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A general theory of the saturated-absorption phenomenon in a two-level atomic system is
developed, in which the phase relationships between the oscillating atomic dipoles as well as
the population differences between energy levels are taken into account. The absorbing gas-
eous medium considered in this theory is subjected to irradiation by a quasi-running-wave
composed of a strong pump field and a weak probe field propagating in opposite directions. Some new
interesting results, not predicted by the so-called hole-burning or rate-equation model, are
obtained. In particular, the probe-field-transmission peak line shape is found to be marked-
ly different from what is expected according to the rate equations. For finite Doppler widths
and a strong saturating pump field, absorption of the probe field can even change sign, and
amplification of this field can actually occur. All these features are explained by a close in-
spection of the evolution of each atomic ensemble of given velocity. Detailed comparison with
similar phenomena already observed in rf experiments is presented and permits us to clarify
the new predicted effects.

INTRODUCTION

Resolution in optical spectroscopy of gases has
long been limited by the Doppler effect, which gives
to each line a relative width Dv„jv=10 ~. The re-
cently appeared saturated-absorption technique'
can lead to a substantial improvement in this re-
spect. By making use of the nonlinear response
characteristic of an atomic system to strong elec-
tromagnetic waves, one can essentially select for
observation only those atoms which have a zero
axial velocity. The absorption spectrum of the
sample then consists in a Doppler-broadened line
with a narrow dip of width &v„appearing on its cen-
ter. This dip, which is closely related to the Lamb
dip appearing on the output of gas lasers as the
cavity is tuned across the emission line, can be
orders of magnitude narrower than the Doppler
width &v&. The technique is already being used in
spectroscopy and for laser -frequency-stabilization
purposes. '

Such a saturated-absorption dip (or transmission
peak) appears when two counterrunning waves are
allowed to propagate in the absorption cell. To ac-
count for the appearance of the peak, the so-called
"hole-burning model" has been often used. ' For
atoms with velocity v, the two waves at frequency
o in the laboratory frame appear as having two

different frequencies &, = & —k ~ v and ~ = co+a ~ v,
where k is the wave vector (A. = ~/c). The hole-

burning (or rate-equations) model amounts to say-
ing that one of the counterruning waves saturates
the class of atoms which have the right axial veloc-
ity. The transparency of the medium to the second
wave, which is at a different frequency in the atom-
ic frame, is not affected by the first except when

the two frequencies happen to coincide in the atomic
frame, that is when R ~ v = 0 (atoms with zero axial
velocity). The saturation of the atoms by the first
wave then causes an increase in the transparency
of the medium relative to the second wave.

Although it correctly predicts the appearance of
a transmission peak, the above explanation remains
qualitative, since it deals only with population
changes and neglects the fact that the atomic dipoles
which absorb one wave are coherently driven by the
other, In particular, it is well known that irradia-
tion of an atomic system by a strong electromagnet-
ic wave not only affects the populations of the vari-
ous states but can also modify appreciably the
atomic eigenstates, occasioning level shifts or dy-
namic Stark-splitting effects' in the atomic system.
Furthermore, when two waves simultaneously cou-
ple with the atomic system, nonlinear effects such
as Raman or multiple-photon processes may also
occur. Allthese phenomena, which are disregarded
in the "hole-burning" model, may become rather
important if at least one of the counterrunning waves
has a large intensity and have, thus, to be accounted
for in an accurate theory of saturated absorption.
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A case of particular interest for the study of
these effects is the quasi-running-wave situation
corresponding to the irradiation of the medium by
a strong saturating field (the so-called pump field)
and a weak-counterrunning probe field tuned at the
same frequency which explores the medium satu-
rated by the first one. Such a situation is in fact
practically realized in many saturated-absorption
experiments and has already been theoretically
considered in a recent publication where the in-
adequacies of the hole-burning model have been
pointed out.

The purpose of this paper is to develop a..complete
theory of saturated absorption in the quasi-running-
wave situation, which stands as an independent
treatment of the subject matter. ' This theory gen-
eralizes the results obtained in the above-mentioned
publication and leads to the prediction of some new
original effects.

As is done in Ref. 8 and in various other publica-
tions dealing with gas-lasers theories, ' "the
gaseous active medium under consideration in this
paper is an ensemble of two-level atoms of molecules
described by its density matrix, and the evolution
of the atomic dipoles, as well as that of the levels
populations, is explicitly considered. The electro-
magnetic (em) waves to which the atomic system
is coupled are described classically. To account
for the quasi-running-wave situation of interest
here, the effect of the strong field on the medium
is dealt with exactly, whatever its intensity, while
the interaction with the probe is described in a
perturbative way. However, instead of limiting the
perturbation treatment to first order in probe am-
plitude as is done in Ref. 8, we present a formal-
ism which allows an iterative calculation of the
atomic response to any desired order in probe
strength, and perform explicitly the calculation up
to second order, which yields the determination of
several quantities of physical interest.

The probe-absorption line shape is obtained as a
result of the calculation carried up to first order.
The line shape is found to be markedly different
from what is predicted by rate equations. While
the hole-burning model leads to a complete satura-
tion of the probe absorption for large pump-field
intensities, it is shown as in Ref. 8, that in the
case of a large Doppler width the medium can in
fact never become completely transparent to the
probe wave.

In addition to this effect, some new results not
discussed before are also put into evidence. When
the Doppler width is only a few times the homo-
geneous width and the pump field is strong enough,
we show that the absorption may on the contrary
be fully saturated and that the probe-absorption
coefficient can even change sign. The medium
then exhibits amplification on the return wave,

which may seem a rather strange and peculiar ef-
fect since there is no population inversion in the
two-level atomic system.

In fact we will show that the probe amplification
is essentially obtained in this case at the expense
of the pump field which experiences a further at-
tenuation when the probe is turned on. The rele-
vant energy balance is easily obtained from our
perturbative calculation carried up to second order.
This calculation also allows the determination of
the population difference saturated by the two
waves. A "fine structure" in the center of the pop-
ulation difference versus velocity curve is pre-
dicted, which provides an interesting link with
similar effects already discussed in high-intensity
laser theories. " "

All these phenomena are explained by a close in-
spection of the evolution of each atomic ensemble
of given axial velocity o. Level-splitting effects
and nonlinear processes occurring in the atomic
rest frame are thoroughly described in order to
stress the incompletion of the hole-burning model.
Detailed comparison with similar well-known ef-
fects already observed in rf experiments are pre-
sented and permit us to clarify the new predicted
phenomena.

The outline of the paper will be as follows: We
will first derive the general equations of motion of
the atomic system (Sec. I) and study the general
form of their solution (Sec. II) which can be ex-
panded in Fourier series along the spatial harmon-
ics nk of the wave vector. In Sec. III, we will re-
late some of the Fourier coefficients thus obtained
to the physical quantities of interest for our satu-
rated-absorption problem and will then explicitly
calculate these coefficients in Sec. IV. We will
thus be in a position to study in detail the absorp-
tion of the probe field for each atomic ensemble of
given velocity (Sec. V). Then, after integration
over the velocity distribution, we will study the
saturated-absorption line shape itself (Sec. VI).
We will consider in Sec. VII the reaction of the
probe field on the pump field and atomic medium.
In an Appendix, we will finally extend the theory to
the case of a probe field whose frequency is differ-
ent from that of the pump field.

I. EQUATIONS OF MOTION OF THE ATOMIC SYSTEM

A. Description of Atomic System

We consider an ensemble of atoms (or molecules)
with two energy levels a and b separated by an en-
ergy interval E, —E, = K&uo (Fig. l) and assume that
radiative transitions are possible between these
two levels (we will be specifically interested in the
response of the atoms to em fields quasiresonant
with the atomic frequency ~o and can then disregard
all other energy states of the system). Such an
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o

where

W(v) = (w'"e„) 'e " '"~

Two energy levels a and b between which
saturated absorption takes place. The levels have a res-
onance transition frequency &do and are given phenomeno-
logical decay constants p, and p&, whereas the dipole mo-
ment between them is damped at a rate p~. The excita-
tion rates of these states are described by the quantities
A., and A.& defined in Eq. (4).

&Q(z, t))= f &Q(z, t, v))dv,

&~(t)) = 1,'&~(z, t)&dz,

(2)

where I is the length of the absorbing cell.
The atoms me are considering are subjected to

relaxation processes which can be phenomenologi-
cally accounted for by damping constants. We will
suppose that levels a and b decay with rate con-
stants y, and y~, whereas the atomic dipole moment
decays at a rate y„. Moreover, we will assume
that some excitation mechanism populates levels a
and b at rates ~, and A& per unit time and unit vol-
ume element dzdv of phase space. The exact value
of all these constants depends of course on the na-
ture of the processes involved (spontaneous emis-
sion, atomic collisions. . . ). For sake of simplic-
ity, we will consider here that they do not depend
on z and t. We will also consider y„y„and y, &

as velocity independent; on the other hand, the ex-
citation rates X, and A& will be assumed to be of the
form

ensemble is conveniently described by a 2&& 2 density
matrix p in which the diagonal elements account for
the populations of the two levels, and the nondiagonal
element is proportional to the atomic dipole mo-
ment. The em fields of interest to us will be those
of plane waves propagating along the z direction.
The corresponding perturbation "seen" by a given
atom then depends on g and t but also, due to the
Doppler effect, on its axial velocity v.

It is thus convenient to define first a density ma-
trix p(z, t, e) describing the ensemble-averaged
properties of atoms passing at point g, at time t,
with axial velocity v. Once the evolution of
p(z, t, v) is known, the value of any observable Q
attached to the atoms in the volume element of
phase space under consideration can be calculated
by the usual formula

&Q(z, t, v)) = Tr[p(z, t, v)q],
where, if necessary, values of Q averaged upon
velocity and position can be obtained from

is the normalized velocity distribution with a most
probable velocity v„= (2kz T/M)'~z at temperature T.

The variation with time of the density-matrix
elements under the action of excitation and relaxa-
tion processes is then given by

(
"d- (z, t, v) =&,(v) -y,p„(z, t, v),dt

(d" (z, t, v) =X,(v)-y, p„(z, t, e),
e+r

( (z, t, v)~ =-y,sp, a(z, t, e).
]e+r

(6)

Let us emphasize that with our assumptions the
relaxation processes affect only the internal state
of the atoms without changing their velocity; the
Maxwellian velocity distribution at thermal equilib-
rium is ensured by the form chosen for the excita-
tion constants X,. The population difference
reached under the only action of excitation and re-
laxation process [dp/dt= 0 in Eq. (6)) is indeed
given by

[p..(z, t, v) p, (z, -t, e)], =(A. /y. A, /y. )-&(v)

mhere

No ——A, /y, —A~ /yq

=A, W(v),

(6)

is the total population difference at equilibrium per
unit length of the cell.

B. Evolution in Presence of Electromagnetic Fields

We now assume that the system described above
is subjected to two electromagnetic waves of the
same angular frequency cu = ck propagating in oppo-
site directions along the z axis and polarized along
the x direction. We will write them in the form

E, = e, cos(&ut —kz),
E = 6 cos((dt+kz)

(9)

One of the fields (&,) may be strong enough to
saturate the medium, whereas the other (e ) will
always be considered as a weak perturbation. (The
latter field may for instance be created by a reflec-
tion of the strong field on a weakly reflecting mirror
perpendicular to the z axis. ) Let us notice that the
assumed expressions (9) for the em fields imply
that their amplitudes do not depend on the penetra-
tion depth z (weak-absorption limit).

The Hamiltonian of the two-level system subjected
to this perturbation can be written

~, (v)=A, lt(v) (t=s, k), X=X0-2E,—PE (la)
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where Xo is the free-atom Hamiltonian

k(do I'1 0
2 IO-1

The total time variation of the density matrix is
obtained by adding the contributions due to excita-
tion, relaxation, and the action of the em fields:

and I' is the x component of the atomic dipole mo-
ment. This operator has only off-diagonal matrix
elements which can always be written as

where 6' is a real number. We then have

~(z, I)= '
~

-6'&, cos((dt-kz)k(o, (1 0 0 1
2 (0 -1

- (Pc cos((dt+kz) . (13)
0 1

We will restrict ourselves to the case where ~
is very close to the atomic frequency ~0, which
enables us to make the rotating-wave approxima-
tion. Then we have

—
@

[&(z, t), p(z, I, v)]. (15)

In this equation the operator d/dt is a total time
derivative along the path of the atoms moving with
velocity v, so that one has d/dt= s/st+ v s/sz. ~e
then obtain for the evolution of the density matrix
p(z, I, v) the so-called "hydrodynamic equation"
already used by various authors '"'4

(
8 8 d—+v —p(z, t, v) = —p(z, &, v)
et 88 ' ' dt

--[X(z, i), p(z, f, v)],

-J(cot+kc)

(14)
which gives for the different matrix elements

(
e e'|

~ 6 ~+ I f (cot-kc) -f(cot-kg) x ~ +~- f f (cot+km) -f(cot+km)i+v
&

&IP„=X, -y, P —t
2@ (P be Psae &

2@ sP~qe Psce I 0~z] (1Va)

+V p ~ y +
~ d

(
i(ddt ka) --f(tdt ka)) ~ . --

( f a&tdka) -f(tdt+ka)) (1Vb)

~ +~+ -f(tot-kg) ~ +~- -f (cvt+kC)+V P b
= ( y+abt(dtO)pab t

@ (Paa Pbb) e t
2@ (Paa Pbb)e (1Vc)

II. GENERAL FORM OF SOLUTION

We want to obtain the steady-state solution of
Eq. (1V) in the quasi-running-wave situation corre-
sponding to a strong saturating field e, and a weak
probe field & . A natural procedure, already used
for the study of nonlinear susceptibilities, ' con-
sists in first looking for a solution in the presence
of only the strong field E, and then considering the
action of the weak field & as a perturbation which
will slightly modify the solution thus obtained. We
will, therefore, first recall the well-known results
concerning the response of an atomic system to a
running wave.

A. Solution in Running-Wave Case

In the case when only & is present, the system
(1V) can be solved exactly. Looking for a steady-
state solution of the form

Pbb(Zi it V) = &bo (V)

( I ) P(0)( )
-f ru -ka

one obtains, by inserting these expressions into
Eq. (1V), a system of algebraic equations which
can be solved to give

Poo'(v, (0, I) = i' N-0W(v)

yab —i((do —(tt + kv) (19 )
ykb+ ((do —(d+kv) +I y, b

'

(v, (dt, I)—= Qao (v, M, I) —+bo (vq R~ I)

g 2y2
= N0R'(v) 1 —

0
yak+ ((dto —(t&+kv) +I yab

(19b)
In these equations, we have introduced the quantity

p„(z, t, v)=c(.o'(v), Iz= 0' e, /0 yy, „, (2o)
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(d -kv = (do, (22)

which corresponds to the matching between the
atomic frequency coo and the Doppler-shifted fre-
quency ~, =~ -kv of the traveling wave in the atom
rest frame Equ. ation (19b) shows that the popula-
tion difference as a function of velocity follows the
Maxwellian distribution H'(v), with an additional
minimum when the resonance condition (22) is ful-
filled. The minimum corresponds to the "hole"
burnt into the population distribution by the travel-
ing wave. The resonant variation of expressions
(19a) and (19b) has a width y„at low-field ampli-
tudes and exhibits a saturation broadening when the
intensity I of the traveling wave is increased.

l,et us emphasize that the solutions (19) are exact
ones (within the validity of the rotating-wave ap-
proximation) and hold for an arbitrarily large value
of the saturation parameter I . Such an exact solu-
tion ean be derived for the special case of a pure
traveling wave because each class of atoms with a
given velocity v "sees" a single frequency co, = ~
-kv in its rest frame; one is thus led for this class
of atoms to solve the problem of a two-level system
subjected to a quasiresonant monochromatic excita-
tion, which is formally equivalent to the well-known

solvable problem of the magnetic resonance in a
spin one-half system. 6

If one now takes into account the weak probe field
running in the opposite direction, it is clear that

each class of atoms will experience two electro-
magnetic perturbations whose frequencies co, = cu

-kv and ~ = ~+kv will generally be different in the
atom rest frame. This corresponds to a much

more intricate problem which was already studied
in the case of a standing wave excitation (e = &.)
whereas we intend here to solve it in the quasi-
running-wave situation (e «e, ).

B. Perturbation Expansion of General Solution

In order to calculate the perturbation caused by
the weak E field to the "zero-order solution" ob-
tained above, we are led to expand the density ma-
trix p(z, t, v) in increasing powers of e:

which is a dimensionless number proportional to
the intensity of the traveling wave E,. In this ex-
pression, a new decay rate z is defined by

2/y=1/y, +1/y, .
Formulas (19) have a simple and well-known inter-
pretation. Equation (19a) shows that the dipole
moment of atoms with velocity v exhibits a resonant
variation when the frequency ~ of the traveling
wave obeys the relation

(P& ~ (P) 8 tffac
paa ~n +an (24a)

If we insert the formal development (23) into the

system (17) and indentify in both sides of the equa-
tions terms containing the same powers of E, we

will get a set of recurrent linear differential equa-
tions coupling p"' to p' ', p' ' to p"', and generally
p'~' to p'~ ". From the knowledge of p' ' determined
above, we are thus able to calculate the solution to
any desired order.

Before performing this iteration we can make
some remarks upon the general form of the solution
which will considerably simplify the calculations.
Let us first notice that all off-diagonal components

p,', ' will have a time variation proportional to e '"',
whereas all diagonal components p„~' and p,'~~' will
be time independent. This result holds for p = 0 as
is easily seen in Eq. (19). It can be proved to any
order p by direct substitution in Eq. (1V) of a solu-
tion of the form

p, b (z, t, v) = p„(z, v ) e '"',

p&&(z, t, v) = p&&(z, v) (j =a, b),
which gives time-independent equations for p, (,(z, v)
and p&&(z, v). This simple time dependence results
from the fact that we have neglected, by making the
rotating-wave approximation, all off -resonant com-
ponents of the em field which would have generated
higher-order time-varying harmonics in the atomic
density matrix.

Another important property of the steady-state
solution of Eq. (1V) follows from the iterative re-
lationship between diagonal and off-diagonal matrix
elements of p. The population difference p„-p»,
which is spatially uniform to zero order, couples
in Eq. (17c) with the em field to give terms in p„
varying in space as e" '; these react back through

Eq. (1Va) and (1Vb) on p„and p» to create compo-
nents varying as e' '" and so on. As a result the
density matrix is spatially modulated at all har-
monics qk of the wave vector, with only odd har-
monics appearing in the expansion of p„and only
even harmonics in the expansion of p„and p». As

was already noticed" these spatial modulations
correspond in the atom rest frame to temporal
modulations at frequencies qkv; these modulations
are induced through the coupling of the atoms with

the two waves running in opposite directions which
are "seen" as monochromatic perturbations with

frequencies ~, =co -kv and co =(d+kv.
%ith all these properties in mind, we may now

expand the general term p ~'(z, t, v) of the develop-
ment (23) in the following form:

p(z, t, v)= p'"(z, t, v)+p"'(z, t, v)~ + ~ ~ ~

(p& Q &(p& 2(nate
Ay —

n ~n ~ (24b)

+p(~'(z, t, v)e~+ ~ ~ ~ . (23)
(p) ~ Z(p) 2 ggag -f(~t-As)

pab ~n t"n (24c)
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~(P&'k ~(P& (~ s k) (26a)

p(P&e p
t&P&

(26b)

Inserting (24) and (23) in (17) and taking account
of (25), we finally get a set of linear algebraic rela-
tions which allow the recurrent calculation of all
Fourier coefficients:

(y, + 2inkv)o, '„'= —i '(P„'P' —P'P-'*)

—i
~@

(p."1"—p".:1'*), (26a)

(y, + 2inkv)o,"„'=i '- (p„'o'- p'P„'~)(p) ~+

tp (p(P-1 & p(P-1&g ) (26b)

[y„+i(0&0 —(u) + t (2n + I)kv]P„"& = —i '(o—,'„P—& —t&. „"„&)

A direct inspection of these equations valid for
P & 0 easily shows that the coefficients correspond-
ing to given orders P and +n are related only to
those of orders P —1 and an+1. As the zero-order
solution corresponds to P = 0 and n = 0, we see that
the only nonzero Fourier coefficients are those with
p and n of the same parity and ln ~

&p.
C. Connection with Previous Gas-Lasers Theories

We must emphasize that Eqs. (26) allow an exact
and explicit calculation of the atomic response to
any desired order in the weak-field amplitude E .
As we will see later on some examples, this cal-
culation consists in solving, to a given order, a
closed set of coupled linear algebraic equations.
We also notice that the solution is obtained as a
perturbation expansion in &, but that the effects
of the strong wave &, are taken into account ex-
actly, whatever its amplitude (or intensity f 0).
This follows from the choice of the zero-order
solution p 0&(z, t, v), in which the action of a, has
been exactly dealt with. In this sense the treat-
ment of the present paper differs by some impor-
tant respects from those given in previous studies
dealing with the Doppler effect in the presence of
counterrunning waves. In the first theory of gas
lasers, the relevant em field was a standing
wave (c,= e ), and the atomic response was de-
veloped in increasing powers of the common am-
plitude of both counterrunning waves. As a con-

p~~) ~ Q I ~P)e2 &nk e&& t-0 )
pea =~ni n e e

The Fourier coefficients u,'~', &,'~', P„'~', and P„' ~'

thus defined are functions of v, ~, and I which obey
the following relations corresponding to the Hermi-
tian character of p..

sequence of this perturbation treatment, valid re-
sults were obtained only for moderate field inten-
sities. On the other hand, more recent papers on
the theory of high-intensity gas lasers11 10 give
expressions for the response of the atomic medium
which are valid for any amplitude of both counter-
running waves. These expressions take the form
of a Fourier expansion along the various spatial
harmonics nk analogous to the one derived in this
paper. However, the important difference is that
the coefficients of these Fourier expansions are
not developed in increasing powers of one of the
em waves, since both fields are of the same am-
plitude. As a result, the Fourier coefficients de-
fined in these papers cannot be put in a closed ex-
plicit form and are calculated from the resolution
of an infinite set of coupled equations, so that (ex-
cept in special cases'0'17) only solutions in terms of
continued fractions can be obtained for them. Our
approach thus appears as intermediate between
those quoted above, being a semiperturbative treat-
ment dealing exactly with the strong wave and per-
turbatively with the weak one. This leads, as we
will see later on, to simpler calculations than those
developed in high-intensity lasers theories. Our
treatment nevertheless allows the prediction of very
important saturation effects induced by the pump
field, which is not the case for the theory presented
in the first Lamb paper. Qn the other hand, the
situation &,» e is, of course, only realizable out-
side the laser cavity itself.

III. PHYSICAL MEANING OF FOURIER COEFFICIENTS

Before giving the explicit form of the various
Fourier coefficients which are solutions of Eq. (26)
it is interesting to relate them to the different ob-
servables of the atomic medium. We will thus
give a physical significance to some of these co-
efficients, enabling us to limit the calculation to
the only terms of interest.

A. Atomic Polarization and Power Exchanged with
Electromagnetic Fields

The polarization corresponding to the ensemble
of atoms characterized by (z, t, v) is readily ob-
tained from Eqs. (1) and (24):

-iieet-kk&(p

(0&+ QQ i&P p(P&80inkk) ~C

(27)
the prime on the summation over n meaning that it
is restricted to I n I

» p with n and p of the same pari-
ty It is us.eful to introduce the components I', and
P of the polarization having, respectively, the
same spatio-temporal dependence as the pump and
probe fields, E, and E . One has

(z t v) (p e-i i(ot kk
&(p

(0& + -Q ~P p (P&) + c
P even& 0

(26a)
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p ( i ) )&8-i( ttt+ll I)( g tl p(tl))
podd& 0

(28b)
The linear and nonlinear susceptibilities relative

to & are clearly apparent in these equations.
These susceptibilities are linked to the absorption
and dispersion properties of the medium. We want
here to calculate the energy transfer between the
atomic medium and the two fields. If we call
G,(v, 0), I) and G (v, &0, I) the power per unit length
and per unit velocity interval gained by the atoms
with velocity v from the strong and weak field,
respectively, we have

(29)

where () indicates a time average (in which process
the 2 dependence also disappears). From (28) and
(29), one finds

G,(v, &0, I) = 0&ee. Im(pp(0&+ Z ~' p,"'), (3Oa)
p even &0

G (v, p&, i)=0&0'c Im( Z e~p'~1') .
p odd&0

(sob)

G(1)(v 0& I) ~(p ~21m p(1) (sl)

On the other hand, the power absorbed from the
strong saturating field in the absence of the weak
probe field is given by

We see that the power absorbed from the probe
field to lowest order is given by the simple formula

where the prime on the summation over n has the
same significance as before. The averaged pop-
ulation difference per unit length and unit velocity
interval is thus

In this expression, (2,'0' —(2Ip = N (v &t&, I) is the
population difference saturated by the strong field,
but in the absence of the weak field, given by Eq.
(19b). This population difference is modified when
the weak field is added, the lowest-order correc-
tion being

i)I(2&(v 0) I) 6 2((2 (2 & (2 (2
&) (37)

Here again, the total population difference per
unit length is obtained by integration over velocity.

It results from the above study that the Fourier
coefficients of physical interest are, up to second
order in e: p"' p' ' and &2' ' —&2' ' We will
calculate them explicitly in Sec. IV.

IV. EXPLICIT CALCULATION OF SOLUTION UP TO
SECOND ORDER

A. First-Order Solution: Linear Response to Weak Field

The linear response of the system to the probe
field c is obtained by solving E&is. (26) correspond-
ing to p= I, n=+ l. Owing to the Hermitian charac-
ter of p [see Eq. (25)], this set reduces to the fol-
lowing four linear equations for the coefficients
o(1) (2(1& p(1& and p(1).

gg p

G ~ (v, 0&, I) = 0& (p E ~ Im Pp (32) (r, + 2ikv ) &2,'I '+ i ~' (P1"—P'," ) = —i ~P,"', (38a)

The presence of the weak field brings in a correc-
tion term (r„+»& ) v&2(( i

2@ (P1 P-1 ) g@ PO (ssb)
G'2'(u (0 I) = 0&(i'c.c'Im p'2' (33)

The total power absorbed in ea,ch case is finally ob-
tained by integration of G(v, 0&, I) over all velocities

G,(0&, I) = f G,(v, 0&, I)dv . (34)

B. Population Difference Induced in Atomis System by
Electromagnetic Fields

The spatially modulated population difference be-
tween states a and b for atoms at point z with veloc-
ity v is readily obtained from Eq. (24):

i&I(2 v 0) I) o(0& (2&0&+ Q Ql &t)(o, (t)) (P&)2) e2s())t)

p&0 n

(36)

=——(&2 0
—oap ) ~

i~I (o) (o)
2S

(ssd)

In the right-hand side of these equations appears
the zero-order solution Pp and (2,'0' —n,'0' given by
E(ls. (19a) and (19b). The resolution of this sys-
tern, straightforward but tedious, gives the follow-
ing result for the susceptibility P'1':

[y„+i((up —
& +suv)]p,"&+i ' (&2(1&- &2(I&)=o,

(ssc)

[y t+2(&t&0 —0& —kv)] p 1 +1 (&2 1
—&21 +)

p", '(v, 0), I) = —i ((2,'0" —(2(00&) -2, " „[y„-i(&00—0& —)tv) Iy.,B(v, &0, I)], -21' b y b+ ~Ceo Cu —kVj
(s9)

where we have introduced the dimensionless quantity:

[y.,—i((up —0) —av)]([y., —i(0&0 —(u+ av)]-'+ [y,„+i(~0 —(0 —uv)]-'}
2f(v) +I2y„([y., —i(0&0 —(0+ slav) ] '+ [y.,+ i(0)0

—0& —av)] '] (4o)
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with

2 1
y (y, —2ikv) + (y~ —2ikv)

(41)

The other Fourier coefficients can readily be
determined from P ~~'. The quantity o,(~~& —o,~&',

which will be of interest in the second-order cal-
culation, is thus given by

(o) z(o)
(i) (1) +ao s oCt

~
—Q~(

[y,~
—i(&uo —&u —kv)]P '& '~ . (42)

(43a)

[y„+i((u &a+kv—)) P&o&+i '(o,'o"- o&,'o

(43b)

i(-n(,"- o.,',") . (43c)
2k

The right-hand sides of these equations contain the
first-order coefficients p'~~& and u(~~' —o~~' given by

B. Second-Order Solution: Quadratic Response to Weak Field

The solution to second order in c is obtained by
solving Eq. (26) with P=2. As we are interested
only in the coefficients poo' and o&(oo' —o'&oo&, we have
to solve these equations only for n =0. One then
gets the following system:

Eqs. (39) and (42). The solution of the system (43)
as a function of these quantities is straightforward.
In particular the coefficients po(o& and &&«oo& —oooo&

are linked by the following relation, obtained by
subtracting Eqs. (43a) and 43b):

o())) &(o& o ~+(p(2) p(2)g) i s (p(1& p(()e)

(44)
%e are now in possession of all the equations need-
ed to calculate the physical quantities of interest
G '~'(v, &u, I), G,'o'(v, o), I), and I&Io(v, &o, I) given by
Eqs. (31), (33), and (37). We are thus able to
proceed to the study of these quantities which will
provide a complete description of the main features
of saturated-absorption phenomena.

V. POWER ABSORBED ON PROBE FIELD AS FUNCTION OF
ATOMIC VELOCITY

In a saturated-absorption experiment, one is
essentially concerned with the total power absorbed
from the weak-return wave by the atomic medium.
This power is obtained by integrating the function
G (v, o), I) over the velocity distribution according
to Eq. (34). In order to get a deep insight into
the physical phenomena involved in saturated ab-
sorption we will, before performing this integration,
study first the function G.(v, &u, I) itself which rep-
resents the rate Of energy absorption by each en-
semble of atoms with a given axial velocity.

G (v, o&, I) is, to lowest order in e, given by the
relation (31) with P'~~' determined by Eq. (39). If
one replaces in this last equation u,'o' —a&o' by its
expression (19b), one readily gets

(d(P f g2 2 y2

~ah ~ y &&+ (o&o —(d +kv) +I y (, y &&+ o&o & kv)

(46)

with B(v, &u, I) defined by relation (40). This expres-
sion is the product of six bracketed quantities, the
physical meaning of which is quite clear. The first
one recalls that the power absorbed from the probe
field is merely proportional to the intensity a and
the frequency ~ of this field, as also to the square
of the atomic dipole moment and to the relaxation
time 1/y, (, of this dipole. The second factor rep-
resents the population difference obtained at equi-
librium when there is no light irradiation. It is a
negative quantity if there is no population inversion
in the medium, as is always the case in a saturated-
absorption experiment. The third factor simply
expresses that the rate of energy absorption by
atoms with a given axial velocity v is proportional
to the number of atoms corresponding to this ve-

locity in the Maxwellian distribution. The fourth
factor expresses that the population distribution
described by the two preceding terms is reduced
by the saturation of the medium under the action
of the pump field. As already noticed above, this
factor describes the hole burnt in the Mamvellian
distribution at kv = co —~o by the saturating field.
The fifth factor is a Lorentzian term resonant when
the condition kv = ~o —~ is fulfilled. This relation
corresponds to the matching between the atomic
eigenfrequency +o and the Doppler-shifted frequency
of the probe field propagating in the reverse direc-
tion, co =w+kv. In other terms, the fifth factor
in Eq. (45) merely expresses the resonant condi-
tion for the absorption of the probe field by atoms
with axial velocity v.
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The product of the five quantities described
above, which we call G„~'(v, ~, I), corresponds ex-
actly to the result given for the absorption of ener-
gy by the rate-equations (or "hole-burning") model;
in this model indeed, the power absorbed from the
probe field is merely proportional to the population
difference in the presence of the strong saturating
field [product of second to fourth factor in Eq. (45)]
and to the Lorentzian absorption function centered
at the Doppler-shifted atomic frequency [fifth factor
in Eq. (45)]. It is thus the sixth term of Eq. (45),
namely I —I3ReB(v, cu, I), which takes into account
all the phase relationships between atomic dipoles
that are disregarded in the simple rate-equation
formalism and which hence contains all the differ-
ence between the hole-burning model and ours.
In order to emphasize this point, we will write Eq.
(45) in the more compact form

G '(v, cu, I) = G„'~'(v, u, I)[l —IaReB(~, &u, I)j, (46)

and before studying the variations of G."(v, &u, I)
we will recall briefly the shape of the absorption
curves versus velocity given by the rate-equations
model.

A. Results Derived from Hole-Burning Model

Figure 2 shows the function G„"'(v, ~, I)/W(v)
for different values of the frequency detuning coo-co.
This function has been plotted for a value I = 39 of the
saturation parameter. The curves have been nor-
malized by setting equal to unity the positive prod-
uct of the two first factors in Eq. (45) (let us recall
that Np is negative), so that they represent essen-
tially the product of the Lorentz-shaped functions
centered at kv = a (urp —&u) in the fourth and fifth
brackets of this equation. In order to put into evi-
dence the effect of saturation by the pump field, we
have also plotted in dotted lines, for each value of
the detuning, the corresponding absorption curve
in the case of no pump field present (I = 0), that is
the simple Lorentzian function

yII [yII+ (&p —(0 —kV) ]

When the detuning &up —&u is important [Fig. 2(a)],
the absorption exhibits a strong resonance around
kv = ~o —(d. The resonance is then practically not
affected by saturation because the pump field &, in-
teracts essentially with atoms of opposite velocity
kv = —(&up —~) and does not appreciably perturb the
atoms coupled with the probe field [resonances
kv = (0p (0 and kv = —(&up —&u) are well resolved as
long as the detuning coo —cu is much larger than the
width y,„Iof the pump-field saturated resonance].
When coo —~ decreases and becomes of the order of
or smaller than y„I [Figs. 2(b) and 2(c)] the reso-
nance, always centered around kv= coo —cu, gets
smaller. This decrease comes from the fact that

the hole burnt by the pump field begins to overlap
the Lorentzian absorption curve of the probe field.
This effect becomes the most important when

~p —&u = 0 [Fig. 2(d)]. The resonance observed on
the absorption of the weak field is now centered at
kv = 0; it is then considerably attenuated by the
saturation of the same class of atoms under the
action of the pump field. We will now study how
these simple and well-known results are modified
when one describes correctly the coupling between
the atomic medium and the electromagnetic fields.

B. Absorption of Probe Field in Nonresonant Case (uo-F40):
Appearance of New Raman and Rayleigh Processes

Relative absorption
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FIG. 2. Probe absorption vs velocity obtained from
rate equations. Each solid curve represents the func-
tion t"„' ' (v, ~, I)/W (v) for a saturation parameter I
=30 and for. a given value of the detuning (~0 )/p, y.
The dotted curves. drawn for comparison, indicated for
the same values of the detuning the unsaturated absorp-
tion of the probe (I=0). The curves have been normal-
ized by setting equal to unity the maximum value of this
unsaturated absorption.

We have plotted on Fig. 3 the exact function
G "(v, &u, I)/W(v) given by Eq. (45) and normalized
as before. The curves have been plotted in the par-
ticular case' y, =y, =y„=y and for the same
saturation parameter I = 30 and detuning values
..uo —It) as was done in Fig. 2 for the ' hole-burning"
model. For important detuning [&up —v» y„I,
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2((u -kv) —(~+kv) = (uo . (47)

rt, —2ikv which appear in the expressions (40) and

(41) of &(v, &u, I) and f(v). Whereas the large
resonance centered at kv = coo —(o corresponds es-
sentially to the simple absorption of the probe pho-
ton by atoms of matched velocity, the new resonant
features observed on this curve can easily be un-
derstood as essentially nonlinear Raman and Ray-
leigh processes involving both pumps and probe
photons.

(a) The atoms may be excited from level k to a
by absorption of two photons of the pump field fol-
lowed by the stimulated reemission of one photon
of the probe field [see Fig. 4(a) which symbolizes
this process]. The following frequency-matching
relationship in the atom rest frame must then be
fulfilled:

s 1
I

= n —I 10 kv

&ab

Fig. 3(a)] we notice that the absorption of the probe
field exhibits again a strong resonance about the
value kv = wo —&u indicated by arrow 1 on Fig. 3(a).
This resonance is slightly shifted from the position
given by the hole-burning theory [compare with the
corresponding resonance on Fig. 2(a)]. This shift
can be understood as a light shift' induced on the
corresponding atoms by the strong nonresonant
pump field. As a new result, one can also observe
other resonant features in the curve corresponding
to atoms whose velocity lies near kv = ——', (~.~o —«&)

or kv =0. These resonances come from the energy
denominators y, &

—i(~&0 —.d+3kv) and y, —2ikv,

10 kv

&ab

FIG. 3. Probe absorption vs velocity obtained from
our complete model. The solid curves represent the
function G (v, (d, I)/8'(v); they are drawn (in the case
'Y, =7q ='Y,q =p) for the same saturation parameter and de-
tuning values as in Fig. 2 for the rate-equations model
and normalized in the same way. (a) Three resonant fea-
turesnearkv=~p kv= 3(p ~), andkv= 0 are1

indicated by arrows 1, 2, and 3. (b) and (c) show how

these features merge into each other to produce at res-
onance [Fig. 3(d)] a split line shape with two symmetric
amplifying zones for slowly moving atoms. In order to
make clearly apparent the new features of the curves,
the parts of interest have been magnified by a factor
of 10 in an insert above each curve. The dashed-line
curve in each insert gives, for comparison, the corre-
sponding probe absorption in the rate-equations model.

EO —kg =(8+k'g . (48)

This Rayleigh-type condition reduces to kv = 0, and

~~
u =a+tv

la&
ii

la&

u+-u- kv "o g ca)
lI ca)+

Ib.

(a) (b)

FIG. 4. Diagrams symbolizing the nonlinear processes
involved in saturated absorption far off resonance [(p-
)/p~q» 1j. (a) Representation of the Raman transition cor-
responding to the absorption of two pump photons at fre-
quency , = ~ -kv and the reemission of one probe pho-
ton at frequency =+kv. (b) Representation of the
"Rayleigh process" in which one photon of the probe is
emitted (or absorbed) while one pump photon is absorbed
(or emitted). Pump and probe photons are, respectively,

, symbolized by straight and wavy lines.

This "Raman-type" condition precisely reduces to
kv 3 (Q)Q (0) The corresponding resonance ob-
served on Fig. 3(a) (arrow 2) appears as a decrease
in the absorption, the function G "(v, &u, I) changing
its sign and taking negative values: As the process
described above is related to a stimulated emission
of light in the probe field, one understands that
negative absorption, that is in fact amplification,
may occur for the corresponding class of atoms.

(b) On the other hand, an atom may, without
changing its energy level, absorb one photon in one
of the fields and reemit another photon in the sec-
ond field [the corresponding processes are symbol-
ized on Fig. 4(b)]. The following frequency-match-
ing relationship must then be fulfilled in the atom
rest frame:
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we thus understand the advent of the new resonant
feature indicated by arrow 3 on Fig. 3(a). One
must notice that the probe-field photon may in this
process be either absorbed or emitted (while the
pump field photon is emitted or absorbed). The
calculation shows that the former process dominates
for kv slightly negative whereas the reverse is true
if kv is slightly positive. As a consequence, the
resonant feature observed near kg = 0 exhibits a
dispersionlike shape. We must also remark that
even for a strong saturating field (I =30), the non-
linear effects quoted above' are very small com-
pared to the large resonant "one-photon" effect
observed near kv = &uo —~, (in order to make these
effects clearly observable, we have magnified in
Fig. 3 by a factor of 10 the regions of interest ir.
the absorption curve) so that there is after all, in
the nonresonant case I ~0 —(d I &y„I, only small
quantitative discrepancies between curves of Figs.
2(a) and 3(a). However, if the frequency mismatch
coo-~ is decreased, the different resonances de-
scribed above will begin to overlap each other as
is shown in Figs. 3(b) and 3(c). Then the Raman
and Rayleigh processes will interfere with the one-
photon process, and it will become impossible to
separate any more all these processes from each
other. The exact computation of formula (45) shows
that the probe-field absorption curve then evolves
into a structure drastically different from the one
predicted by the hole-burning model.

C. Absorption of the Probe Field in the Resonant Case (no=a)

Figure 3(d) shows the absorption curve versus
velocity when frequency co is tuned on the atomic
resonance line (&u, = &u). Instead of observing one
simple strongly saturated-absorption resonance
curve centered at kv =0, as predicted by the hole-
burning model [see Fig. 2(d)], the absorption line
shape develops into a split resonant feature sym-
metric around kv = 0. For atoms whose Doppler

shift kn lies within a few natural widths around
zero, one furthermore observes a reversal of the
sign of the absorption, corresponding to a stimulated
emission on the probe field [see insert in Fig. 3(d)].
This amplification phenomenon is quite unexpected
since it occurs in a two-level atomic system not
subjected to population inversion. It is an effect
essentially due to the pump-field saturation of the
medium %hich appears, in the limit ~0= (d, as a
"memory" of the Raman and Rayleigh stimulated
emission processes described above in the non-
resonant case. One can in particular see on Figs.
3(b) and 3(c) how the absorption curve evolves con-
tinuously from a situation where the two resonant
features marked by arrows 2 and 3 are well re-
solved to a single structure where these resonances
merge into each other to produce two amplification
regions symmetric around kv = 0. These two re-
gions are separated from each other by a small
"absorption bump" corresponding to the axially
motionless atoms for which the amplification effect
never occurs.

We have plotted on Fig. 5 the same absorption
versus velocity curves at resonance, but for various
values of the saturation parameter I'. One can see
from direct inspection of these curves, that the

splitting of the two absorption peaks increases with

saturation power and is roughly proportional to the
pump-field amplitude I. On the other hand, the
amplification phenomenon just described above oc-
curs only for sufficiently large pump-field intensi-
ties (I'& 3). Let us also notice that the amplitude
of this emission feature, which is always rather
small compared to the absorption peaks, goes
through a maximum as the saturation parameter
increases and finally tends to zero when I becomes
very large.

All these new effects, which result from exact
computation of formula (45) may, at least qualitative-
ly, be understood if one makes reference to some

. 0.5 o- 0

Relative absorption

lf v

&ab

FIG. 5. Relative probe absorp-
tion vs velocity at resonance [(coo- &u/

y,g=0)]. Each curve is drawn for a
given value of the saturation param-
eter I2. The splitting of the reson-
ances is seen to be proportional to
I. The negative part of the curves
correspond to the amplification ef-
fect described in the text. This
phenomenon occurs only for strong-
en.ough saturation g &3). Its am-
plitude goes through a maximum when
I is increased and tends to zero when
saturation becomes very large. The
area of the negative part of the curve
is shown to decrease as IjI when I
tends to infinity. The curves are
drawn in the case p, =p&=p~&=p.
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iL gHp=-~
9

H)

a-ao 'I

9

Hp

to study the position of the probe-field absorption
lines, we will first analyze the motion of the spins
driven by the pump field by making use of the ro-
tating frame associated with H, [Fig. 6(b)]. In this
frame, the pump field becomes time independent
and the atoms experience a static effective field

a, = -g '[(Q, —Q)'+ Qts] '",

(c)

2Q)

2'Il (nc-n) +Qi
ao)a

ao

no(n
I

a'

ao

2 l(nc-n) +Qg

Q' = Qa[(Qs —Q) + Q, ]
'i (49)

where 0& is the amplitude of the pump field in fre-
quency units. Therefore, the spins will in such a
frame precess around H& at the Rabi nutation fre-
quency gH& [see Fig. 6(b)]. As a result, the global
evolution of the spins driven by the pump field may
be analyzed in the laboratory frame as a superposi-
tion of the precession of the rotating frame at fre-
quency 0 and of the Rabi flipping nutation. One
thus finds in the precession of the spins two Fourier
components at frequencies Q+[(Qc —Q) + Qt]
The probe k, (t) will consequently be absorbed when
its frequency 0 ' will coincide with one of these two
eigenfrequencies, that is when the resonant condition

FIG. 6. "Dynamic Stark splitting" explained in a two-
level system which is described as a spin(. (a) Static
field Ho and pump field H~ seen in the laboratory frame.
(b) Same fields in the rotating frame. The magnetic
field Hf is now time independent and the spins precess
around it. at frequency f(~0-~)"+& ]'~ (c), (d), and
(e) Spectrum of probe resonances at frequencies ~~' =~ +
f(~0-~)2+~~~] ~~ for different values of pump detuning.

well-known effects in radiofrequency spectroscopy
experiments.

D. Connection with rf Spectroscopy

It is mell known in rf spectroscopy that the irra-
diation of an atomic system with a saturating pump
field quasiresonant for a given transition drastically
changes the absorption spectrum of a weak probe
field tuned to a line sharing at least one common
level with the pump-field transition. The absorp-
tion line of the probe field is then generally split
into two lines whose frequency separation depends
upon the pump-field amplitude and frequency. This
effect, known as dynamic Stark splitting in micro-
wave spectroscopy, ~ is also observable and easily
understood in the case of magnetic resonance on a
tmo-level system. ~ Such a system can always be
described as a spin one-half immersed in a static
magnetic field H+ and irradiated by two rotating
magnetic fields H, (t) (pump field) and h, (f) (probe
field). The relative disposition of the static and

pump fields is shown on Fig. 6(a). The pump H&

(frequency Q) is rotating in a plane perpendicular
to Ho. Vfe will call 00= -gH~ the Larmor frequency
of the spins with a gyromagnetic ratio g. In order

~ = ~c —kv+(k'v'+Isyy„)'~ . (60)

If one remembers that is the Doppler-shifted

will be fulfilled. Vfhen the pump field is resonant
(Qc= Q), the two lines thus obtained are symmetric
about the frequency 00= 0, their splitting being
equal to 2Qt [see Fig. 6(c)]. When the pump field
is no longer resonant (Qst Q), the intensities of the
two lines become unequal. It is easy to understand
that the larger one is always the closer to Qo, as it
must of course continuously evolve into the reso-
nance line of the unperturbed spin system when the
detuning of the pump field 00 —0 becomes very
large. It is thus clear that the larger resonance of
the doublet is associated mith the plus sign in Eq.

~ (49) if Qs&Q [the shift of this resonance is then
positive, see Fig. 6(d)] whereas it is associated
with the minus sign in Eq. (49) if Qc & Q [the shift of
this larger resonance is then negative, see Fig.
6(e)].

Let us now return to our saturated-absorption
problem. In the rest frame of atoms with axial
velocity e, we are exactly in the situation described
above. The atomic system experiences a very
strong pump field at a Doppler-shifted frequency
~, =&u, —kv (we suppose again here that &o =&a,). This
strong pump field splits the atomic resonance ab-
sorption line, so that the probe field running in the
opposite direction becomes now resonant if its fre-
quency ~ is given in the atom rest frame by the
right-hand side of Eq. (49) in which one has to re-
place Oby ~,= ~o-ke, Ao —0 by ~o-~, =km, and

Qt by d e, /k =I (zy, ~)' . The resonance condition is
then in the atom rest frame:
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frequency 0+ kv of the weak return wave, one
finally gets

2k' = + (k v + I yy, t,) (51)

Etl. (51), with a plus sign in it, yields the posi-
tive kv solution

kt = I (-,' yy. ,)'", (52a)

which corresponds to the matching of the positive
probe-field Doppler shift (kv & 0) with the positive
shift associated to the larger resonance of the
Stark doublet [see Fig. 6(d) corresponding to a.

positive Qo —0 =kv value]. On the other hand,
Etl. (51) with a minus sign before the radical leads
to the negative solution

kv = —I (-,' yy„)"', (52b)

which corresponds to the matching of the negative
probe-field Doppler shift (kv &0) with the negative
shift associated again to the larger resonance of
the doublet [see Fig. 6(e) corresponding to a nega-
tive &s —0 = kv value].

We thus understand the existence in the absorp-
tion curve of two symmetric absorption peaks sep-
arated by a splitting proportional to I. In short,
the dynamic Stark splitting induced by the pump
field in the atomic rest frame reveals itself by a
splitting of the absorption curve versus velocity
for the weak probe field; the atoms which most
strongly absorb this probe field are those for which
the shift due to the Stark splitting is compensated
by the Doppler shift of the return wave. The
above description of the phenomenon, although
it explains well the gross features of the curves
in Fig. 5, is however not precise enough to ac-
count for the fine structure exhibited by the curves
for slowly moving atoms. One nevertheless under-
stands clearly that a deep decrease of the absorp-

tion must occur between the two peaks, which fol-
lows from the fact that the pump field not only
saturates the population difference for these atoms
but also "pushes" up and down the atomic eigen-
frequencies. This explains why the weak return
field is less absorbed by these classes of atoms
as would be the case if the atomic frequencies
were not modified by the Stark splitting [compare
for example the curves in solid and dashed lines
in the insert of Fig. 3(d), which give the absorp-
tion for slowly moving atoms in our calculation
as compared to the hole-burning model].

So far, we do not yet understand how it happens
that the absorption is so strongly saturated for
these slow atoms that they even amplify the probe
field. Another classical effect in rf spectroscopy,
the amplification by saturated absorption ' may
however be invoked in order to clarify this new
interesting phenomenon. This effect is related
to the absorption of an amplitude-modulated rf
field by an atomic two-level system. Let us con-
sider such an atomic medium attacked by an rf
field inducing transitions between the levels. We
have plotted on Fig. V(a) the characteristic curve
which represents the output intensity versus the
input rf intensity I~ sent on the medium. ~3 This
curve starts for weak rf power with a slope smaller
than unity, which merely expresses the fact that
a fraction of the incident power is absorbed in the
medium; for strong rf fields, on the other hand,
the characteristic slope becomes equal to unity,
which corresponds to the fact that any incremental
power sent on the medium is entirely transmitted
when saturation is reached. Suppose now that
the input field is amplitude modulated at a fre-
quency D. This modulation entails the appearance
of two symmetric sidebands at frequencies &+ &

and +- ~ in the spectrum of the rf field. If ~ is a

output

rf
intensity

(a)

ut 0,2

'
side bands

absorption

lf side bands
amplification

(b)

FIG. 7. Amplification by resonance
saturation. (a) Transmission characteristic
showing output vs input rf intensity for a
two-level resonant atomic system. The
characteristic slope, smaller than one for
weak input power, tends to unity when the
medium is saturated. If the signal is modu-
lated at not too large a frequency p, the
atoms can "follow, " and the modulation
depth in the linear asymptotic part of the
characteristic is shown to be fully restituted
at the output, whereas the carrier signal
undergoes some attenuation. This corre-
sponds to amplification of the sidebands
(from Ref. 23). (b) Curve showing the rela-
tive sidebands amplification or absorption
as a function of g for a value I2 = 3 of the
saturation parameter. The unsaturated
absorption of the system at resonance is
taken as unity (from Ref. 22).
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small-enough modulation frequency, the output
power can follow almost adiabatically the varia-
tions of the input field. It appears immediately,
in the saturation region of the characteristic, that
the output-modulation depth is about the same as
the input one, while the "carrier" amplitude is
somewhat reduced [see Fig. 7(a)j. In terms of
Fourier analysis, the relative enhancement of the
modulation depth results in an amplification of
both sidebands at frequencies + & and &- ~. We
must notice that this effect which has been experi-
mentally observed, occurs only in the case of
strong-enough saturation by the carrier field so
that the modulation takes place in the linear asymp-
totic part of the characteristic. On the other
hand, the frequency & has to be sufficiently small
for the atoms to be able to follow the modulation
of the field. When ~ becomes of the order of the
power-broadened linewidth y, P, the effect reverses
its sign and absorption actually occurs on the side-
bands. The sidebands amplification versus modu-
lation frequency 6 as it results from the calcula-
tion of Ref. 22 has been plotted on Fig. 7(b) for
a value I~= 3 of the saturation parameter. We
notice that the absorption in the wings presents two
resonant peaks for two symmetric values of D,

which are nothing but the dynamic Stark doublet
already described above.

Let us now come back to our optical problem.
The atoms with axial velocity v experience in their
rest frame the pump field at frequency , = 0 —kv.
The weak-return field at frequency = ()+ kv may
be considered as a sideband separated from the
carrier by the frequency 2kv. If this frequency is
small enough compared to the power-broadened
linewidth y, ~I, we understand that an amplification
process similar to the one described above can
take place. This phenomenon corresponds to the
negative part of the curves of Fig. 5. It is clear
that this effect ean occur only for strong-enough
saturation by the pump field and for sufficiently
small axial velocities. We must however notice
that the analogy mentioned here between the rf
amplification effect and the optical one is only
qualitative. ~4 In particular, the weak probe field
in the saturated-absorption experiment corre-
sponds to a unique sideband instead of two in the
rf experiment. Thus, the em field "seen" by each
atom of given velocity is not really an amplitude-
modulated one. This explains some discrepancies
between the features of the curves in Figs. 5 and
7(b). In particular, it may be shown from the
equations given in Ref. 22 that a unique sideband
is always attenuated if the mismatch frequency ~

with the pump carrier field is small compared to
y, ~ (slow modulation limit). This explains the
small bump in curves of Fig. 5 for @v=0 and the
fact that the motionless atoms always absorb the

probe field.

VI. TOTAL POWER ABSORBED FROM PROBE FIELD
AND SATURATED-ABSORPTION LINE SHAPE

We are now in a position to calculate the global
power G"' (~, I) absorbed from the probe field by
the atomic medium. The total absorption is ob-
tained [Eq. (34)j by integration over axial velocity
of the functions G"'(v, &, I)/W(v) plotted in Figs.
3 and 5 multiplied by the Maxwellian distribu-
tion W(v). This integration may be performed
with the use of the theorem of residues to yield
explicit formulas for the line shape. As expres-
sions obtained are very cumbersome, we will
not give them here and rather discuss the equiv-
alent results obtained by numerical integration
on a computer. We will first study the case of an
infinite Doppler width, which is the most relevant
one for saturated-absorption experiments. We
will then consider the case of finite Doppler width,
for which an interesting phenomenon of global
amplification on the return wave may occur.

A. Absorption in Infinite Doppler-Width Limit

In the limit of an infinitely broad Doppler dis-
tribution (kv„» y, ~I, y„), W(v) may be considered
as a constant and the power G" '(~, I) is merely
proportional to the areas under the curves of Figs.
3 and 5. We have plotted on Fig. 8 the function
G"'(&,I) versus the detuning (u —~o for the value
I = 1Q of the saturation parameter. This function
is normalized by setting equal to unity the un-
saturated absorption of the probe (Ia = 0). In dashed
lines is also represented the quantity G'„' '(&, I),
obtained in the same way from the rate-equations
theory [G'„"(&,I) may be shown to be a Lorentzian
function, contrary to G" '(~, I)]. We can clearly
see that the absorption of the probe field exhibits
on both curves a strong decrease when the em field
is tuned to the atomic frequency &0: This is the
well-known absorption- saturation phenomenon.
However, we observe also on the figure that the
saturation of the real absorption is less pro-
nounced than predicted by the simple hole-burn-
ing model. This may be readily understood by
comparison between the areas under the curves of
Figs. 3 and 2. The probe absorption, with no

pump field present, is merely proportional to the
area under the dotted curves of Fig. 2; it is in-
dependent from the detuning —&0 since we con-
sider for the present an infinitely broad Doppler
distribution. This area gives also the asymptotic
value of the probe absorption in the presence of
the pump, for large values of the detuning. For
= 0, the absorption is given by the area under
the solid line curve of Fig. 2(d) in the hole-burn-
ing model and by the area under the curve of Fig.
3(d) in our theory. These areas are both smaller
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Relative

Probe absorption

shows that rate equations are not too bad an ap-
proximation in this region.

B. Absorption for Finite Doppler Widths: Saturation of

Doppler Width and Possibility of Global Amplification
of Probe Field

..0.25

In the case of finite —and rather small —Doppler
widths, the saturation of the absorption may on the
contrary be stronger than predicted by rate equa-
tions, and the medium may even exhibit global
amplification on the return wave. Such a result
is obtained when the saturation of the medium by
the pump is so important that the side absorption
peaks of Fig. 5 are rejected outside the width of
the Maxwellian velocity distribution. In this case
of "Doppler-width saturation" corresponding to
the condition

I (yy„)"' » kv„, (53)

I I I I I I I I I a i i I

-1 0 1

FIG. 8. Probe absorption line shape for infinite Dop-
pler width. The solid curve gives the function G (, I)
for a value I2 =10 of the saturation parameter. The dashed
curve represents the corresponding line-shape function
G„"(~,I ) obtained in the hole-burning model. The dotted
line indicates the unsaturated absorption G ~)(~, 0), which

is constant in the infinite Doppler-width limit and whose
value is taken as unity. The curves are drawn in the
case ~a ~y ~ay

than the one under the dotted curve of Fig. 2, but
it appears immediately that the presence of the
two side peaks on the curve of Fig. 3(d) makes the
actual absorption larger than the one predicted
from the hole-burning theory; in other terms, at
resonance (~= &uo), the saturated medium absorbs
more than predicted by rate equations. This is
due to the fact that the saturating field which splits
the atomic eigenfrequencies enhances the absorp-
tion of the probe field for classes of atoms corre-
sponding to the wings of the velocity distribution,
and this effect tends to oppose the classical effect
of population saturation.

As a result, contrary to the predictions of rate
equations, the saturation of the absorption can
ne-'er be complete in the large-Doppler-width
limit. This fact has already been pointed out in
Ref. (8). On Fig. 9 we have plotted the relative de-
crease g of the absorption at the center of the res-
onance as a function of the saturation parameter.
The solid-line curve, corresponding to the exact
theory, tends asymptotically to a value of 62. 5%
for q, whereas the hole-burning model (dashed-
line curve) predicts a 100% limit for the absorp-
tion saturation. ' Nevertheless, the two curves are
close to each other for small values of I, which

most of the atoms within the Maxwellian velocity
distribution indeed amplify the return wave. This
effect is roughly proportional to the area of the
negative part in the curves of Fig. 5, which may
be shown to decrease as 1/I when I is very large.
The global-amplification effect will thus be the
most important in the pump-intensity range we will
define as moderately strong (I =10 to 100). Con-
dition (53) then shows that the Doppler width must
not be larger than a few times the homogeneous
width. As an example, Fig. 10 shows in solid line
the absorption function G"'(&,I) for I~=100 and

a most probable velocity v„given by kv„/y, ~=2. 2.
The scale is given by the dotted-line curve on the

~wee

r

10
I

50
2

FIG. 9. Relative contrast of the saturated-absorption
dip as a function of the saturation parameter, in the case
of infinite Doppler width. The solid curve represents
the function q(I ) =1—G '(~O, I)/G' '((d0, 0) which tends
asymptotically to g(+~) = 0. 625. The dashed curve
gives the corresponding contrast function in the hole-
burning model, which tends to unity for strong saturation.
The curves are plotted in the case pa=a&=pa&=p.
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exhibit a net positive gain for an em field at fre-
quency + propagating in the direction opposite to
the pump. Provided this gain overbalances the
cavity losses, a return wave may be generated in
the medium in this direction and eventually give
rise to a stable laser oscillation. It is however
obvious that the actual frequency of this oscilla-
tion mill not necessarily be equal to the frequency
& of the pump. The exact study of such a laser
emission thus implies the calculation of probe
amplification at a frequency & slightly different
from &. This problem is outlined in the Appendix.

VII. SATURATION EFFECTS INDUCED BY PROBE FIELD

FIG. 10. Probe absorption line shape for finite Dop-
pler width. The solid curve gives the function 6 "(&,I)
for a value I2 =100 of the saturation parameter and for
e Doppler width corresponding to @vga,~ =2. 2. Note the
negative absorption (amplification) for frequencies be-
tween ~0-6p, q and ~0+6',&. The dashed curve represents
the corresponding line shape in the hole-burning model.
No amplification is predicted by this model. The dotted
curve corresponds to the unsaturated absorption (I = 0)
for the same Doppler width, normalized to unity at re-
sonance. The curves are drawn in the case y, =p&=y, &

='y.

same figure which represents the unsaturated ab-
sorption of the probe (Is=0) for the same Doppler
width, normalized by setting equal to 1 the absorp-
tion at resonance (4&= &e). The amplification ef-
fect is observed within a range of frequencies
around +e with a relative amplitude of about 1%.
We have also drawn for comparison in dashed line
the curve which represents according to the hole-
burning model the absorption of the probe for the
same values of the parameters I~ and kv . Of
course, no amplification effect appears on this
last curve.

Let us also notice that condition (53) implies
that the radiative broadening of the resonance line
by the pump field is larger than the Doppler width.
It mould however be false to conclude that the Dop-
pl.er effect may be completely neglected in this
case and that we are then in a situation equivalent
to the one where the atoms are stationary (kv =0).
In such a situation indeed, the absorption of the
probe is merely equal to Gt" (0, +, I) which is al-
ways positive. Thus, the amplification effect de-
scribed above essentially occurs for an interme-
diate range of Doppler widths.

This effect could be used in order to generate a
unidirectional induced emission in a saturated-
absorbing medium. Suppose for example that the
pump field propagates along a given direction
through a cell placed into a ring laser structure
and containing an absorbing gas. If the pump-
field intensity satisfies Eq. (53), the medium may

We have so far studied in detail the first-order
response of the atomic system to the probe field,
which is directly related to the absorption of this
field by the medium. We will now briefly consider
the second-order response of the system to this
probe field which describes how the presence of
the weak return wave reacts back on the saturat-
ing pump field and on the atomic population differ-
ence. This will allow us to clarify in particular
a question unsolved by the first-order calculation
about the origin of the energy absorbed or emitted
on the probe field.

The physical second-order quantities of interest
are G+~(v, ~, I) and Ns(v, (u, I) given by Eqs. (33)
and (37), which represent, respectively, themodi-
fication of the energy absorbed on the pump field
and the change in the population difference under
the action of the probe field. Those quantities may
be exactly computed from Eqs. (43) and (44),
which give the coefficients n,'e& —n,'t' and Q '.
particular, if one replaces in (44) these coefficients
by their expressions as a function of G,' '(v, &u, I)
and N' '(v, a, I) obtained from (33) and (37), one
immediately gets the important relation

,'yh~N"'(v, ~, I—)= G"'(v, ~, I)+ G'."(v, ~, I),
(54)

which merely expresses the energy conservation
in the whole system "atomic medium + pump and

probe fields. " It is indeed clear that the left-hand
side of this equation represents the change, when
the probe field is turned on, of the transition rate
between atomic levels b and a times the energy
5 of this transition. This term thus corresponds
to the modification, due to the probe field, of the
energy absorption rate by atoms with velocity v.
It must hence be equal to the change in the global
power delivered to these atoms by the probe and

pump field, mhich is described by the right-hand
side of Eq. (54).

In order to understand how the energy is actually
exchanged between the three systems in interaction,
we have computed the functions G+'(v, &e, I)/W(v)
and N +'(v, ue, I)/W(v) in the resonant case &e
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attenuation when the probe field is turned on. For
k~ of the order of yI, on the other hand, we see
that the absorption peaks of the probe field corre-
spond to negative peaks in the G,' ' curve. This
means that the absorption of the pump field by the
corresponding atoms is somewhat reduced when
the probe is turned on. The energy delivered by
the probe field does not yet flow integrally within
the pump fieM, as we can notice that the amplitude
of the peaks in Fig. 11(a) are approximately twice
as large as those of Fig. 11(b). On Fig. 11(c) we
have represented to the same scale the function

2 y 8«tN '(v, cd(), I) +(6)

which is, according to Eq. (54), merely the sum of
the curves plotted in Fig. 11(a) and 11(b). We ob-
serve that the modification of the population differ-
ence is almost negligible for slowly moving atoms,
whereas it becomes more important on the wings of
the velocity distribution. As the atoms in this re-
gion absorb on the whole more em energy when the
probe field is turned on, we understand that a posi-
tive change of the population difference must then
occur. We have finally plotted on Fig. 11(d) the
cul ve

[N '(v, ~0, I)+N' '(q, «o, I)j/W(v)
FIG. 11. Response of the system to second order in

probe-field strength. (a) recalls for comparison the
probe absorption vs velocity curve already represented in
Fig. 8(d) for a value I =30 of the saturation. (b) gives
in the same conditions the second-order correction
6, '(v, (), I )/~(v) to the pump-field absorption. Note
that the amplification feature in the curve (a) corre-
sponds to an increased absorption of the pump in the curve
(b). (c) gives the second-order correction to the popula-
tion difference which is proportional to the sum of the
functions plotted on Figs. 11(a) and 11(b) [see Eq. (54) I.
(d) gives the total population difference versus velocity
under saturation by pump and probe fields for a value 12

=30 of the pump intensity and (P & /h yy, &
=1 of the probe

strength. The effect of the probe saturation may be seen
by comparison with the dashed curve which gives the popu-
lation difference when only the pump is present. The dif-
ferent curves of the figure are drawn in the case pa =a&

~ah

= . We have plotted on Fig. 11 the correspond-
ing curves for a value I~ =30 of the saturation
parameter (always in the case y, = y, = y„= y). On
Fig. 11(a), we have plotted again the probe-field
absorption curve G"'(v, ~O, I)/W(v) for compari-
son purposes. Figure 11(b) represents, to the
same scale, the change in the absorption rate of
the pump field. For slowly moving atoms, we can
see that the two curves G"'(e, coo, I) and G,' '(v, «&0, I)
take practically opposite values: This means that
the amplification of the probe field which takes
place in this region is essentially obtained at the
expense of the pump which experiences a further

which describes the total population difference un-
der the saturation by both pump and probe fields.
The curve is drawn for the same value I~= 30 as
before and for a value a'e /nyy„= 1 of the probe-
field amplitude. The dashed-line "urve corre-
sponds to the function

cV (v, ao, I)/W(v),

that is the Lorentzian hole-burnt by the pump field
alone. When the probe is added, the shape of the
hole (solid-line curve) is modified: Two symmetric
peaks appear near its top, which are related to the
global increase of em absorption by the correspond-
ing atoms due to the presence of the probe. Let us

emphasize that the shape thus obtained near the
maximum of the N(v) function is very similar to the
structure predicted by high-intensity gas-laser
theories ' "in the bottom of the population inver-
sion curve versus velocity. The oscillations which
develop in the bottom of this curve are related to
population-ringing effects occurring for slowly
moving atoms. The similar effect described in
this paper for saturated absorption is linked, as we
have shown above, to the dynamic Stark splitting
produced by the pump field in the atom rest frame.

CONCLUSION

We have given in this paper a detailed descrip-
tion of the saturated-absorption phenomenon in
the quasi-running-wave situation. We have put
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into evidence some new effects which may become
important for large values of the pump intensity
and which are not accounted for by rate-equations
theory. The most striking of these effects is the
possibility of amplification of the weak-probe
wave. These new phenomena essentially follow
from the fact that the pump field not only saturates
the populations but also coherently drives the
atomic dipoles of the medium, which in particular
entails the modification of the atomic eigenfre-
quencies. From this point of view, the present
study appears as a special case of the general
problem dealing with the interaction between a
weak monochromatic wave and an atomic system
whose eigenstates have been renormalized by the
coupling with a strong em field. As was pointed
out in various publications, 6 this problem might
also be approached by considering that the weak
field is absorbed by the whole system made of the
atomic medium and the quantized pump field in
interaction ("dressed-atom" formalism). Such a
point of view would allow to interpret, in a more
systematic way than was done in the present paper,
all the predicted effects in terms of elementary
processes involving real or virtual exchange of
photons between the atoms and the em fields.

Let us finally summarize the conditions of validity
of our theory. First, since we have described the
em fields as plane waves, we have overlooked all
transit time problems so that our study applies
to situations in which the atomic mean free path
is smaller than the transverse dimensions of the
actual probe and pump light beams. Second, as
we have given a classical description of the em
fields as well as of the atomic motion, our model
cannot deal with recoil effects which may affect
the line shape. ~ Third, our description of relaxa-
tion does not take into account the velocity chang-
ing collisions which would couple together atomic
ensembles of different v values. In order to over-
come these limitations, it would be useful to quan-
tize in the theory not only the em fields as was
already suggested above, but also the external de-
grees of freedom of the atoms. ~

We must at last notice that we have here re-

stricted our attention to the absorption of the probe
field by the atomic system. The same theory would

of course allow the study of its dispersion prop-
erties by considering the real part of the atomic
susceptibilities instead of their imaginary part.
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APPENDIX: EXTENSION OF THE THEORY TG FREE-

FREQUENCY PROBE FIELD

As we were, in this paper, primarily interested
in the description of saturated-absorption phenom-
ena, we have limited our calculations to a probe
field with the same frequency as the pump field.
This limitation is however not a fundamental one,
and it is easy to generalize the theory to the case
of a probe field with a frequency different from

Furthermore, the probe field may be allowed
to propagate either in the same direction as the

pump field or in the opposite direction. We will
in this Appendix give the outline of the theory ap-
plied to this general situation and obtain an ex-
plicit expression for the probe-field absorption.

The pump and probe fields are now defined by
their frequency ~ and cu' and their wave vectors
k= (&u/c) u and k'= (&'/c')u', where u and u' are unit
vectors defining the sense of propagation along the
z axis. Both frequencies & and ~' are supposed
to be quasiresonant with the atomic frequency +0.

The equations of motion for the density matrix
are immediately deduced from Eqs. (1V) by replac-
ing, in the second bracketed expressions of the
right-hand sides, the exponential factor e""'"by
e"" ' ". In this factor, k' is taken as positive
if the probe field propagates in the same (positive)
direction as the pump field, whereas k ' is taken as
negative if the probe field propagates in the re-
verse direction (as is the case in saturated-absorp-
tion experiments). One then has

(55a)

9 8
+ () p )( y p + ( +

( p e 'l ((II( l!s& '((tll(WIE)
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( (v '( 0'e) -((e ' ( 0'I&)--(
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bb b & && 2@ a& Pgae

(55b)
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2@ { (55c)
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The solution of these equations to zero order in
e is obviously given by E(ls. (19a) and (19b), since
it does not depend on the probe field. We can
again look for a general solution taking the form
of the power series in e given by E(I. (23). The
solution to order p may now be expanded in a form
generalizing Eq. (24):

pq~q'(z, t, v ) = ~F
nn'q

~(P) f (nk-n'0')~ fq( f21-fbi ') t
gnn'q e e (I'=a, tl),

(56a)
(P) g t ~ ~ p(p) k(nk-n'0')~ fq(e-co')t -f(cut-ks)

nn'q (56b)

P(, t, )=8 ((~ ba& (P(

In the expression for the diagonal elements, we
have taken into account the possibility of a slow
modulation at frequency & —&' and its harmonics.
This modulation arises from the nonlinear coupling
of the atomic medium to the two fields at frequen-
cies & and &'. All modulations at frequencies q
+q'' with q' &-q, which also appear in the evolu-
tion of the diagonal matrix elements, may be ne-
glected as the corresponding terms are divided by
large energy denominators of the form y&+i(q(d
+q'(d') (secular approximation). The same kind of
argument shows that the time dependence of the
nondiagonal matrix element must be of the form

as indicated on E(l. (56b), On the other
hand, the spatial dependence of the density matrix
must now be expanded along the spatial Fourier
components of both fields, which accounts for the
term e" " ' ' in the above equations.

The coefficients Pb„., are related to the polariza-
tion of the medium by the following relation which
generalizes E(l. (2V):

G"'(v, (d, (d', I)= (d'(P Im(p„L'1+1).

The Fourier coefficients (2„b', and p„bIa may be
readily obtained if one replaces in E(I. (55) the den-
sity-matrix elements by their perturbation and
Fourier expansion (23) and (56). One then gets a
complete set of recurrent relations which allow
the iterative calculation of these coefficients from
the zero-order solution (19). The first-order sus-
ceptibility P,"... can in particular be obtained from
the equations

[y. (k-k ) — (—
~+ (p(1) p(1) a

)
(p 8(o) (60a)

[yb + i (k —k') v —i ((d —(d')] (2bl, ,

6' ~+ (&) (&)* + (o)
{I 11-1 P-1-11)+ 1

{60b)

[y,b+ i ( (do - 2(d+ (d')+ i(2k —k')v ]pl( '1

~ + ~+ t ~(1) ~(1)
all-1 bll-l) ~ (60c)

[y b+ &((do (d')+ ik'v] P-1-1(

(P ~+ (1)+ (1)e . 9 (0) (0)(~ 11-1—~bi(-1)- i ((2 —(2 ) .2I- ' - - 2I-

P (z, t, v)=(p e " ' 2 "Z~&bp'bl'„, +c.c. (58)

so that the power absorbed on the probe field is
given to lowest order by the following expression
which generalizes E(I. (31):

p ~(p) f(nk-n'k')z e iq(u-')&&+ c
pnn'q

(57)
The projection of the polarization onto the mode
of the probe field is given by

Taking the imaginary part of P',"„,obtained
rom these equations, one gets the expression of

the power absorbed on the probe field in a form
which generalizes E(l. (45):

~'(p I2 y2
G 1 (v& (d& (d

&
I)= [imp] [W(v)] 1 2 k 2 I2 2

28~ah y.,+ (do —(d+kv + I y.,

x 2 ", , 2 [I-I'Ite&'(v, (d, (d', I)1 (61)
y b + ((dp —(d + k V)

with

[y„—i((dp —(d'+ k'v)]f[y, b
—i((do —(d+ kv)] '+ [yab+ i((dp —(d'+ k'v)] ]'

2f(v, (d —(d')+I y, I[y, —i((d —2(d+ (d'+2kv —k'v)] + [y, +i((dp —(d'+k'v)] (62)

2 1

y [y, —i(k —k') v+ i ((d —(d')] + [yb —i(k —k') v+i((d —(d')1 {63)
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The total power absorbed from the probe field
is obtained as before by integrating over velocities

G' '((u, (u', I)= j G'"(v, (u, &u', f)dv . (64)

If one replaces in (61)-(63) +' by &u and k' by
—k these equations reduce to (45), (40), and (41)
which correspond to the saturated-absorption situ-
ation. %e had seen in this case that at resonance
(&= &uo) and for strong-enough saturation, an am-
plif ication of the probe return wave could take place.
If we now keep & at resonance but allow &' to vary
around 0, we will find a range of frequencies ~'
for which the probe field will be amplified. One
can wonder if the amplification could be sufficient

so as to permit laser oscillation of this return wave
in the medium saturated by the strong wave. In

such a situation, the return wave is generated by
the saturated medium itself and its frequency w',

which will be dependent on the linear gain and

saturation properties of the amplifying medium,
will not necessarily be equal to the pump frequency

The above formula (61) and similar ones ob-
tained from a higher-order calculation could then
be used to study this possibility; in particular,
the threshold condition for oscillation at &' will
be obtained by comparing the "linear gain" (64)
with the losses of a resonant cavity surrounding
the active medium.
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The expression for the absorption coefficient in two-photon resonance transitions is deduced

under general conditions. No particular restrictions are imposed on the level system or on

the frequencies and intensities of the fields. The following cases are considered: (i) a two-

level system (with and without singularities) irradiated by a single wave and {ii) a three-level
system irradiated by two waves. Some theoretical and experimental disagreements reported

by authors of previous papers are examined and clarified by the present theory.

I. INTRODUCTION

Gka and Shimizu have recently shown the possi-
bility of som experiments of a new kind concern-
ing double-photon electric dipole transitions in the
microwave frequency region. These experiments
were carried out on a system of three rotational
levels, Eo Es Ea

The variation of the resonance signal relative to
the Eo-E~ transition was detected using a se cond
strong pumping wave.

The frequency of the pumping wave satisfied the
conditions

~~ = (E2 —E,)/2h (degenerate case)

~~ = (Ez —Eo)/2k (nondegenerate case).

Finally Oka and Shimizu compared their experi-
mental results with theoretical predictions deduced
from the semiclassical Karplus —Schwinger theory.

However some disagreements can be found: (i)
To fit the experimental data to the theoretical pre-

dictions, a re.axation time quite different from that
obtained from the pressure-broadening parameter
must be assumed. (ii) Experimental results on the

PF, molecule (low dipole moment'l are not in agree-
ment with the theory (iii) . Field attenuation with-
in the Stark cell is neglected.

Mollow' discussed a similar case of resonant
two-photon absorption from a theoretical point of
view. Considering a pair of levels in two-photon
resonance and using a semiclassical approach, he

calculated the time evolution of the density matrix
and the shift produced by radiation. These results,
obtained by irradiation with a single wave, were
analogous to those reported in Ref. 1.

In particular Mollow found that the radiation-in-
duced shift increases and becomes large when an
intermediate-state energy approaches the mean of

energies corresponding to active states of the sys-
tem. The mathematical expression for the shift
shows singularities when the wave frequency is
single-photon resonant between one of the actual
levels and a third one of the system. Of course,
this happens because the conditions are not ful-


