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A theoretical calculation is presented for absorption-line profiles of alkali-metal atomic
spectra. The red- and violet-satellite bands caused by interactions with noble-gas perturb-
ing atoms are discussed in detail. The statistical theory is used in calculating absorption
profiles. It is shovn that the pair-distribution function between atoms has an important, and

temperature-dependent, influence on the red-satellite bands.

I. INTRODUCTION

In optical absorption experiments on alkali-
metal atoms, the main transition takes an elec-
tron from the ground-state S orbital to an excited-
state P orbital. Usually each transition has two

primary absorption lines, associated with the

P,~~ and P»~ states, which are split into a doublet

by the spin-orbit interaction. The absorption
spectra may have additional structure, if other
atoms are present in the gas. The case of noble-
gas atoms perturbing the alkali-metal atoms has
received much experimental and theoretical at-
tention. '-" The experiments show that the two
absorption lines of the alkali doublet are broadened
and shifted. In addition, satellite absorption bands
may appear on either side of the two main lines.

Extra absorption bands which appear on the
high-frequency side of the P»~ line are blue satel-
lites, while those on the low-frequency side of the
P,&z line are red satellites. Hindmarsh and Farre
reviewed the properties of the red satellites, and

proposed an explanation. Their calculations em-
ployed the statistical theory, which is a semiclas-
sical theory which depends only upon the inter-
atomic potentials between the alkali and noble

gas. If Vo(R) is the potential in the alkali ground
S state, and Vz(R) is the potential of the alkali ex-
cited P& state, then V&(R) = V&(R) —Vo(R) is the dif-
ference potential. They assumed a Lennard-Jones
form for V, (R), and their calculations explained
their experimental results on potassium perturbed
by krypton.

The physics is quite simple. If an alkali atom
undergoes an optical transition while a noble-gas
atom is R away, then the photon energy required
for the transition is h&= h&0+ V~(R), where h&0 is
the transition frequency of the isolated alkali atom.
A crude estimate of the absorption spectra is ob-
tained by averaging over all possible coordinate
positions R of the noble-gas atoms:

A(&) =n J dsR g(R) &(5& —h& 0
—

V~ (R)), '(1.1)

where n is the density of noble-gas atoms. The

factor g(R) is the pair correlation function be
tween the atoms. '~ The more elaborate version
of the statistical theory (2. 1) which is used in this
article, considers interactions with more than one

noble-gas atom at a time. The simplified version
(1.1) is an accurate approximation when n is small,
so that interactions with several noble-gas atoms
at a time are rare events.

The present calculation extends the results of

Hindmarsh and Farr in two ways. The first is
that we have included a factor which they have
omitted: the pair correlation function'~ between
the positions of the atoms. The early versions~"
of statistical theory omitted this factor, but recent
investigators "are starting to include it. In

Sec. II we show that such a factor does belong.
The results for a Lennard-Jones potential are pre-
sented in Sec. III. There it is shown that the pair
correlation function may, under certain circum-
stances, suppress the intensity of the red-satellite
band to the point where it may not be observed in

the spectra. In other cases the pair correlation
function may not affect the spectra at all.

The second part of our results are discussed in

Sec. IV. There it is shown that a satellite band

will result from any minimum or maximum in the
difference potential V& (R). It is shown that the
results of Hindmarsh and Farr do not depend upon

the choice of a Lennard-Jones potential. The
same results are obtained from any difference po-
tential V&(R) which has a minimum with similar
values of minimum energy &, curvature K, and

atomic separation R . The position of the satel-
lite band occurs at an energy E below the absorp-
tion line, while the relative intensity of the satel-
lite band is determined by the factor nR K-'
For low values of n, these are the only two param-
eters which are determined, when experiment is
compared to theory.

Satellite bands, can also occur from relative
maxima in the difference potential V&(R). This
is of interest because recent calculations of the
interatomic potential show relative maxima as well
as minima. " In some cases these maxima can
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explain the position of the blue satellites. "
There have been numerous prior discussions on

the relationship between Vt(R) and spectra. 3' 3"
The important result of the present calculations is
that satellite bands provide direct information on

the existence of maxima or minima in V,.(R). The
energy position of satellite bands, relative to the
main absorption lines, is a direct measure of ex-
tremal energy e . This agrees with experimental
observations that satellite-band positions are in-
dependent of temperature g and n. 6

II. STATISTICAL THEORY

An important idea in our statistical theory is that
the alkali and perturbingatom can not get too close
to each other. This arises because of the mutual
repulsion they feel at close distances. The physi=
cal function describing this behavior is the pair
distribution function g«(R), '3 which is the proba-
bility that a nobl. e-gas atom is at R, if the alkali is
at Z=o.

Since we have a binary fluid, there are other dis-
tribution functions g„(R) between noble-gas pairs
and g33(R) between alkali pairs.

Our result for the absorption spectra in the sta-
tistical theory has the form

= exp[- P Z Vo(& ) —l P Z U(& - & )]/:"(PVo),

=-(PV,) = 1 g d'R, P(5„5„.. . , 5„),
l

where U(5) is the interaction between the noble-

gas atoms, and V()(%) is the interaction between

the alkali atom is its ground state and the noble-
gas atom. We can rewrite (2. 2) as

( )
dt tt( ) (PV()+it Vt)

:-(PV,)

By using the theory of functional. derivatives, Per-
cus'~ has shown that this may be evaluated from the
series

in=(pV, + it V,') In=-(p—V,)

f d3R ty(g ) (e Itvt (R1-) 1)

+ ,' f d3-R, d'R, S(&„&3)(e-"vt("))—1}

x(e-""&' 3' —1)+ ~ ~ ~ (2 2)

%e keep only the first term on the right-hand side,
as is conventional, and then identify" F(5,)
= ng13(5, ). Thus we have derived (2. 1). For the

present numerical calculations, we have used the
simple approximation'~

(2. 1}
(Q) e -SV()(R) (2. 4)

(t)&(t) =n d3Rg, 3(R}(l—e ""t ')

where n is the noble-gas density.
The early versions of the statistical theory omit-

ted the g,3(v) factor. Recent articles have started
to include this factor. Only Futrelle has suggested
a reason why this factor needs to be included, and
his derivation is quite complicated. This section
presents a simple derivation of (2. 1} It is assumed
the atoms in the gas behave as a classical Quid.
The derivation employs the functional derivative
techniques developed by Percus for classical
fluids.

If the density of alkal, i atoms is much l,ess than
the density of noble gas atoms, then each alkali is
surrounded by only noble-gas atoms. In the statis-
tical theory, for each absorption band j, one wants
to evaluate an integral of the form

In this form of the statistical theory, the absorp-
tion spectra (2. 1) no longer depends upon just the

difference of the ground- and excited-state poten-
tial curves, but also upon the ground-state poten-
tial alone. One advantage of the present deriva-
tion is that (2. 3) provides a formula for improving

the approximation at increased densities by re-
taining additional terms. At increased densities
n, one can also improve upon (2. 4) by obtaining

g«(R) from the Percus- Yevick e(luation. «

III. LENNARD-JONES POTENTIAL

The integrals in (2. 1) maybe evaluated for the
case of a Lennard-Jones potential in the initial
and final state. So we take

x P(5„5„5„.. . ,5„), (2. 2)

where &(51,53, .. . , 5)v) is the probability that one

perturbing atom is at 5„asecond at %3, etc.
For a classical fluid, this function is

and

V —V —V —4

(S. lb)
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A(~) = —exp[i (~ —~,) t —P (t) ],
4a OO

y(t) n f d3R e Bvp(R&(I e 4tv/'&R) )

(3.3)

Since g*(t) = p(- t), it is sufficient to evaluate just
the real part of A(&u):

A(~) =Re f"(dt/m) exp[i(& —~p) t —p(t)]. (3.4)

The integral (3.3), with Lennard —Zones poten-
tials (3. 1) and (3.2), is similar to that evaluated
by Hindmarsh and Farr. Following their method
yields

4(t) = C(T) —~y'" [I'(- —,')F(- —.', —.', e)

+ 2""I(-,'}F(-,', —.', e}], (3. 5)

C(T) —y 2&/Pb &/4 [I ( L) F( ~ L b)

+ 2b'/' I'(-,')F(-,', -', , b)] . (3.Ga)

C(T) = ~vb"'2" e"' V(-1, (2b)'")

b= Pop, A. = —,
' snap, & = —,

' pn(a )

(3. Gb)

(3.7)

y = 4 pap+ i4t o (a '/ap) = [P C,'z '+ it C,p] a p

(3 8)
[ pop+ita (a /ap) 1 [PC& +itcpl
po +ita (a /a )' 4[PC,'p'+it C,z]

where I'(+ —,') are y functions, and F( —,', —,', z) are-
confluent hypergeometric functions. '~ The re-
sult of Hindmarsh and Farr is obtained by setting
p= 0. This would eliminate the factor g,z = e -p"p,

which they omitted.
This is a complicated result for P(t). It would

be cumbersome to evaluate explicitly. However,
one of our main points is that a very simple ap-
proximation pertains in many situations. This
occurs if the perturbation density n is moderately
low, say around one atmosphere. Then the dimen-
sionless constant ~ is only of order 10 3. This is
quite small. It means that P(t) is negligibly small
unless ~ is large, which means that t is large.

I I
= Rip

—
Rp (3 2)

We are assuming that the initial, final, and dif-
ference potential are all of the Lennard-Jones
type. The assumption is not always in accord with
the actual physical situation. As an example of a
situation where this does not apply, consider the
case that VQ has a stronger repulsive term than

V&. Then the coefficient C,z is negative. Since in
optical absorption one usually has C6& 0, this
example has V& purely negative, with no minimum.

However, we shall not consider this case, but
shall restrict ourselves to (3. 1) and (3. 2).

We wish to evaluate (2. 1) as the following:

So at these moderate densities of perturbers, we
only need to consider the asymptotic limit of P(t)
as t-~. We get

I 1limz=ito + &+0-
)~ oo t

(3.9)

where

(3.10)

The parameter 6 is an important aspect of our re-
sult. The difference potential V/(R) has its mini-
mum at R =2' a . So 6 is proportional to the
value of the ground-state potential evaluated at the
minimum of the difference potential. It may be
either positive or negative.

Using (3.9) in (3.5) gives

lim Q (t) = C(T) + & 8 (vo t)'/ e "

—2 i exp[i(o 't- —,'m)+ &]
o t

(4w)"' 6

e -kw/4 L+ 2' & ~ 0( t -3/2)

(3. 11)
Let us examine these various terms. The con-
stant term C(T) is going to be small if X is small,
unless Pop has anomalously large values. This is
plotted in Fig. 1 as a function of b= Pe~.

In (3.Ga} and (3. Gb} we have listed two equiva-
lent formulas for C(T). The first is useful be-
cause it shows that Q(t) = 0 at t = 0. The second
is more useful for numerical computation. The
parabolic cylinder function V(-1, x) is tabulated. 'P

The function C(T) grows exponentially with b.
This is obvious from its asymptotic expansion

lim C(T) = 2X (2v/b)'/P e' as T-0.
The insert in Fig. 1 shows that C(T) is negative for
small values of b.

The second term in p(t) may be rewritten as

y (t) =4-7/'/pn(C't)"'e-4'/4 (3.12)

This term, which was first derived by Kuhn, is
just the contribution from the van der Waals
forces. That is, we could derive Pp(t) by just
tWing V/(R) = —C /R, g,p=1,

Qp (t) = n fd R [1 —e ' p ] .

If this term alone is used in evaluating A(~), there
results Kuhn's ((up —&) P/P red tail to the spectral
line

Ap(~) = Re' —exp[i(~ —~p} t —Pp(t)],
GM

44 Q
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io'- is
K= 72o' /R2,

10:2

lo-

C(T )/X then (3. 17) is the same expression as the third
term in (3. 11). The only difference between the
two is the important factor e'. We could have
gotten this factor in (3. 17), if we had put the
factor g&z(Rm) = e ~ 0~"~' into (3.16). That is, we
evaluate the pair-distribution function F2 (R) at
the minimum R of the difference potential. This
would then give in (3. 17) exactly the third term in

(s. ii)

P (t) = —4mnR~ (2m/Kt)'i exp[i(to'- —,
'

m) —PVo(R )].
(s. ia)

This is the term which gives the red-satellite
bands. If we consider the integral for this term
alone, we have

0 l 2 5 4

FIG. 1. Plot of C(T}/g as a function of b=o.o/k&T,
where 0.

0 is the depth of the Lennard —Jones potential for
the ground state. The functional form for C(T} is given
in (3.6b}.

g 1/2
A ( )

1 ~o -ool" e(ti)0 (3. 13)

p —~, ~ =~7'n'C,',
p 9 (3.14)

where e(Q) is the step function. These results
are well known.

The third term in (3. 11) has very little depen-
dence upon the Lennard-Jones potential. This
term occurs whenever there is a difference po-
tential minimum of any kind. We only need to
assume that a difference potential minimum exists.
So if we take V& (R} to have a minimum at R„,

V~(R) = —o' + qK(R —R ) (s. is)
where K is the positive curvature, then the inte-
gral

O, (t) =n f d'R (1 —exp'-it[- o'+ —,'K(R —R„)~]))

(3.16)
yields

O, (t}= —4vnR (2n'/Kt)'~ exp(+ it o ——,'im) . (3. 17)

Since the curvature of the Lennard-Jonespotential

(&) Re e t( - o) 'e-ls(t)
'tt

NQ

The integral is hard to do. So we expand

As(M) =Re
i e '""- 0'[1 —P~(t)+ ~ ~ ~ ]."dt,,(„„)

The term proportional to ps(t) gives an estimate of
the red-satellite band

A, (~) =4mR'(2/Kn)'"e(n) e-' o'"~'

IQ= N —(dp+ g

This is nearly the same result which is obtained
in the simpler version of the statistical theory
(i. 1)

A, (~) =n f d'R e-'"o'"' &(1~- h~, —V', (R)),
(s. io)

where VJ (R) is the form in (3. 15).
The last term in (3. 11) will not be discussed in

detail. It appears to be a renormalization term
which reduces the intensity of the main absorp-
tion line as the satellite band is increased.

Most of these results, which we have just dis-
cussed, are already known. The new result we
wish to emphasize is that one should combine the
effects of these various contributions to P(t). So
a much better approximation to A(&) should be given
by simultaneously including both Pz(t) and Os(t):

A(~) = e~'r' Re
dt
m

p

exp[i(~- ~0) t-O' R(t)] [1 —Og(t)],

A((u) = e o' r& A~((o)+4nR (2m/K)'

x exp[ —C(T) —PVo(R )]1,(&u —~o+ o ),
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l, 5

has a moderate value, so that pVO(R„) is of order
unity. Then the strength of the satellite band will
have a temperature dependence. The satellite
band intensity could either increase or decrease
with temperature, depending upon the sign of
Vo(R ).

IV. OTHER POTENTIALS

I.O

0.5

0
0 /QO

5 IO

FIG. 2. Plot of the satellite-band profiles I& and I2.
Both are plotted for a potential minimum. They differ
only in the sign of the van der Waals coefficient.

I, (Q) = Re e "~ ~,&a e ""exp[ —(1 —i) (2tQO)' a],, p

(3. 2O}

where Aa(tu) and Qo are given in (3. 13) and (3. 14).
The integral for I, (Q) may be done, and the results
are expressed in terms of Dawson's Integral I' and
the complementary error function'3 Thus we have

2 g x1/3) 1/2

ii(")=
(~Q ()ua + (Q'( I

e(-Q)+ —„'

&&erfc — 8 Q . 3.2$

A plot of the function I, (Q) is shown in Fig. 2.
There is a peak in the line profile. This peak is
the red-satellite band centered near = +0 —o .
It is the same band which was discussed by Hind-
marsh and Parr. Their results were obtained by
numerical integration of (3.4) and (3.5), whereas
we have obtained an analytical result (3.21), which
is valid for low density of perturber atoms.

Our calculations also show that the red-satellite
band has temperature-dependent factors. The
term C(T) is probably not important at low n,
however, the factor g» = e ~ o' ~' could be very
important. For example, if the minimum R was
in the region where Vo(R) is strongly repulsive, then
this factor g» would be very small. This would
suppress the satellite band entirely. This could
explain why the red-satellite band is often miss-
ing from some alkali spectra for some noble-gas
perturbers. Another possibility is that Vo(R„)

In order to calculate line profiles, we need to
know the time dependence of P(t). However, at
low density of perturber, it is sufficient to know
how &f&(t) behaves at large values of t. We just
showed, for the Lennard-Jones potential, that
Q(t) had two main contributions at large t. One
was from the attractive van der Waals tail, and
the other from the potential minimum. Other
aspects of the potential, such as the hard-gore
repulsive region, are unimportant as their t de-
pendence falls off faster than (-'

We suggest that this must be a feature of line
profiles from all interatomic potentials. The two
important features are the van der Walls region,
and the contribution from potential minima and
maxima. We shall show that potential maxima
cause the same effects as potential minima. Other
aspects of the potential, such as the hard-core re-
pulsive region, do not influence the result. This
is regrettable, as this means that experimental
line shapes are not able to provide much informa-
tion about these other parts of the potential. One
should keep in mind that these conclusions only
apply in the low-density region.

Futrelle" has discussed a unified line-shape
theory, wherein he tries to hybridize the impact
and statistical theory. One interesting result he
suggests is that at large t, the exact function

P,„,(t) is the sum of statistical theory P(t) and
impact theory —i(Z„+iZ,)t, where Z„ is the line
shift and ZI is the linewidth:

lim P,„,(t) = limey(t) —i(Z„+ iZ, ) t] .
gw00

This implies that our asymptotic form for P(t)
could be improved at large by adding the impact
contributions —(Z„+ iZz )t. Although we accept
this as a reasonable result, we shall not follow
it in these calculations as it introduces two addi-
tional parameters Z~ and Z, into the computations.
It should probably be done for actual comparisons
to experimental data. This procedure was used by
Hindmarsh and Parr in their computations. They
Lorenzian-broadened their statistical r esults,
which is equivalent to adding the Zz t term to P(t).
It is easy to include these terms in our result.
In (3.21) the frequency Q is replaced by the com-
plex frequency —Z„—UZI, and one takes the real
part of the result.

We showed that the van der Waals potential is
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a major contribution to P(t) in the statistical
theory. This contribution pz(t) is given in (3. 12)
for the case that C, = C6~' —C60' &0. The other
possibility is that C6 & 0. Then one gets that

z zz/zn ( (
g

(

f)1/2 -5 /4 Q 3/2
(~ g

(

f)1/2 ir /4

c,' &0

c61 &0

K &0

Ig(M Mo Em)

I2((go+ em co)

K &0

A((d cop & )

1,(uo+ &~- ~)

YA BLE I. Satellite-band profiles.

,'in sgn—(K„)]. (4. 1)

The sign of the factor e -" ' depends upon the sign
of K . The total value of P(t) is obtained by sum-
ming over all extrema

»m y(f) = C(r)+ y, (f)+g y.(f) .

The line-shape profile A((u) is obtained, as be-
fore, by linearizing the contributions from P (I):

A(~) =Re cft—exp[I (~ —&,) t —C:(T) —4z(f)]

If we denote the sign of a quantity x as sgn(x), then
the general form for Pz(t) is

P, (t) =~ zz/z n[t
~
C,'~ ]'" exp[ —'fz —sgn(C ')].

The other major contribution to P(t) comes from
the minima and maxima in the difference potential
V/(R). Each extrema is characterized by three
constants: the position B, the extremal energy

, and the curvature K . Thus we have

V', (R)=e.+ ,'K.(R--R„)z if R-R. .

The energy E may have either sign, and we shall
adopt the conventionthat E & 0 for extremaatposi-
tive energies. The curvature K is positive for a
minimum and negative for a maximum. The con-
tribution to P(t) is

i 1/2

(t) = —4mR'„— exp[- ite —p&z (R )

at multiples of &, and also at the various combina-
tions e„+e, etc. Our theory does not describe
these harmonics, because we have linearized our
formula

exp(-P, P ) =1-g
However, the intensity of these harmonics will be
small as long as 4mzA is small. They may be
neglected since we are confining our discussion
to the case where n is small at low perturber pres-
sures.

There are two parameters in the theory whose
sign are important, Cs and K . The two choices
of sign for each quantity lead to four classes of
behavior. One of these, C6&0 and K &0, was
discussed in the previous section. It gives a line
shape of the form

A. (~)=4nR' (2v/K )''e ' ' e

x I, (&' —(oo —e ), (3.20)

where I, (Q) is given in (3.21). The other impor-
tant case which will be encountered in absorption
spectra is C6&Q, K &0, a potential maximum.
Here we get

A (~) =4nR'(27//~K ~)'" e-""e '"o'"~'

xI, (&u-

Iz(&) = Be e "/'
«z e @"exp[- (1 - i) (2fA, )' ] .

g
1(2

A(~) =Az(~) e-c'r'+g A (~). (4 3)

The integral for Iz may be done and gives

I (g) (7f/~gI)~/ze-"0/ " g(-0) (4. 5)

The result for Az(&) has been given in (3. 13) for the
case of C6&0. The result for C, & 0 is similar,
the only difference is that = +- &0, since the
band tail is now on the violet side of the resonance
frequency. This situation C6 &0 is not encountered
very often in experimental absorption spectra.

In (4. 3), each A (&) describes a satellite band
in the absorption spectra. A red band occurs if

& 0, and a violet band occurs if &„&0. A satel-
lite band occurs for both potential minima and max-
ima, and a minima or maxima can each occur for
either sign of e .

In general, additional satellite bands can occur
at higher harmonics of these basic frequencies,

This is basically a square-root singularity, except
for the exponential factor which is negligible ex-
cept very near the satellite band frequency. The
frequency dependence of I, (Q) and Iz(Q) are quite
different. This difference primarily arises from
the influence of the van der Waals contribution,
The Iz(&) form is essentially similar to that cal-
culated (3.19) in the absence of the van der Waals
term. One choice for the sign of C6 leads to quali-
tatively different line shapes I, (Q) for the satellite
band than does the other Iz(&}.

The four classes of behavior, depending upon
the signs of Cz and K, each have either the I~(Q)
or Iz(Q} frequency dependence. These choices are
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summarized in Table I. Figure 2 shows plots of I,
and I2. They are calculated with the same set of
parameters and only differ in the sign of C6. What
is actually plotted in Fig. 2 are the dimensionless
functions (2Qs)'is I, and (2QO)iisfs. The parameters
are chosen to represent a potential minimum K
&0, while I, has C~&0 and I2 has C6(0. The

shapes of the two curves are quite different. The
case I, has a much sharper satellite band profile.
In Fig. 2, the frequency is measured in units of

Qo. For low-perturber densities, say about
1 atm, then ~0 is very small —it is a small frac-
tion of an cm-' unit. In this case one can per-
haps ignore the small differences between I, and

I2 and use
1/2

lim I~ =Is —- e(Q sgn(&„)).-0
Of course, this is the same result as obtained in
(3. 19), where the van der Waals contribution was
omitted. Effects dependent upon Qs/Q may be
observable at high concentrations.

We conclude this section by again emphasizing
the importance of the factor e ~ o ~'. This factor
could cause a red-satellite band to have great tem-
perature sensitivity. It could also explain why some
alkali-noble gas pairs do not show red-satellite
bands at low density, g,s(R ) -0 if B„(se.
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