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servable spectroscopically. Probably the best
hope of settling the matter lies with calculations

which include directly the effects of coupling with
the continuum, such as those of Altick. "

~Research supported in part by the Advanced Research
Projects Agency of the U. S. Department of Defense
under the Strategic Technology Office.

~T. Andersen, K. A. Jessen, and G. SPrensen, Phys.
Rev. 188, 76 (1969).

2I. Bergstrom, J. Bromander, R. Buchta, L. Lundin,
and I. Martinson, Phys. Letters 28A, 721 (1969).

J. Bromander, Physica Scripta 4, 61 (1971).
4A. W. Weiss, Nucl. Instr. Methods 90, 121 (1970).
M. W. Smith and W. L. Wiese, Astrophys. J. Mppl.

Ser. 23, 103 (1971).
8L. Johansson, Arkiv Fysik 23, 119 (1962).
H. G. Berry, J. Bromander, I. Martinson, and R.

Buchta, Physica Scripta 3, 63 (1971).

C. C. J. Roothaan and P. S. Bagus, Methods in
&omputational Physics (Academic, New York, 1963),
Vol. 2, p. 47.

P. S. Bagus (private communication).
~ P. O. Lowdin and H. Shull, Phys. Rev. 101, 1730

(1956).
~ A. W, Weiss, Phys. Rev. 166, 70 (1968).

D. R. Bates and A. Damgaard, Phil, Trans. Roy.
Soc. London A242, 101 (1949).

A. W. Weiss, Phys. Rev. 162, 71 (1967).
C. Edmiston and M. Krauss, J. Chem. Phys. 45,

1833 (1966).
~5P. L. Altick, Phys. Rev. 169, 21 (1968).

PHYSIC A L REVIEW A VOLUME 6, NUMBER 4 OC TOBER 1972

Calculations of Effusive-Flow Patterns. I. Knudsen-Cell Results*

B. P. Mathur and S. O. Colgate
Molecular Ijeam I aboratory and the Department of Chemistry,

University of F.'orida, Gainesville, Florida 32601
(Received 6 March 1972)

r
A simple and direct procedure has been used to calculate the flux gradients inside Knud-

sen cells and the related effusive-flow patterns. Knudsen cells of simple geometries with
knife-edge orifices and flat sources are considered. The calculated value of the Motzfeldt
factor (1.020) is in very good agreement with the literature value (1.020) and the Monte Carlo
calculations (1.020) for a cell of reduced height H =4. 0 and the knife-edge orifice of reduced
diameter =0.1064. It is suggested that an extension of these calculations has an importance
in solving some of the problems encountered in determining the absolute total scattering cross
section from scattering measurements.

INTRODUCTION

The statistics of molecular dynamics and spatial
distribution for gases at equilibrium are well un-
derstood. Expel iments with gases, however, often
involve mass flows having non-Maxwellian distri-
butions which, depending on the magnitudes and di-
rections of the gradients, are more or less diffi-
cult to characterize. The internal geometry of the
apparatus influences the details of mass-flow dis-
tributions. The effects of orifice shapes, in par-
ticular, on such distributions have been widely
studied for all types of flows from free molecular
effusions to supersonic jets. Generally, less at-
tention has been given to the effects of over-all
apparatus geometry including the location of tubu-
lations, chamber walls, and internal structures on
flow characteristics. At high pressures the con-
ducting apertures and channels have the greatest
influence on gas-flow patterns, but at low pres-
sures the arrangement of other fixed surfaces be-
comes increasingly important, and when gas mole-

cules collide with apparatus surfaces more fre-
quently than with other molecules in the vapor
phase the flow pattern is very sensitive to the de-
tailed arrangement of those surfaces.

The latter situation arises in effusive flows, and
any adequate description of flow patterns and den-
sity gradients in these cases will depend on the
over-all geometry of the flow system and not just
that of the apertures. Obtaining such descrip-
tions by straightforward solution of Boltzmann's
integrodifferential equation or Maxwell's equation
of change with explicit inclusion of gas-surface in-
teractions would be very difficult, but indirect
methods are more or less practical depending on
the complexity of the system. These methods are
substantially simplified if gas reflection by the
fixed surfaces is assumed to be diffuse since such
reflection momentarily restores certain equilib-
rium conditions to the molecular stream reflected
from a surface element.

Most treatments of effusive flow have used this
simplification since the classic work of Clausing'
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on flow through finite channels. Since then, vari-
ous workers have extended the treatment in a di-
rect way to include the over-all geometry of cylin-
drical Knudsen cells. The results of the Monte
Carlo calculations of Ward et al. give details in
general agreement with experiment and show clear-
ly the significant effects of geometric irregulari-
ties within the cell such as occur when ceramic
liners are used.

We have been interested in determining details
of effusive-flow characteristics in molecular beam
scattering chambers and have begun developing
techniques to obtain them by both calculation and
experiment. The calculation procedure is straight-
forward, at least for simple cell geometries. Since
the method involves gas dynamics which are the
same as those assumed in Ward's work, it was
decided to use that work as a standard for testing
the present scheme. Results of those tests are
reported here; results for scattering chambers
will be reported later.

FORMULATION AND CALCULATIONS

Consider the case of a rarefield gas, confined in
a given volume where gas-phase collisions are
practically negligible compared to molecular im-
pacts on the walls, and where the walls reflect
molecules diffusely according to the cosine law.
In both molecular beam scattering experiments and
Knudsen-cell effusive studies, the first condition
is generally satisfied since mean free paths are
usually long compared to chamber dimensions.
Compliance with the second condition is more diffi-
cult to establish with general confidence, but at
room temperatures and below, the reflection
mechanism may be considered to involve an inter-
mediate step of temporary adsorption on the walls
and subsequent evaporation whereby the memory of
the incident direction is lost. Reflection from a
molecularly rough surface subject to these two
conditions would typically exhibit a cosine-law dis-
tribution. The contribution to the local number
density near a point P in the body of a gas by mole-
cules reflected from surface element ds on a wall
is

dn = n, (d(u/4m),

where d~ is the solid angle subtended at P by the
surface element in question and n, is the effective
equilibrium gas density at which the element ap-
pears to reflect. The total number density at P is
found by integrating the above equation over all of
the walls exposed to P, i.e. ,

1
'pip = gw J pl dc'

Here we have used this theorem to calculate the
effective level of the radiative density inside a flat
source Knudsen cell with knife-edge orifice. We

have also calculated the Motzfeldt factor and de-
termined the radial distribution of the effusive in-
tensity through the orifice. We define the following
geometrical dimensions, reduced in terms of the
cell radius: H is the height of the cell; the radius
of the cell is 1.0; and p is the radius of the aper-
ture in the lid of negligible thickness (knife-edge
orifice). Let o.' be the gross condensation coeffi-
cient (the Langmuir coefficient, i.e. , the probabil-
ity that a vapor molecule condenses when striking
the source), and y the reflection coefficient (the
probability that a vapor molecule will be reflected
after collision with the cell walls). Further, let
the height of the cell be divided into N cylindrical
bands each of reduced bandwidth H/N; divide the
lid into M circular rings with the reduced width
(1 —p)/M; and divide the source into M circular
rings of reduced width (1 —p)/M and the central
ring of radius equal to that of the orifice. Let the
cylindrical bands be numbered in order starting
from the source, and the circular rings on the
source and on the lid numbered from the center
outwards. Now, the procedure to calculate the
steady-state conditions in such cells involves the
following basic steps:

(i) Choose trial values for the apparent equilib-
rium-gas number densities n; characteristic of the
intensities of diffuse reflection from each of the
various surface elements.

(ii) Calculate the total flux of molecules, I", ,
incident on each surface element assuming the in-
tensity of diffuse reflection from each such ele-
ment to be uniform over its surface and neglecting
gas-phase collisions.

(iii) Replace the trial values of n; with those ob-
tained by requiring the rates of reflection from the
surface elements to be equal to the rates of molec-
ular incidence on them diminished by the appro-
priate factors to account for condensation if any,
x. e. ,

4n, V= yI"; or (1 —n)I"&+ —,noVn,

where V is the average molecular speed. The first
relation is to be used for surface elements on the
cell walls and the second for those on the source.

(iv) The process is continued by iteration, cal-
culating new values for I'; and n; until suitable con-
vergence is achieved.

The derivation of all of the equations required
to permit the calculations of the I'& 's is lengthy
and will not be presented here. However, the
salient features of the derivation are illustrated by
considering a series of representative steps. For
example, consider the molecules that strike an
area ds located at P on the cylinder wall after re-
flection from the area ds' located elsewhere on that
wall (see Fig. 1). These contribute to the molecu-
lar flux I'p on ds the amount
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FIG. 1. Geometrical relationship between symbols
used to compute the contribution to the flux on one cylin-
drical band caused by molecular fl t f
such band.

re ec ion rom another

dr~ = (n v/4m) cos8d~ (4)

where ~' is the effective radiative density near
ds' and is assumed to be uniform b 11y ce symmetry
around the wall at constant z (Fig. 1). Substituting
for cos8 and the solid angle d~ the expressions in
terms of the cell geometry in Eq. (4), and then
integrating over the finite limits of 8 and z, we can
write for the contribution to the total flux onto ds
due to reflection anywhere from a finite cylindrical
band of width hz at distance z from ds,

, v 2K+1
4 2(K + I)'i

K1

where

for the flux from a circular band on the cylinder
wall to an element on the source (or lid) [see Fi
2(b)],

i see ig.

~r=~' —' 1 —R —K K1

4 [(1—R ) +2K (1+R) +K ] K2

(7)
and for the flux from a flat ring on the source (or
lid) to an element on the lid (or source) [see Fi
2(c)],

e see ig.

iv R —H —R B2

4 [(H +R'+R) —4R R] R1

These equations permit the calculation of the total
average incident fluxes on all of the various sur-
face elements previously described. For the ith
cylindrical band on the cell wall, for example, the
total incident flux is

N M M+1

r, =Z ~r, , +Z ~r, , +Z ~r„, (9)
j=1 l=1 k=1

where ~I' ~I'.;&, and ~I';„give the flux contribu-
tions onto band i due to the jth cylindrical band the
lth lid rini ring, and the kth source ring, respectively.

7

Similar expressions give the fluxes on the lid an4
source rings. After obtaining these fluxes, Eq.
(3) is used to determine new values of the effective
radiative densities. The cyclic iteration process
xs continued until the convergence is satisfactory

K=Z/2~ .

The = sign is used here to emphasize the approxi-
mation resulting from assuming n' to be uniform
over the band of finite height; the quality of the
expression may be controlled by adjusting the
magnitude of the arbitrary bands. Equation (5)
represents the average flux over one cylindrical
band due to reflection from another at a distance z

that n' i
or from the same band, g =0). It should b t de no e

a n is not the same as the actual number den-
sity near the band surface. The actual local den-
sities can be calculated using Eq. (2) once the ef-
fective radiative densities are known, and further
it can be shown that the gas has a mass motion re-
sulting in a net creep toward the aperture as ex-
pected.

Other contributions to the net fluxes on the sur-
face elements inside the cell are determined by
methods analogous to that outlined above for the
cylinder-wall-to-cylinder-wall case. The result-
ing expressions are: for the flux onto the cylinder
wall from a flat ring on source (or lid) [see Fi
2( )],

i see ig.

, v K(1+K +R )
R2

4 [R +2R (K —1)+(K +1) ] R1

(b)

(c)

FIG. 2. M ath ematical geometries and notations used
to evaluate the incident fluxes on (a) a cyl' d

'
1 b d

due to reflection from a flat ring (b) a fla at ring due to
a cylindrical band, and (c) a flat ring due to another ring
at the opposite end of the cell. X=z/2r.
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FIG. 3. Reduced-radiative-intensity curves for the
inside of the cell A for different values of & and for
p= l. 0. The dots are the presently calculated values,
and the open circles represent the Monte Carlo values
taken from the data of Ward and Fraser (Ref. 9).

It may be pointed out that the relative density dis-
tribution is temperature independent so long as the
temperature is uniform and constant over the cell
walls. The effective radiative densities, reduced
in terms of the equilibrium closed-cell density,
thus obtained for three cell geometries are shown
in Figs. 3-6.

Once we have the flux distributions or the levels
of radiation inside the cell it is simple to calculate
the effusive intensity. The angular distribution of
the reduced effusive intensity according to the
cosine law and that due to the theorem are given
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FIG. 5. Reduced-radiative-intensity curves for cell
A with different wall and lid loss probabilities (0.'= l. 0).

According to the simplified treatment of the
Knudsen cell, Motzfeldt' has given an expression
relating the measured pressure (p„) and the
equilibrium pressure (p,) in effusive systems.
This relation in terms of the cell geometry and
other constants is

f= 1+ PWO(1/o. + 1/W —2),
where P is the reduced area of the orifice (orifice
area/source area) W and Wo are the Clausing
transmission coefficients of the cell and the ori-
fice, respectively, and f is generally called the
Motzfeldt factor. For a knife-edge orifice, R'p=1.
Using DeMarcus'ss tables for 8; the calculated
values of f are given in Table III. Using the radia-

in Tables I and II (only two such tables are given
here in order to conserve the length of the article).

Calculation of the Motzfeldt Factor
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FIG. 4. Legend is same as in Fig. 3, except only our
calculated values for the cell 8 are shown.

FIG. 6. Reduced-radiative-intensity curves for cell
C for different values of & (taking y=0. 95). The solid
dots represent the present calculated values, and the
open circles the Monte Carlo values of Ward et al.
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TABLE I. Angular distribution of the reduced
effusive intensity Ia as a function of n for cell A and

y=1.0.

Angle
(deg)

Cosine
law G.' =1.0

Calculated
g =0.1 e =0.01

0.0
2.3
3.9
5. 5

7, 0
8.6

10.2
11.7
13.2
14.2
14.6
15.1
15.6
16.2
16.7
17.4
18.0
18.7
19.5
20.4
21.3
22. 3
23 ~ 3
24. 5
25. 8
27. 2
28. 8

30.6
32.6
34. 8
37.3
40. 1
48. 2
46. 8
50. 9
55.4
60.6
66.3
72. 6
79.3
86.4

1.0000
0.9991
0.9976
0.9953
0.9923
0.9886
0.9841
0.9790
0.9732
0.9692
0.9672
0.9651
0.9627
0.9601
0.9573
0.9541
0.9506
0.9466
0.9422
0.9372
0.9315
0.9251
0.9178
0.9094
0.8998
0.8886
0.8755
0.8602
0.8422
0.8209
0.7954
0.7649

- 0.7282
0.6839
0.6305
0.5665
0.4902
0.4008
0.2982
0.1842
0.0623

1.0000
0.9991
0. 9976
0.9953
0.9923
0.9886
0.9841
0.9790
0.9732
0.9639
0.9613
0.9586
0.9556
0.9524
0.9489
0.9451
0. 9409
0.9364
0.9314
0.9528
0.9196
0.9127
0.9049
0.8960
0.8859
0.8742
0.8608
0.8452
0.8269
0.8056
0. 7798
0.7493
0.7129
0.6691
0.6165
0.5536
0.4790
0.3916
0.2916
0.1803
0.0611

1.0000
0.9992
0.9978
0.9956
0.9928
0.9893
0.9852
0.9805
0.9754
0.9654
0.9625
0.9597
0.9567
0.9536
0.9499
0.9461
0.9420
0.9374
0.9324
0.9269
0.9207
O. S137
0.9059
0.8970
0.8869
0.8752
0.8618
0.8462
0.8279
0.8063
0.7807
0.7502
0.7137
0.6699
0.6173
0.5543
0.4795
0.3921
0.2919
0.1805
0.0612

1.0000
0.9992
0.9978
0.9956
0.9928
0.9894
0.9853
0.9807
0.9757
0.9655
0.9626
0.9597
0.9567
0.9536
0.9499
0.9461
0.9420
0.9374
0.9324
0.9269
0.9207
0.9137
0.9059
0.8970
0.8869
0.8752
0.8618
0. 8461
0.8278
0.8063
0.7807
0.7502
0.7137
0.6699
0.6172
0.5543
0.4795
0.3921
0.2919
0.1805
0.0612

tive flux gradients inside the cell, we can also
calculate f values in three different ways:
(a) First, f values can be calculated by computing
the effective density at the orifice (and estimating
f as the ratio of this density to the equilibrium den-
sity Bp)

N M+1

f Oo/ QN, (()11(()+2' ( )QN())O, O='
5=1 k=1

where 0 and 0' are, respectively, the solid angles
subtended by the ith band [radiative density level.
X, (i)] or the kth source cell [radiative density
%2(k)] at the center of the aperture. (b) Similarly,

4+1
+ 2 No(O)A, ot'(O)oosO), (13)

k=1

TABLE II. Angular distribution of the reduced
effusive intensity Ie as a function of & for cell J3 and
'y=1. 0.

Angle
(deg)

0. 0
4. 6
7. 8

10, 9
14.0
16, 9
19, 8
22. 6
25. 3
26. 9
27. 7
28. 5
29. 3
30.2
31.1
32. 1
33.1
34. 2
35.4
36.6
38. 0
39.4
40. 9
42. 4
44, 1
45. 9
47. 8
49. 8
52. 0
54. 3
56. 7
59.3
62. 0
64. 9
67. 9
71.0
74. 8
77. 7
81.1
84. 6
88. 2

Cosine
law

1.0000
0. 9967
0, 9907
0. 9819
0. 9704
0. 9566
0. 8408
0. 9232
0. 9043
0. 8916
0. 8855
0. 8790
0. 8720
0. 8643
0. 8561
0. 8471
0. 8373
0. 8266
0, 8150
0. 8022
0. 7883
0. 7731
0. 7564
0. 7380
0, 7179
0.6958
0, 6715
0, 6449
0.6156
0. 5836
0. 5487
0. 5105
0.4691
0.4244
0. 3764
0.3251
0.2707
0.2137
0. 1544
0. 0983
0. 0312

l. 0000
0. 9967
0. 9907
0.9819
0. 9704
0. 9566
0. 9408
0. 9232
0. 9043
0. 8868
0. 8803
0. 8735
0. 8662
0. 8583
0. 8498
0. 8405
0. 8305
0. 8196
0. 8077
0. 7948
0. 7807
0. 7653
0. 7485
0. 7301
0. 7099
0.6878
0. 6636
0.6371
0.6080
0. 5762
0. 5416
0. 5039
0.4630
0.4189
0. 3715
0.3210
0. 2674
0.2112
0. 1526
0. 0924
0. 0309

Calculated
e =0. 1

1, 0000
0. 9968
0. 9909
0. 9823
0, 9710
0. 9575
0. 9420
0. 9249
0. 9067
0. 8884
0, 8818
0, 8748
0. 8674
0. 8594
0. 8509
0. 8416
0. 8315
0. 8206
0. 8087
0. 7958
0. 7817
0. 7663
0. 7494
0, 7310
0. 7108
0, 6887
0. 6644
0. 6378
0. 6087
0. 5770
0. 5423
0, 5045
0.4686
0, 4194
0.3720
0. 3214
0. 2677
0.2114
0. 1528
0. 0925
0, 0310

l. 0000
0. 9968
0. 9909
0. 9823
0. 9711
0. 9576
0. 9422
0. 9251
0, 9070
0. 8886
0. 8819
0. 8750
0. 8675
0, 8596
0. 8510
0. 8417
0, 8316
0. 8207
0. 8089
0. 7959
0, 7818
0. 7664
0. 7495
0„7311
0, 7109
0. 6888
0. 6645
0, 6379
0. 6088
0. 5770
0. 5428
0. 5046
0. 4687
0, 4195
0. 3720
0. 8214
0. 2678
0. 2114
0. 1528
0. 0925
0. 0310

f values can be calculated from the mass-balance
equation, i. e. ,

(M+1

f= o11'(1 —o)i o( 2 A, [1 —N, (O)]),

where Ak is the reduced area of the 4th source cell.
(c) Third, f values canbe calculated from the total
fluxthrough the aperture, i. e. ,

r N

f= (mR) y~ Q N~(i)B;(()(j) cosg
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TABLE III. Motzfeldt factors (f) for knife-edge
orifice Knudsen cells with zero wall and lid loss prob-
ability.

Calculated values off

Eq. (7) Eq. (8) Eq. (9) Eq. (10)
Monte Carlo

(aef. 9)

1.0
0. 1
0. 01

1.0
0. 1
0. 01

1.020
1.122
2. 141

1.011
l. 113
2. 131

Cell A
1.020
l. 122
2. 141
Cell B
1.010
l. 113
2, 136

W= 0.3589
1.016
l. 122
2. 141
W= 0. 5136
1.010
1.108
2. 127

l. 015
1.117
2. 131

l. 006
l. 108
2. 127

1.022
1.124
2. 128

where B& is the reduced area of the ith cylindrical
band, v(i) and ~ (k) are the solid angles subtended
at the midpoint of the ith band or 4th cell by the
orifice, respectively, and Q and 6 are the angles
of effusion measured from the normal through the
center of the aperture. These values of f are also
given in Table III.

It may be pointed out that there are some prob-
lems in determining the required solid angles ap-
pearing in the above equations. Except for the
simplest cases, it is not always possible to ex-
press these angles in terms of ordinary fractions.
Masket and Rogers' have tabulated values of
solid angles subtended by circular disks and the
lateral surfaces of right circular cylinders.
Though these tables are exhaustive, it proved more
convenient to compute the necessary solid angles
generating required values of complete and incom-
plete elliptic integrals' from standard scientific
subroutines available in the computer library.

RESULTS AND DISCUSSION

The present calculations were programed for
two straight cylindrical cells of diameter 0. 25 in. ,
orifice diameter 0. 0226 in. , and heights 0. 5 in.
(cell A) and 0. 25 in. (cell B). As mentioned ear-
lier, we have limited the present calculations to
knife-edge orifices (the orifice Clausing factor is
equal to 1.0). The dimensions of cell A were
taken to be the same as those of Ward and Fraser
to facilitate comparison of the present results with
the Monte Carlo calculations. They have used the
Monte Carlo technique to investigate similar flux
relationships within Knudsen cells. Unfortunately,
most of their data are presented graphically, but
we have tried to make the best use of it.

As mentioned earlier, the cell height is divided
into 32 cylindrical bands, and the lid and source
into eight circular rings plus the orifice (in the
case of the lid) and the central ring (for the
source). Assuming there are no wall and lid
losses (y= 1.0), the flux gradients for the inside
of the two cells obtained by using the theorem are
as shown in Figs. 3 and 4, respectively. Reduced

flux intensities are plotted against ring numbers
(henceforth numbered consecutively from the band
nearest the source to the aperture). In Fig. 3 are
also shown the data of Ref. 9 (these were obtained
by photographically enlarging the published graph
and reading the points from a coordinate overlay).
In each figure, curves are plotted for three differ-
ent values of n, 1.0, 0. 1, and 0.01, respectively.
As is evident from Fig. 3, our calculated values
for cell A are in very good agreement with those of
Ward and Fraser. The reason for the slight dis-
crepancy for n =0.01 is not entirely understood.
It may result from our assumption that diffuse
reflection from a finite surface element is uniform
over that surface, or it may involve errors in our
rather crude method of obtaining the numerical
values of Ward's data. The fact that a similar
disparity is found in a cell of different magnitude
(Fig. 6) suggests that the former or some other
mathematical difference is likely the cause. At

any rate, the effect is small and the over-all
agreement is still good. Cell B also shows the
same features lending further support to our way
of calculation. These curves clearly show that in
the steady state the flux distribution inside the cell
is not the same everywhere.

Tables I and II are representative of the angular
dependence of the reduced intensity of the effusive
flux according to the cosine law and as calculated
according to the theorem. Calculated values for
cell A with three different values of n are given
in Table I, and values for cell B are given in Ta-
ble II. It will be seen that the calculated values are
practically independent of n and are in good agree-
ment with the cosine-law values except toward the
lower end (large angles) of the spectrum X, where
the visible cell walls radiate at their lowest levels.

For cell A we also assumed a 0. 5% wall and lid
loss probability and then determined the flux dis-
tribution inside the cell for the case when n = 1.
These values are shown in Fig. 5, where the curve
for y=1. 0 is also given for comparison. These
plots again show the same general features as
shown by the Monte Carlo calculations. Figure
6 is again the same as Fig. 5, but for a third cell
C of dimensions II=4.0, R=0. 124, W0=1.0, and
W= 0. 3589. Here the values are for y = 0. 95 and
n = 1.0 and 0.01. Again it will be noticed that
there is good agreement in our values (solid dots)
and the Monte Carlo values9 (open circles), for

. ~=0.01.
In Table III are given the values of the Motzfeldt

factors calculated for cells A and B according to
Eqs. (10)-(13). Also recorded are values for cell
A from the Monte Carlo technique. As is evident,
the agreement in each case is good (maximum dif-
ference & 1%). The internal consistency of the cal-
culations is also good (-1%).
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The present method produces less scatter than
that characteristic of the Monte Carlo technique,
and, therefore, shows sharper detail in the com-
puted flux gradients. This is evident in Fig. 3.
Since the contribution to the incident flux on a sur-
face element due to a radiative source is propor-
tional to the solid angle subtended by that source at
the surface element, it follows that the net reduc-
tion in flux at the surface element below that
characteristic of complete equlibrium (reduced
intensity = I) is related to the exposure of that ele-
ment to any sinks (the aperture in this case). Mov-

ing along the cylindrical wall of the Knudsen cell
from the source toward the lid, the solid angles
[&u-A, (cos6)/x~] subtended by the aperture increas-
es if x~ (x is the distance from the surface element
to center of aperture, 6 is the angle between x and

the normal to the aperture, and A, is the area of
the aperture) decreases faster than cos6; the angle
then passes through a maximum where these two
terms decrease at the same rate; and finally it de-
creases as the cosine term begins to fall off more
rapidly. These considerations imply that the actual
flux distributions should show a minimum corre-
sponding the maximum exposure to the aperture.
Such minima have been predicted' '" and are well
defined by the present calculations, but they are
less resolved by the Monte Carlo calculations
(see Fig. 3).

The exact location of the above minima cannot be
expected to correspond with the location of maxi-
mum exposure to the aperture because of nonuni-
formity of the radiative flux. Substantial changes
in ~ produce little effect on the position of the
minimum (see Figs. 3 and 4). Small changes in y,
however, result in large shifts. This is evident
in Fig. 5 where the minimum present at y = 1.0
completely disappears when y is reduced by 5~0.

This is due to the fact that for y & 1 the cell walls
themselves become partial sinks and the exposure
to these increases with increasing distance from
the source. In Fig. 5 (note the different scales for
the two curves) the monotonic decrease in reduced
intensity from the source to the lid due to this ef-
fect at y = 0. 95 overshadows the lesser effect aris-
ing from variation in exposure to the aperture,
and the corresponding minimum in the curve is
not resolved. The rather abrupt increase in re-
duced intensity between the cylindrical wall and
the flat lid is evident in all cases studied. This
effect results from the marked change in exposure
of a surface element to the source as its orienta-
tion with respect to the source is changed from
perpendicular to parallel. This behavior is typical
of effects produced by discontinuities in cell geome-
try, and such sudden changes in radiative flux den-
sities produce irregularities in the patterns of ef-
fusive flow when the internal geometrical discon-
tinuities are "visible" from outside the cell. Ward
et al. have observed these effects using cells with
liners shorter than the cell heights.

The results presented above clearly indicate the
importance of the theorem and the suggested pro-
cedure. The limited treatment of the simple cell
can be easily extended to more complicated sys-
tems. Some work is in progress concerning
molecular beam scattering chambers, the details
of which will be published later. Experiments are
also being carried out to give an indirect proof of
the theorem.
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