considered sharp,
all relaxation processes being ignored. Apart
from these two assumptions the problem of scat-
tering is solved essentially exactly.

%'e start by calculating the nonrelativistic
Green's-function operator for a two-level system
interacting with a classical monochromatic field.
This is accomplished by summing the perturbation
series completely. The result, valid for arbitrary
frequency and intensity of the incident field, is
expressed in terms of continued fractions similar
to those found by Autler and Townes in their study
of the dynamic Stark effect. The system is then
coupled to a quantized radiation field and the prob-
ability for the spontaneous emission of a photon is
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evaluated. From this probability the scattering
cross section is obtained, correct to all orders
in the classical field strength. In addition the al-
lowed values of the frequency of the scattered
photons are determined.

It is found that the spectrum of the scattered
radiation consists of the Rayleigh line plus satel-
lites symmetrically displaced from the Rayleigh
line by an amount depending on both the intensity
and the frequency co, of the classical field. In
addition lines are found at 3&„5+„etc.; each
of these lines is also accompanied by satellites.
The reason for this structure is apparent when
one examines the form of the square of the Green's
function. For example, at resonance and at low
intensities, the incident field causes the system
to oscillate periodically between the lower and the
upper state with a frequency 2&„where ~, is pro-
portional to the matrix element of the interaction
potential. Since the emission of a photon takes
place primarily when the system is in the upper
state, one sees that the amplitude for emission
oscillates periodically with time and this causes
sidebands to appear on the Rayleigh line. When
the field is intense, however, the oscillation be-
bveen the lower and the upper state is no longer
periodic at a single frequency but components at
frequencies 2~„+2~„4~„+2&„etc., are also
present. This permits scattering at odd multiples
of ~, and at corresponding satellite frequencies.

The problem of scattering by a two-level system
has already been treated inpartby other authors. 3 ~

Meyer, 6 for example, has evaluated the cross sec-
tion for the Rayleigh line and the odd harmonic

lines over a wide range of conditions, but has not
considered the satellites. Qn the other hand,
Strouds investigates the spectrum of the scattered
radiation near the Rayleigh line for the resonance
case only, and does not work out the cross section.
A comparison of our results with previous work
will be made wherever possible.

In addition to solving the scattering problem,
knowledge of the Green's-function operator makes
it possible to calculate the transition probability
between the two states under conditions of strong
excitation. The calculations are compared with
the results of an experiment of Margerie and
Brosselv who measured, as a function of energy-
level spacing, the average population of one state
of a two-level system immersed in a radio-fre-
quency field. There is over-all agreement be-
tween the theoretical and experimental results.
They both exhibit, for example, three-photon ab-
sorption and the Bloch-Siegert' effect.

II. GREEN'S-FUNCTION OPERATOR

A. Theoretical Background

All the properties of a two-level system inter-
acting with a classical monochromatic field may
be deduced from its Green's-function operator.
This operator satisfies the equation

)H, +V(t) N„G-'(t-tp)=-lb(t-t, ), (2. 1)
8

where Ho is the unperturbed Hamiltonian and V(t)
is the interaction potential. Of the various pos-
sible ways to solve (2. 1), we choose the pertur-
bation-expansion approach using the formula

G'(t —t()) =G(')(t —t())+ h f dt' Go(t —t')V(t') G(')(t' —t())

+h ff dt'dt" Go(t —t')V(t')Gp(t' —t")V(t")G'(t" —t )+ ' (2. 2)

where G p(t —tp) is the zeroth-order Green's-func-
tion operator

e5 cd1(g-gp)

G o(t —to) = —lim d((),
p+ 2'F „401 g

x(~a) {a~e-'" "-'p'+ ~b) (b ~8-*"o"-'") . (2. 3)

In (2. 3), the lower and upper eigenstates of the
unperturbed system, [a) and Ib), of eigenenergies
h~, and Iso„have been introduced. In what fol-
lows it is understood that the Green's-function
operator has the form

G'(t —t )=G (t tp)+Gbo(t tp)+G o(t to)

+G,.(t- t,), (2.4)

where the operators G &(t —(tp) are proportional to
li) (j l, with i and j each equal to either a or b.
We call G„and Gb» G„and G„, , "diagonal" and

r

"off-diagonal" contributions, respectively, to the
Green's-function operator.

It is assumed that the interaction of the system
with the external field E(r, t) takes place through
the electric dipole moment d. We hence write for
the interaction potential

v(t)=-d. E(t)

d . &~g(&( (u„tao ) @-((~&tw )) (2. 5)

tt(e((tll)l, (+Id ) ~ e ((4) pt+dl ))
C (2. 6)

where (()) is an arbitrary phase angle and e is the
polarization vector. The further assumption that
the matrix element of the dipole moment d, b is
real, permits the nonvanishing matrix elements
of the interaction potential to be written

{a
~
V(t)

~
b) = {b I V(t)

~
a)
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where the frequency (d„given by the formula

&u, = d„eE/5 (2. 7)

characterizes the strength of the interaction. It
will frequently be convenient in the sequel to
normalize other frequencies in the problem to , .

A general term in the perturbation expansion
for G' will be proportional to a contour integral of
a product of factors of the type (&~+n&u~ —i&) ',

((u~+(u~ —(u, +m&u —ie) ~, and (u, e"'"&'o~' .Re-
ferring to a description of the perturbation series
using diagrams, the former two factors would be
identified with propagators and the latter factors
with vertex contributions. The integers n and m
indicate the number of photons absorbed above
the corresponding propagator. For example, the
second-order contribution to G„ is the following
sum of four terms:

1
~ gftog (t 5 0~

G" (t —to) = —~a) (a~ e "'" 'o
2

d~q

~2 g~ 2(co pt 0+/ )

Xi
( (&g+ ~g~ —~~ —i&)(~g —2(d„—i&) ((dg+ &dg —(d„—iC)((a)g —it)

&2 -$2(~ „t 0+y )

+
(&q+ ~h, + ~„. —i&)(~, —i&) (&u, + &u~+ u&„ie)-(~, + 2~„—ia)

where &, = „—+, . These four terms are repre-
sented by diagrams in Fig. 1.

Each term in the perturbation expansion contains
a factor of the type e'"'"»'0' ' corresponding to a
diagram in which there is a net emission of N
photons. The contribution to G' corresponding to
a definite value of N will be indicated by the sym-
bol G'N'

To discuss the general term in the perturbation
!

expansion we introduce the following notation for
propagators: Thesymbol [n, n+1], n odd, stands
for

(&|+ Ryg +s~~
—i& )[(0g + ('a 2 1)(d ~

—i& ]

and the symbol [m] stands for (a&, +&a„+m&u„-ie)
If m is odd and (&0~+m~„—ie) if m is even. The
general product of propagators, to be found in G,'~'

may be written

~ ~ ~ (2 9)

where the order of perturbation equals

2(m~+m~+ms+. +n, +n~+n8+ ~ ~ ~ )

The propagators in (2. 9) have been paired in the

way shown to stress the fact that when (&u&+ ~„,
+n~„—it) ' occurs then [co, +(n+1) ~„—ic] ' also
occurs. They have furthermore been ordered in
the way shown because propagator pairs in a dia-
gram such as [1, 0] ', [1, 2] ' or [1, 2] ', [3, 2] ' can
be exchanged giving rise to a distinct diagram with
the same over-all propagator. This decomposition
of a general diagram into commuting propagator
pairs permits the application of combinatorial
analysis to determine the number of times X a
given set of propagators appears in the perturba-
tion series~0

m, +m2-1l m2+m, —1 m, +m4-1
mg j m3 m4

m q+nq ( nq+n2 —1 !n2+n3 —1

(2. 10)

We obtain the total propagator I' for G,', ' by sum-
ming the product XT over all values of the integers
m&, m2, etc. By repetitive use of the expression

z( "" )e= ( ), ~xi s l2. u)

this sum can be performed, resulting in the con-
tinued fraction

Q 0

b -I

Q 2

FIG. 1. Second-order diagrams contributing to G~.
The letters a and 5 refer to the state of the two-level
system, and the numbers refer to the integers & and m
in the propagators ((d&+gw~ -i e) ' and (~&+ cu&, +mes„
-i e) ', vrhere g is even and ng is odd.
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[2]-
[3]-".

[-1]-
[-2]-

(2. 12)

Before expressing the Green's-function operator
G,', ' in terms of (2. 12) one must account for the
fact that associated with every vertex is the prod-
uct &d, e&("~'o'~ ' (or its complex conjugate). The
factor &, is taken care of introducing the new
variables )l = &u,/&o, and )l' = (o&, +o)„)/&u„and the

parameter « = &d„/o)„ into the perturbation ex-
pansion. The exponential part results simply in
an over-all factor in G' ' equal to e'"'"&'o '. In
the case considered at the moment N equals zero.
%e hence obtain

G(o)
I ) ( I

&u~(-t to) -d~elcugn(t (o)~(o-)(
CC 2~ C (2. 12)

f 1
I&'rI —p —(&'—

~ ~ ~

—3p, —jc—

Qff-diagonal contributions to 6 are deduced in a similar way. For example, the total propagator of
0,",' has the form

(
1

) '(m, +m, —
1) (

1 )"I(I,+I, —1&

(
1. 'I s

a+n& ~ 1 'I "& &n~+nq-1

~ ~
1 1 1

T- 1& -
I.
- 2& - I'- s& - )

6,&' may hence be written as follows:

G(l)
I )(f

~

(~~(s (o) -e(c(oz -+(o)oI d~ &ur~o(( to) ~(D(~-)
2m. C

with

1 1 1
C ~ ~~ ~

I

~

~
~

~ ~ ~ ~

~
~ ~ ~ ~

I~ ~q' —p. —ge — q —2 p, —g& — g' —3p, —gc—

(2. 16)

B. Complete Green's-Function Operator

The preceding analysis can be readily extended

to include contributions to the Green's function for
any value of N. The complete Green's-function
operators equal

G (f f )-
I )( Ie-«, ( - o II d& (~c«(-(o& g zo P(»(q)

4 g a~oO

Oo

0 (f f ) Ig)(h I
e &lit@ (( (o) -dye-&togo(( (o) g pae+ly (sl+-1&()))

ga oo

(2. 18)

where I'= e""f"0'~ ', and where the continued fractions satisfy the following recurrence relations:
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F (()n)(~) 1 1 1 . . . F (Rnnl)(~)
I )) v an i( —i e — )) ' + (an + I)p, —it — )) w (an + 2) p, —i t—

upper sign n&0, lower signn&0
2. 19

F (()inl )(~)
( 1 1 1 F ())n)(~)

~~ II'v (ni+1)II —II — II+ (2ii+2)II —I~ — O'I: (ni+$)II —ii — )
upper sign n& 0, lower sign n& 0

The sum over n in (2. 18) corresponds to summing
over processes involving the net emission or ab-
sorption of 2n or (2m+1) photons. The operators
G» and Gb, are obtained from G„and G,b simply
by exchanging a and I& everywhere (including the
variable )I'). In two cases the Green's-function
operators (2. 18) take on a simple analytic form as
we now show.

1. Limiting Case ub, =0

In the limiting case that ~„ tends to zero the con-
tinued fractions appearing in the Green's-function

I

operators (2. 16j may be expressed in terms of
known functions. In fact, using well-known prop-
erties of Bessel functions, ~~ one finds that the con-
tinued fraction E,'"' with &b, = 0, equals

F(N)( ) ( )&)( 7( .
~ ( (ne)/ n+N(all ) ~(n (n)/ ii(2/0)

sin[v()l —ie)/0]
(a. ao)

This result permits the operators themselves to be
expressed in analytic form. Introducing the above
formula into (2. 18) and performing the contour in-
tegrals over g we obtain the following expressions:

G«= —i
l a)(ale '"' ' 'o Z„Z' J'2„(- (4/p) sin[ —,'&u (f —to)])exp{in[v+ &u„(t —to)]] B(t —to)

(a. 21)
G, (, =il a)(t&l 8 '"n" 'O'Q„ I' "' J2„,)(- (4/p) sin[ —,'e (f —to)]}exp{i(n+—,')[v+ (d (f —to)]& B(f —f,)

where B(t —to) is the Heaviside step function. The
operators G» and G», are obtained from (2. 21) ex-
changing a with b. The Green's-function operator
G' derived from (2. 21) satisfies the defining equa-
tion (2. 1); this verifies that the procedure of ex-
pressing the sum of the perturbation series by con-
tinued fractions is valid. The case ~b, =0 is of
limited application in scattering problems, but it
arises in the study of dynamical Stark splitting of
a doubly degenerate level.

2. Low-Intensity Near-Resonance Case

At sufficiently low intensity the frequency &u,

may be considered small compared to both „and
&u», and the quantities p, and (&= &u»/&u, are much
greater than unity. Furthermore, near resonance
the quantity (& —p, ~ may be assumed much smaller
than 6+ p. Under these circumstances the con-
tinued fractions can be terminated at an early
stage without much error. Also, only those con-
tributions to G'with %equal to 0, +1, and —1, need
be considered. The Green's-function operators
can hence be approximated by the following ex-
pressions:

1

q —i& —1/()t + (& —p —i&)l
s)(&

l

e- inn(0 (0& -d~ (Innn(t (o&-1
aa

271 (2. 22a)

G, (,
= —la)(t& l

e '"'" 'o'
d)& e'"n"" 'o'1 I" 1

2w . II+II —li —ii II —ii —I/(II+II —Ii —ii) ) (2. 22b)

Expressions for G» arid Gb, are obtained from
(2. 22) by exchanging a with f&, changing the sign of
& and p, , and replacing I'with its complex con-
jugate.

Ne will require the poles and residues of the
propagators in the above Green's functions. In-
troducing the quantity p = & —p, , the poles of G„
are located at

(~lo, ~1, 0)=-,'[1+y(y'+4) '/'] . (2. 24)

It(af&
l
o, ~1, 1) =+ (y'+4)-"' (a. as)

The notation introduced here for the pole location
and the residue will be explained in detail later.
The propagator in G, b has poles at the same place
as the propagator in G; however, the residues
are different:

I 0, )=g[ y+(y +4) ]+i~

and the corresponding residues are

(2. 23)
In the case of G,b and Gb, the quantities correspond-
ing to those listed above are



134. R. GUSH AND H. P. GUSH

P', „=—,'[y~ (y'+4)"']+i&,
R(bb

~
0, + 1, 0) = —,'(1+7(l + 4) ' ]

R(ba
~
0, + 1, —1)= + (y + 4)

(2. 26a)

(2. 26b)

(2. 26c)

Using the above results it follows that the prob-
ability to find the system in the state ~ b) having
started at time to in the state !a) equals

W~, = 4(y~+ 4) ~ sin [-,
' ~,(y + 4)~ ~ 2(t —to) ] . (2. 27)

This is the same result as that obtained from the
rotating-wave approximation which means that
the approximations made at the beginning of this
section are equivalent to those made in the rotat-
ing-wave analysis.

Before proceeding to discuss the poles and res-
idues of the exact Green's function we would like
to make the following remark. Because the sys-
tem under consideration has an explicitly time-
dependent Hamiltonian, it does not possess sta-
tionary states and energy eigenvalues in the usual
sense. However, in certain circumstances the
system behaves as if it possessed an energy-level
spectrum. The latter may be obtained in an evi-
dent way from the poles of the Green's function.
In the weak-field case, using (2. 23) and (2. 26a),
one finds for the spectrum

(&s)v=f~a+~2(~ha ~u)+ ~4(~ha ~i) +~c] 01
(2. 28)

(&54= t~h —2(~ha —~l )+ h(~is ~l ) + ~C ]

At resonance the energy spectrum consists of two
doublets located at (&u, + ~,)h and (~~+ ~, )K. These
doublets may be considered to arise from the dy-
namic Stark effect; their location is the same as
that given by Townes and Schawlow, ~~ who used a
different type of analysis. The above energy-
level structure makes it very plausible that radia-
tion emitted by a two-level system illuminated by
a field resonant with it should consist of a com-
ponent at frequency „and satellite components
at frequencies w, + 2, . This guess is confirmed
by a detailed calculation to be discussed later.

3. Poles of Exact Green's-Function Operator

The behavior of the continued fractions in the
exact Green's-function operators (2. 18) was in-
vestigated numerically using a digital computer
because analytic treatment did not seem feasible.
Since the continued fractions appear in a contour
integral their important properties are the pole
locations and the residues at the poles. The ap-
proximate location of two poles (2. 23) was already
known analytically. These locations were taken
as initial values in an iterative procedure which
converged to the true pole locations. It was found
that in addition to the two poles mentioned the con-
tinued fractions have poles separated from these

P' = --,'y+ &K+2m p, ,

P ~=~y+Qf+2~p,
(2. 29)

0
-CX

i +i

(a)

-I +] -I +l

(b)

FIG. 2. (a) Pole locations along the g axis of the con-
tinued fractions occurring in G~ and G. The indices
~ and n label the poles. (b) The pole locations of G&&

and G& for the same values of p, and y as used in (a).

by 2n p, , n being a negative or positive integer.
However, the residues become rapidly smaller
with increasing n and at the highest intensity con-
sidered it was adequate to take into account a total
of 14 poles. For the same reason the maximum
value of IN j taken into account was 6. In the
analysis the continued fraction was terminated at
a certain level; the lowest level which it was nec-
essary to include was determined empirically so
that the addition of another level made no signifi-
cant change in the pole locations and the residues.
The required depth in the continued fraction was
a function of the intensity, being greater the higher
the intensity.

The computer program was verified in two ways:
The first was to check that in the case ~~=0 the
residues computed from the continued fractions
agreed with those evaluated using the analytic ex-
pression (2. 20). The second was to sum the res-
idues over all poles taken into consideration for
a given N: For IN) & 0 one obtained zero, and for
N= 0 one obtained unity. This is a necessary con-
dition that at time t = go no transition has taken
place.

All the poles of the continued fractions can, in
fact, be found from the location of one of them.
If a pole is located, say at p~, then the others are
located at exactly p~+2np and —p~-y+2np, where
n is a positive or negative integer and where y
= (&u„—&u„)/&u, . The pole locations of G„and G,~

are tl. ; same, and those of G» and G„are obtained
from them by reversing the sign. A typical set of
pole locations is shown in Fig. 2 from which we
see that these may be expressed by the following
formulas:
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IO

tion of the Schrodinger equation.
Using the notation introduced in (2. 29) for the

pole locations the Green's-function operators
(2. 18) may be expressed as a sum over simple
poles in the following way:

P
m, a(

-10

1 („,„(, , ) g R(ij Im, n, P)I'~

The symbol R(ij Im, n, P) stands for the residue of
the continued fraction F(n'(g) at the pole P', . In
(2. 30), the indices i and j can each be either a or
b. We note that if i =j, P must be even, and if
ioj, p is odd. This form of the Green's-function
operator will be used in subsequent calculations.

Ix
IO

I

20
L)

30

FIG. 3. Pole locations of G, as a function of 6 for the
case @=10.

The superscripts a and b mean that one is refer-
ring to poles of G„or G», respectively, whereas
the subscript m is a positive or negative integer,
and n can have the values +1 only. The quantity
0, which must be determined numerically, depends
on both p, and p. At low intensity there are only
two poles of importance; in the resonance con-
dition they are located at g= +1. We choose ar-
bitrarily L equal to unity and assign to the pole at
&=1 the suffixes m=0, 0. =1, and to the pole at
g= —1 the suffixes m=0, n= —1. [These conven-
tions have been used in (2. 23) and (2. 26a). j This
labeling follows the poles even though they shift
when off-resonance and high-intensity conditions
prevail.

The location of the poles of G„as a function of
8 = &u~/(d, is shown in Fig. 3 for (((= 10 and in Fig.
4 for p. = 2, corresponding to two values of the in-
tensity of the classical field. We note that the

pole location curves never cross as ~~ is varied
for a fixed ~„. However, the poles approach one
another very closely at regions of resonance when
(u~= (2n+ 1)(d„, n integral: care must be taken
not to jump unwittingly from one curve to another
in the numerical analysis. If Figs. 3 and 4 are
compared with Fig. 1 af the article by Meyer (a
relativistic field-theoretical treatment of the scat-
tering problem), it will be immediately recognized
that his parameter h is equivalent to the pole lo-
cation of the Green's function. Similarly, a com-
parison with the work of Autler and Townes~ shows
that the pole locations are equivalent to the allowed
values of a parameter X introduced in a trial solu-

III. MARGERIE-BROSSEL EXPERIMENT

The Green's-function operator can be used to
calculate the probability that a two-level system,
suddenly immersed in an oscillating field, makes
a transition from the lower to the upper state.
This probability equals

w,.= l(bio'(f-t, )la&l'

Z I'R(balm, n, p) e~(i~, F.'.(f —f,)) I'.
m~e ~8

(3.1)
At low intensity, only for two poles do the residues
appearing in (3.1) have appreciable values and one
obtains the sinusoidal variation of 5'~, with time
already expressed in Eq. (2. 27). At high intensity
many other poles contribute, with the result that
higher-frequency components are added to the main
sinusoidal pattern. Such patterns have already
been calculated by Salzman, ' who numerically in-
tegrated the Schrodinger equation for a two-level

Pa
m, a(

I I li

4 6
8

FIG. 4. Pole locations of G as a function of g for the
case p, =2.
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H

0.5
(b)

A'
ba

w /u
ba

FIG. 5. Results of the experiment of Margerie and
Brossel Qef. 7) reproduced from their Fig. 2. The
symbols S, M, and W stand for strong medium and weak
field strength H&, respectively. The level spacing is
proportional to Ho. (b) The calculated probability W~
as a function of the level spacing for three different
values of the quantity p.

cannot be included in our model: a component of
the oscillating field along the direction of Ho. This
additional field has the effect of modulating the
level spacing and permitting transitions not allowed
in our case.

In Fig. 5(a), are shown the experimental results
taken at three different radio-frequency powers.
In Fig. 5(b), are shown the calculated spectra, the
intensities being chosen empirically to obtain the
best agreement with the three curves of Fig. 5(a).
The experimental curves show a broad main reso-
nance plus two narrower resonances, one of which
occurs as a result of two-photon absorption, the
other being due to three-photon absorption. The
calculated curve shows the main resonance plus the
three photon absorption peak only. The two-photon
absorption process occurs experimentally because,
as mentioned previously there is a component of
the exciting field parallel to Ho. Neglecting this
discrepancy there is good over-all agreement be-
tween the observed and calculated spectra. The
location and width of the three-photon absorption
peak are the same in the observed and calculated
spectra corresponding to the two higher intensities.
However, in the lowest intensity case the peak was
missed experimentally presumably due to the very
small width. The three-photon absorption peak is
shifted in frequency from the location ~b, = 3~„by
the Bloch-Siegert effect. From the amount of the
shift it would be possible in principle to deduce the
transition dipole moment, were it not known al-
ready from other considerations.

IV. CROSS SECTION FOR SCATTERING

system with a sinusoidal perturbation.
The average probability that a system is in the

upper state I b) having started at an uncertain time
in state I a) is equal to the time-independent part
of (3. 1):

Wg, = Z R(ba
~

m, o., P)
m, o, 8

(3. 2)

An interesting comparison of this formula can be
made with an experiment of Margerie and Brossel.'
Atoms of sodium in a uniform static magnetic field
Ho were prepared in a definite m state of an excited
level by absorption of polarized optical radiation.
A radio-frequency field H &

of fixed frequency pro-
moted transitions to an adjacent state of quantum
number (m+ 1). The intensity of the emitted light
of a particular polarization, proportional to the
population of this state, was measured as a func-
tion of the strength of the static magnetic field,
that is, as a function of the level spacing. Because
this experiment may be rather closely described
in terms of a two-level system, the signal intensity
may be compared to W b, . However, one detail

The two-level system is now coupled to a quan-
tized field via the electric dipole moment. Since
we are interested in photon emission the effective
part of the interaction Hamiltonian may be written

i(2P)-s/3Z~d ~ e &us/abate (4. 1)

where & specifies a field mode of frequency &„and
momentum &, and e), is the polarization vector. b~~

is the creation operator for the field and V the
quantization volume. We choose units so that c =I
=1.

This interaction potential introduces a change in
the Green's-function operator equal to

(4. 2)

where we have chosen as zero-order Green's func-
tions the exact Green's function for the two-level
system in the classical field. The amplitude for
emission of a photon may, be deduced from &G.

The probability that the system starting at time
to in state [l ) is at time t in state ii) having emit-
ted a photon of type & equals
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(2~ 1/2
S„l'=

I

"- Z d„e„Z Z(ij map)It(kf m'~'P') I"
S»» m, ....a'

em& 2~. lp.'.+p'. .—(I/&. ) (~.&
—~.—P~„)](&-&0))

smB~»~pea pm'a'+(I/~») (&»g —&s P~—„)](I—to)j r

( )

which we have obtained from (4. 2) using the ex-
plicit form for G' given in (2. 30).

%'e will be interested in deducing from lS&, ) a
cross section for scattering which is independent
of the time. This means that only those terms of

IS&, I obeying the following restrictions are of in-
terest:

p'. -p' .+(Ii~.)(~,~-P~„)

=p';.-p'.-.-+(I/~. ) (~& &
P"—~.), (4. 4a)

p'. +p";. - (I/& .) (~,» P~-,)

p srNss+p tNmNmI (I/4)») (M» tf P Q) ) s (4 4b)

P+ P'= P '+ P", (4. 4c)
where m", . .. , P»', k' are additional indices intro-
duced by the square in (4. 3). The relevant part of
IS„t' hence equals

= 2y (d» e„) (d„g g g It(ijl mup)II(kf
I
m ra P )It(ij

I
m o, P )It(k Ilm or P )

gwa g'sa'

sin g ~ pmo -Q s~e+ 1 (d (dg, g
—(d„- (d t —to 4. 5)

~s = &6(pan pm'I')+ ~»&

Introducing the expressions (2. 29) for the pole lo-
cations into (4.6) (and taking into account the fact
that if i=k, P must be odd, and if i4k, P mustbe
even), we see that the possible frequencies for

(4. 6)

In (4. 5), the meaning of the symbol 5 is that sum-
mations are carried out over only those values of
the indices m, o, , p"', for which the restrictions
(4. 4) are satisfied.

For large times f —to, the last factor in (4. 5)
acts like a & function in the variable &„. There
are hence contributions to the cross section only
over small ranges of ~„centered on

spontaneous emission are

3+„, 5&~, .. . , etc. ,
(4. 7)

~„=~„~20~, , 3~„+24~, , 5~„+20~, , ..., etc.

That is, the spectrum of the scattered light con-
sists of the Rayleigh line at &„=~, accompanied
by bvo satellites symmetrically displaced to higher
and lower frequency, plus lines and accompanying
satellites at the odd harmonics 3~~, 5~„, etc. ~'

Yf it is assumed that the system starts in state
la), and we are not interested in the final state,
the cross section for scattering at one of the al-
lowed values of w„equals

rr(ra„)= -, S'rr( —,(~~S..~~'r ~S„('))

=&. ~ ~ ~ I&(sjlm&P»(elm'~'P') I~(~j'Im"~"P")It(k'elm "~"P-)
g 0A g' 0A'

+It(kj lmosp)It(kalm'&'P')&(bj'Im'&'P")It(k'~1 m" o P )], (4. 6)

where
W(d ~Kg p

s4»
(2 )SI i

d I~» (da»' e»)

and I=E /2' is the intensity of the classical field.
The meaning of the symbol P' is that not only is the
sum over m, a, . . . , P'", restricted by the condi-
tions (4. 4) but also by the condition (4. 6) where &u„

has the desired value. The quantity dA„ in (4. 9) is
an element of solid angle into which the photon is

t

emitted.
An analytic expression for o (ru„) may be obtained

in the low-intensity case introducing the residues
(2. 24), (2. 25), (2. 26b), and (2. Nc) into(4. 8) and

applying the restrictions (4.4). We obtain for the
cross sections of the Rayleigh line and its two
satellites

o(~„=&u„) =A„(y~+4) ',
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4) /M

FIG. 7. (a) Quantity 0/A. „for the
third-harmonic line at ~„=3~„,
for the case S=2. (b) o/A„ for
the satellite at frequency „=3&~
—2co~f. (c) Frequencies of scat-
tering for the case p, =2. The
Rayleigh and the third-harmonic
frequencies are shown by solid
lines. Dashed and dot-dashed
lines indicate the frequency of
satellite lines.

(c)

yield a value for the transition dipole moment.
Cross sections were also computed using resi-

dues obta, ined from the numerical analysis of the
continued fractions. Four values of p, were chos-
en: 1000, 100, 10, and 2. For the case of p. =1000
the result was indistinguishable from Fig. 6(a).
For p, = 100, 10, and 2, the results are shown in
Figs. 6(b)-6(d), respectively. ~6 Comparison of
Figs. 6(a) and 6(b) show that although there are dif-
ferences in the cross sections for the satellites,
these differences are small and one may conclude
that for p, ~100.the analytic form for the cross sec-
tion may be used. However, for p. & 100 the analyt-
ic results are quite inadequate to describe the scat-
tering cross section.

The value of p, reached in a practical experiment
depends of course on the system chosen. If one
works in the optical region of the spectrum then
p, mould probably be greater than about 50. The
latter corresponds to light from a ruby laser
slightly focused to obtain a power of 10'c W/cma
and to a transition dipole moment of 5& 10-&8 esu
cm. Higher power levels, although desirable from
the point of view of producing nonlinear effects,
might easily result in a breakdomn of the system
studied. Experiments in the domain p, - 2 will
probably require the use of high-power lasers in
the infrared.

Whereas for low intensity (p& 100) the shape of
the cross section for the Rayleigh line as a func-
tion of (~~ —~„)/&u, is nearly Lorentzian, this is

no longer the case for p. &10. The curve is skemed
and furthermore shows a dip near w„= 3~„. This
dip is very sharp for p, = 10 but more obvious for
p, = 2. In the latter case one also sees a dip near
~~, = 5~„. These dips are due to sc-attering taking
place predominantly at frequencies near ~„=3+,
and 5(d ~.

The cross section for scattering at ~„=~, is
identical with that of Meyer for the tmo cases p.
= 10 and p. = 2 (z = 0.1 and 0. 5, respectively, in his
Fig. 2). This shows the equivalence of our two
substantially different approaches to this problem.
As pointed out previously he makes no mention of
the satellites.

The cross section for scattering at ~„=3~„ is
shown in Fig. 7(a) for the case p = 2 only. For
lower intensity cases the width of the cross-sec-
tion curve becomes rapidly smaller as has already
been indicated by Meyer. 6 It is approximately
equal to the width of the three-photon absorption
feature in S"„, examples of mhich are shown in
Fig. 5. The cross section for scattering at „
=3~„—2&v, k is shown in Fig. V(b). The satellite
at ~„=3~„+2~, g has a relatively small cross sec-
tion and is not plotted. The peak in all these cross
sections occurs at a frequency ~~ smaller than
3+„. This shift in the frequency of the resonance
is similar to the Bloch-Siegert effect already men-
tioned in connection with the experiment of Mar-
gerie and Brossel.

The frequencies of the scattered radiation for
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the case @=2 are plotted as a function of & in Fig.
V(c). It is evident that the spectrum in the high-
intensity case is quite complex, consisting of
many lines of which the exact frequency and inten-
sity depends strongly on &u„. For example, it
should be noticed that the satellite of the Rayleigh
line at frequency ~„=„+2~, g, and the satellite
of the fifth harmonic at frequency 5~„—2', g, lie
close in frequency to the third-harmonic line at
~„=3w„, when ~„is near Sw~. This means that
the spectrum of the scattered radiation in the re-
gion „= S~„will consist of a close triplet. Since
the cross sections and frequencies are strongly
intensity dependent it is difficult to make a general
statement about the spectrum; for each value of p.

a separate calculation would be required.
In conclusion one may remark that the study of

light scattered from an intense monochromatic
source by 'a two-level system (or by an atomic sys-
tem which approximates a two-level system) should
show many interesting nonlinear effects such as
the appearance of satellites on the Rayleigh line
and harmonic generation. The measurement of
these effects would yield information on the tran-
sition dipole moment of the system.
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