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Some consequences of the Percus-Yevick theory are studies in the neighborhood of the
critical point for adhesive hard spheres and for the 6:12 potential (truncated at 6'). It is
shown that the Percus-Yevick theory gives rise to classical behavior at the critical point.
In particular, it is shown that for the compressibility equation of state the critical exponents
y and p are 1 and 3, respectively, and for the energy equation of state the critical exponents
e and P are 0 and 2, respectively. In addition, the behavior of the Percus-Yevick distribu-
tion function in the neighborhood of the critical point is examined and it is shown that for the
critical isochore the temperature derivative of the distribution function diverges with a
critical exponent of ~ which is independent of y and that for the critical isotherm the distri-
bution function is a linear function of the density for all y.

I. INTRODUCTION

The theoi..~ =:;5 +he behavior of a fluid near its
critical point is one of the most intensively in-
vestigated areas of physics. In this paper we
deal wi.h the critical-point behavior of a fluid in
the Percus- Yevick (PY) approximation. '

I et us consider a fluid of N molecules at a tem-
perature T and occupying a volume V. Thus, the

critical point is specified by T, and p„where
p=N/V. Experimentally it is found that a number
of quantities vanish or diverge at the critical
point. Critical exponents can be used to charac-
terize the behavior of these quantities near the
critical point. For example, the heat capacity at
constant density C is given by

C=constx ~T-T,
~
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TABLE I. Values of critical indices,

Expt.

0. 04-0. 06

0.35-0.36

2 14 3

4. 4-4. 6

Classical
Lattice

1
8

5
16

5
4

along the critical isochore p= p, . Similarly,

p —p, = const x

along the liquid-vapor coexistence curve. Also,
the isothermal bulk modulus 8 is given by

I

—
I =constx

(sp't

keT (sp)r

where k~ is Boltzmann's constant along the criti-
cal isochore. In addition, the pressure P has the
form

p-p, =constx ~p
—p, ~'

along the critical isotherm T= T,.
Inasmuch as T, may be approached along a

critical isochore from above and below it is nec-
essary to allow for different critical exponents.
Thus, a and &' and y and y' should be distin-
guished. The primed exponent indicates that it
is one appropriate for T & T,. Experimental val-
ues~ of the critical exponents are listed in Table
I. Experimentally &= n' and y= y'.

Clearly it is desirable to obtain the critical ex-
ponents theoretically. The van der %'aals theory
gives the results

n= n'= 0

y=y'=1

The result a= 0 for the van der Waals theory is
not a complete statement and can lead to mis-
leading conclusions. The value &= 0 ean mean
either a logarithmic divergence of C or a finite
value for C at the critical point. In the case of
the van der %aals theory, a= 0 has the latter
meaning. Thus, even though &= 0 is numerically
close to the experimental value a = 0. 05, the
van der Vfaals C is nondivergent and qualitatively
different from the experimental C.

A rather large number of approximate theories
give the above values, Eg. (5), of the critical
exponents. The common feature of most of these
theories is that they assume that the thermody-
namic properties are analytic at the critical point
and that the critical point is a point of inflection.
As a result, the thermodynamic properties can
be expanded in a Taylor series in T —T, and

p- p, . If such an expansion is valid one can show
quite generally that the critical exponents given
in (5) follow regardless of the precise form of
the equation of state. 3 Such theories are called
classical theories.

To obtain nonclassical behavior it is necessary
to obtain the thermodynamic properties of some
model system exactly or with high accuracy. The
lattice gas is a model system which is simple
enough so that thus it is possible, but which is
still realistic enough to give good values for the
critical exponents. The lattice gas values of the
critical exponents are compared with the exper-
imental and classical values in Table I. They are
arpong the best theoretical estimates of the criti-
cal exponents presently available. Although it is
only conjecture that the critical exponents of the
three-dimensional lattice gas are rational num-
bers, we follow the conventional practice and dis-
play them as rational numbers. The lattice-gas
exponents also appear to satisfy &= &' and y= y'
although the question is still open.

One of the most widely used theories of fluids
is that of PY. ' For a time the PY theory was
thought to be useful only at high temperatures.
However, recent work' has shown the PY theory
to be reasonably satisfactory even at liquid tem-
peratures. Thus, it is of interest to investigate
the behavior of the PY thermodynamic properties
and distribution function at the critical point.

In this paper we examine the critical point in
the PY theory. Before doing so we emphasize
that the PY theory gives unambiguous results only
for the radial distribution function (RDF). There
are several equations relating the RDF to the
thermodynamic functions. These equations would
yield the same results if exact RDF were used.
However, if the PY RDF is used, these equations
yield different results. Thus, the PY theory will
give different thermodynamic functions and may
give differing critical exponents when differing
routes to thermodynamics are used. In this paper
we calculate the pressure and compressibility only
from the compressibility equation and the energy
and heat capacity only from the energy equation.
These are the most direct and numerically accu-
rate routes to these particular thermodynamic
properties.

Other methods are possible. For example, the
energy and heat capacity may be calculated from
the compressibility equation and the pressure
and compressibility may be calculated from the
energy equation. However, each of these meth-
ods requires numerical integration followed by
double numerical differentiation. This can be
done. For example, the latter procedure was
followed by Henderson et a/. However, it is
doubtful whether such calculations could be made



D. HENDERSON AND R. D. MURPHY

numerically with sufficient accuracy to deter-
mine values for critical exponents.

We find that, when the compressibility equa-
tion is used, y= 1 and 5= 3 and, when the energy
equation is used, &= 0 and P= —,'. These values
are identical with the classical values. The PY
values of the critical exponents of the RDF are
more fundamental. We find that the RDF is a
linear function of p for T = T, and that its temper-
ature derivative varies inversely as I T —T, I"'
for p= p, .

II. PERCUS-YEVICK THEORY

—1 4' c(r)r dr .

The PY approximation is

c(r) = [e(r) —I]y(r)

e-~ (r&lac r

1+ph(0)= [1 —pc(0)] '

and thus an alternative form of (8) is

(14)

(15)

(16)

(17)

If the total potential energy C results solely
from the additive contributions of a pair potential
u(r), i. e. ,

C(ri, ",r~)=~ u(r~~), (6
f(j

where the r~ are the positions of the molecules
and r&&--- I r; —r, I, then the thermodynamic prop-
erties can be calculated from either the Pressure
equation

y(r) =g(r)/e(r) . (18)

III. ADHESIVE HARD SPHERES

Baxter has recently solved the PY equation for
adhesive hard spheres, where

Substitution of (16) into (11) gives the PY equation

y(12) = 1+p f [e(13)y(131—1][e(23) —1]y(23) dro.
(19)

PV 2mp
" du

Nk, T 3k, T „, dr g(')'

the comPxessibili ty equation

(7) /uk Te= ((r) = ~

R -R'
=ln 127. R'&x&R (20)

keT~ — = 1+4' [g(r) —1]r dr,(gp 2

(~P r

or the energy equation

U= 2 Nk~T+ 2vNp f u(r) g(r)r dr .

(8)

(9)

In Eqs. (7)-i(9), P and U are the pressure and en-
ergy of the fluid, respectively. The function g(r)
is the RDF which is proportional to the probabil-
ity of finding two molecules a distance x apart.
The proportionality constant is chosen so that
g(r) - 1 as r -~.

It is corivenient to introduce two additional func-
tions related to g(r). We define the total correla
tion function h(r) by

h(r) =g(r) —1

g(r)= 0 x&R'

, +0(1), R'&r&R .12 R -R' (21)

The parameter X depends on T and p and is given
by

X= (6/q) [p, —(p' —v)"' ], (22)

and where R —R' is allowed to become infinitesi-
mally small. The parameter 7 is a dimensionless
measure of the temperature. The relation be-
tween v. and T is arbitrary. For simplicity, we
assume 7. ~ T.

Baxter has obtained an analytic solution of the
PY equation for (20). In particular, for r &R',

and the direct correlation function c(r) by

h(12) =c(12)+p fh(13)c(23) drs,
p, = r + q/(I —q), (23)

where h(12)=h(r, 2), etc.
If we define the Fourier transform f (k) of a

function f(r) by

f (k)= Je'"'f(r) dr

= (4m/k) f" sinkrf(r)r dr,
then (ll) becomes

h(k) =c(k)+ ph(k)c(k) .

In particular, for k= 0,

(12)

(13)

v= rt(2+q)/6(1 —rl) (24)

and q = 6 mpR . Baxter's original calculation of the
heat capacity involved a slight problem in taking
a limit. To avoid the question as to whether the
assumptions involved in taking this limit lead to
errors in the form of the heat capacity near the
critical point, we use an alternative method, based
on the work of Watts et al. , which avoids this limit
entirely.

Neglecting the ideal-gas terms which do not lead
to singular terms, the Helmholtz free energy A
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is given by

= —ln D e-"'"&&' dr, dr„.
NkgT

Thus,

&A/NkeT) g
" dg

jv „dV
= ——,'p —gr dr.

Now

dg 1
dT 7

for R' &~ &R and is zero elsewhere. Thus

(sA/Nke T)t~ q &

(25)

(27)

(28)

Thus, the second derivative of such a constant
of integration would diverge at g = g, with the re-
sult that B would diverge along the critical iso-
chore. Such behavior is unphysical and we con-
clude that &=0.

Wheeler and Chandler' have previously pointed
out the error of using the compressibility equa-
tion critical point when examining the energy
equation heat capacity.

Earlier we have shown that, in the energy equa-
tion of state, the coexistence curve may be con-
structed by means of the Marvell construction.
Thus P= ~ when determined from the energy equa-
tion of state. Expansion of the compressibility
equation of state shows that y= 1 and 5 = 3, re-
spectively.

and

7,= —'(2 -&2 ),

q, = 2(3&2-4),

2=~c= ~c= tS ~

(29)

(30)

(31)

Expanding the energy equation about v, at p = q,
gives

Thus

(8 A/Nk p
I

3(2p )

Equation (28) is the energy equation of state for
adhesive hard spheres.

The compressibility equation critical point is
given by

IV. 6:12FLUID

The adhesive-hard-sphere system is somewhat
unphysical. For this reason we also consider
the 6:12fluid, where

+(&)= 4~ I(o'/&) —(&/&) ~ (34)

In solving the PY equation numerically, it is nec-
essary to perform integrations over some finite
region. In calculating the thermodynamic proper-
ties one must make some assumptions about the
form of g(x) for large r For m. ost applications
these corrections are small and so no appreciable
error is introduced. However, in our case, be-
cause we are working near the critical point where
h(r) becomes of infinite range, these corrections
become important. For example, the energy and
compressibilities are affected slightly differently

Thus it appears that for g = g„C diverges at 7,.
Despite Eq. (33), one cannot assign the value

& to &. To determine the critical point in the
energy equation of state we must integrate Eq.
(28) to obtain the free energy. If this is done a
constant of integration, which is of course only a
function of density, arises. This constant of in-
tegration must be determined by fitting the free
energy at some temperature. If infinite tempera
ture is used, the energy equation critical temper-
ature lies above 7„ the compressibility critical
point. With this choice of the constant of integra-
tion, &= 0 since the heat capacity will be finite at
the energy equation-of-state critical point.

At first sight, one might think that the constant
of integration could be chosen so as to make the
energy and compressibility critical isotherms co-
incide and thus be lead to a divergent heat capacity.
However, the portion of B which arises from Eq.
(28) in the absence of the contribution of the con-
stant of integration diverges to minus infinity at

0.04

0.03

0.02

0.01

0.24 0.26 0.28 0.30 0.32
P

I'IG. l. Isothermal bulk modulus of 6:12 fluid. The
points are the results of our numerical calculations.
The curves are isotherms drawn between the points and
are labeled with the appropriate reduced temperature.
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so that C and B ' aPPeax to diverge at slightly dif-
ferent temperatures. Hence, to avoid the neces-
sity of making any assumptions with their result-
ing possible errors, we truncate (34) at 6o. All
our results are for this truncated 6:12 potential.

We have solved the PY equation in the neigh-
borhood of the 6:12 critical point both by an iter-
ative method equivalent to that of Mandel et al. 5

which is based on the original form of the PY
equation and by Watts's method ' which is based
on Baxter's alternative form of the PY equation.

Away from the critical point, these methods
are equivalent. However, near the critical point
we found appreciable differences between the re-
sults of the two methods. This was particularly
true for the heat capacity. Baxter's form of the
PY equation, and thus Watts's method, gives g(r)
correctly for x &6a whereas the iterative method
introduces errors in the region aa &x &6o. Nor-
mally the effect of these latter errors is small.
However, in the neighb;. ~rhood of the critical point
the long-range behavior of g(r) is important.
Thus, Watts's method is more suitable for our
calculations. The results we report here are
based on this method. We have verified that as
the range of the integrations in the iterative meth-
od is increased, the results obtained by that meth-
od approach those obtained from Watts's method.

In displaying results for the 6:12 fluid we de-
fine the reduced temperature, pressure, and den-
sity by T*=ksT/&, p*=pa /s, and p*= po', re-
spectively. In Fig. 1, we have plotted values of
8 in the neighborhood of the critical point and in
Fig. 2 we have plotted the locus of points for which
8 = 0. From these figures we have obtained the
critical constants T,*=1.311 and p,*=0. 278. These
values are slightly different from usual PY criti-
cal constants for the 6:12 potentia17 because our
potential is truncated at 6o.

In Fig. 3, we have plotted &P*/&p* as a function

1.0 I I I I ~ I

0.8

3p
Bp

0.6

0.4

0.2

1.30 1.40 1.50
7%

1.60 1.70

FIG. 3. SPe/Sp~ of a S:12 fluid for p= p~. The points
are the results of our calculations and the curve is a
linear fit of these results.

(35)

where

sG(T, p)=4m f g(B)u(A)B dR (36)

of T for p= p, and have found a linear dependence
consistent with y= l. In Fig. 4, we have plotted
8' as a function of p fox T = T, and have found a
linear dependence consistent with 5= 3.

We have also calculated C by numerically dif-
ferentiating U, given by (9). In Fig. 5, we have
plotted C in the neighborhood of the compressibil-
ity critical temperature T„and in Fig. 6 we
have plotted C ~ as a function of T for p=p, . For
T near T„C varies linearly with T.

The Helmholtz free energy A and pressure may
be calculated''~ from the energy

(A -Ao)/NksT= —~&p f ' Gd(Pe),

I I I I l I I I I

1.31
81/2

1.30

1.29—

I I I I I I I I I

0.24 0.26 0.28 0.30 0.32
p

0.24 0.26 0.28 0.30 0.32

p

FIG. 2. Locus of points for which the isothermal bulk
modulus is zero.

FIG. 4. Isothermal bulk modulus of a 6:12 Quid for
T = T~. The points give the results of our calculations
and the curve is a linear fit of these results.
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10

T" = 1.312

Ci 0
9 (R) T" = 1.32

1.32

1.35 T" = 135

I I I I I I I I i

0.24 0.26 0.28 0.30 0.32
P

FIG. 5. Heat capacity at constant density of a 6:12
fluid near the critical point. The curves are labeled
with the appropriate reduced temperature.

o

R/0

FIG. 7. Radial distribution functions of a 6:12 Quid
for p=pc.

and Ao is the Helmholtz free energy at the inverse
temperature Ppe. Again, if we choose Ap and Ppf
so that the energy equation of state is correct at
some high temperature, we find that the energy
critical temperature is greater than the com-
pressibility critical point. Hence, C is finite at
the energy critical point and we have &= 0 and

P= ~2

Other critical exponents which might be sought
are the values of a and P in the compressibility
equation of state and the values of y and 5 in the
energy equation of state. Each of these calcula-
tions involves both numerical integration and dif-

ferentiation. It is doubtful that sufficient accuracy
could be maintained so that meaningful values of
these exponents could be obtained. However, this
might be an interesting problem. The calculation
of P in the compressibility equation of state is
made difficult because for subcritical temperatures
there is a range of values of p for which the PY
equation has no solution.

Vfe now turn our attention to the behavior of the
RDF in the neighborhood of the critical point. The
critical exponents of the RDF are more fundamen-
tal in the sense that they determine the critical
exponents of the thermodynamic properties and

provide more detailed information.

I I I I I I I I I

0

1.5— 0.15

h(R)

1.0— 0.10— I =0.278
T"= 1.312

0.5— 0.05—

1.30 1.32 1.34 1.36 1.38 1.40

FIG. 6. Internal heat capacity at constant density of
a 6:12 Quid for p= p~. The points give the results of our
calculations and the curve is a linear fit of the results
for T-T,.

R/0

FIG. 8. h(B) of 6:12 fluid near the critical point. The
solid curve gives the PY results and the broken curve
gives the results of Eq (37)
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0

T"=1.311

&g(R)

-2—

~O
y(Rj

~O
~~O

0.05

2 ~~O
~~ 05

1.0
~~O ~ ~
I-
tl 0 0—+

1.5

1.0
~~IQ~+~ ~(i
~—0—~—0—0

1.5

'l.30 1.32 1.34 1.36 1.38 1.40
T"

FIG. 9. &g/&T at constant density of a 6:12 Quid for

p = p, . The curves are labeled with the appropriate values

of R/a.

0 l I I I I I I I I I

0.24 0.26 0.28 0.30 0.32
P

FIG. 11. y(R) of a 6:12 Quid for T = T~. The curves
are labeled with the appropriate values of R/o.

V. DISTRIBUTION FUNCTIONS

In Fig. I, we have plotted g(r) as a function of
T for p= p, . The RDF changes rapidly as T-T,.
Also it is to be noted that the RDF decays monoton-

ically to unity for large r. Fisher and Nidom'3

have suggested that the critical point is well inside
the region of monotonic decay. Vfe have examined

g(~) for a fairly wide range of temperatures and

densities. Our results appea~ to be consistent
with the conjectures of Fisher and Widom. For
temperatures of the order of T„ the PYg(x) of the

6:12 fluid appears to decay monotonically for den-

h(r) = (I/4spX) (e ""/x)

for r large. In (O'I) the parameter

X=swpj x4c(r) Ch

varies slowly and

(3'I)

(38)

sities at least 30% greater than p, . We cannot be
more definite because it is impossible to make any
firm statements concerning whether g(r) has a
finite or an infinite number of oscillations at high-
er densities when we know g(r) only for r & Go.

For an Ornstein-Zernike' system

0.3

0,2— p" = 0278
i' = 1.1 h(k)

80

/ g

1.31
I

1.32 1.33 1.34

20— 0.3

0.4—
--0.5

FIG. 10. Bg/ST at constant density of a 6:12 fiuid for
p = p, and r =1.3.0; The points give the results of our cal-
culations and the curve is a linear fit of these results for

0.01 0.02 0.03
aT/T,

FIG. 12. S(k) of a 6:12 fluid for p= p~. The quantity
AT =T- T~. The curves are labeled with the appro-
priate value of ko.
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40
1.32

30—
1.3

20—

'l0—

0.5 1.0 1.5

FIG. 13. h@) of a 6:12 fluid for p=p, . The curves
are isotherms labeled with the appropriate reduced tem-
perature.

We have examined y(r), and thus c(r) and g(r),
for T= T,. Some of our results are plotted in
Fig. 11. We see that, at least for small r, y(r)
is a linear function of p. For large r, sy(r)/&p
is small. However, to within the numerical ac-
curacy of our calculations y(r) is a linear function
of p at large r. Thus, we conclude that y(r) is a
linear function of p for p- p, for all r. This is
consistent with 5 = 3.

We have plotted k(k) as a function of T and k
for p= p, in Figs. 12 and 13. Fisher and Burford'
have suggested that for real systems k(k) exhibits
a maximum for fixed k at a temperature above
T,. The PY h(k) does not appear to exhibit such
a maximum and is like the Ornstein-Zernike and
random-phase approximations. However, the
possibility that such maxima occur at smaller
values of d T= T —T, than we have considered is
not ruled out.

VI. SUMMARY

Xk~T (sp j (39)

Bg(r) 1 „,Blc

&T 4mp& &T (40)

Since y=1 we have, from (39), z~ IT —T, l"'.
Thus, sg/&T~ I T- T, I

'" at large r We ha. ve
plotted (&g/&T) for r=1.1o as a function of T
for p= p, in Fig. 10. For T near T, we see that
(sg/ST) varies linearly with T. We have found
similar behavior for other values of r. Thus,
we conclude that for T near T, and p = p„

(41)

for all r.

tends to zero at the critical point. From Fig. 8,
we see that near the critical point k(r) is of this
form for large r We .have not examined k(r) away
from the critical point because away from the crit-
ical point k(r) is very small for large r and our
numerical values are less accurate.

In Fig. 9, we have plotted sg/sT as a function
of T for p= p, . We see that &g/&T diverges at the
compressibility critical temperature T, for all
values of r. For r large, where (37) is valid,

We have shown that, at least for the systems
we have considered, in the PY theory 0.= 0 and

1P= —, for the energy equation of state and y= 1
and 5= 3 for the compressibility equation of state.
It is our conjecture that these values are valid for
any potential (except for a purely repulsive po-
tential for which there is no critical point).

In addition, we have shown that for the 6:12
fluid sg/&T diverges in the PY theory for all val-
ues of r and with a critical exponent of & which
is independent of r. An examination of the den-
sity dependence of the correlation functions shows
them to be, for T= T„ linear functions of p for
all r.

The PY values of y and 5 for the energy equa-
tion and of & and P for the compressibility equa-
tion are not known. Also none of the critical ex-
ponents for the related hypernetted chain equation
are known. Both problems are of considerable
interest.

ACKNOWLEDGMENTS

The authors are grateful to Dr. R. O. Watts for
providing them with a copy of his program for
solving the PY equation and to Dr. J. A. Barker,
Dr. D. Chandler, Dr. M. E. Fisher, Dr. J.
Stephenson, and Dr. B. Widom for valuable com-
ments.

*Work supported in part by grants from the Department
of the Interior, Office of Saline Water, and the National
Research Council of Canada.

iJ. K. Percus and G. J. Yevick, Phys. Rev. 110, 1
(1958).

2M. Vicentini-Missoni, J. M. H. Levelt Sengers, and
M. S. Green, Phys. Rev. Letters 22, 389 (1969).

3J. S. Rowlinson, L iquids and Liquid Mixtures, 2nd

ed. (Butterworths, London, 1969), pp. 79-86.
M. E. Fisher, Rept. Progr. Phys. ~30 615 (1967).
5F. Mendel, R. J. Bearman, and M. Y. Bearman, J.

Chem. Phys. 52, 3315 (1970) R. J. Bearman F.
Theeuwes, M. Y. Bearman, F. Mendel, and G. J:
Throop, ibid. 52, 5486 (1970).

M. Chen, D. Henderson, and J. A. Barker, Canadian
J. Phys. ~47 2009 (1969) R. O. Watts, ibid. 48, 634



1232 D. HENDERSON AND R. D. MURPHY

(1970); J. A. Barker, D. Henderson, and R. O. Watts,
Phys. Letters 31A, 48 (1970).

D. Henderson, J. A. Barker, and R. O. Watts, IBM
J. Res. Develop. 14, 668 (1970).

R. Z. Baxter, J. Chem. Phys. 49, 2770 (1988).
9R. O. Watts, D. Henderson, and R. J. Baxter,

Advan. Chem. Phys. ~21 421 (1971).
loJ C Wheeler and D. Chandler, J. Chem. Phys.

55 1645 (1971).
R. J. Baxter, Australian J. Phys. 21, 563 (1968).

i2M. Fisher and B. Widom, J. Chem. Phys. 50, 3756
(1969).

i3L. S. Ornstein and F. Zernike, Proc. Acad. Sci.
Amsterdam 17, 793 (1914).

'4M. E. Fisher and R. J. Burford, Phys. Rev. 156,
583 (1967).

PHYSICAL REVIEW A VOLUME 6, NUMBER SE PTEMBER 1972

Retarded van der Waals Potential between Pairs of Spinless Atoms ~

Chi-Kwan E. Au
DePartment of Physics, Columbia University, Peso Fork, Nese Fork. 10027

(Received 9 February 1972; revised manuscript received 3 May 1972)

The retarded van der Waals potential between pairs of spinless atoms, H-H, H-He, He-He,
Ne-Ne, Ne-Ar, and Ar-Ar, was computed with covariant formulas of Feinberg and Sucher.
Electric and magnetic effects were treated on equal footing. For hydrogen, which posses-
a large magnetic polarizability, magnetic effects dominate for large distance of separation,
and for small distances, an additional contribution to the London constant for a pair of
hydrogen atoms from the magnetic effects is found to be 0.0155na5, about 0.24% of the cur-
rently accepted value.

I. INTRODUCTION

Recently, using a model-independent approach,
Feinberg and Sucher' have obtained a covariant for-
mula (hereafter, the FS formula) for the retarded
long-range electromagnetic interaction potential
(the retarded van der Waals potential) between a
pair of spinless and neutral particles, separated
at a distance R on the assumption that the long-
range force is due to two-photon exchange. This
potential is written as

Vz„' (R)= Z Vx„(R), (1)
X, Y

where X, F= E or M corresponding to electric or
magnetic effects, and

~)B
x, F (4&)4/R

fe OO

dCg A I ~ I ppx (&~, t) pr (&s, t) C'xr,
A

Vx„———Cx„(R)/R

with
1

Cxr=
4 5 dkg dks k„kspx(k„) p„(ks)4w -o

where

dg
& ""Pxz(&R) (5)
(kg+ $ )(ks+ $ )

'

Pea('0)=P„M(0) = tl + 2ti + 5q + 6@+3 )

PEN(ti) = PMz(q) = —(q y 2'ti + q ) .
(~)

(7)

Cxr= (1/Sw )Px„lo" d(u f(z(uR)

x[Re Ex (&u) hnFsr(~)+ lmFx" (ru) HePsr(~)]

The expression in (5) can be transformed to the
familiar integral over imaginary frequency and to
a one-dimensional integral over the real and imag-
inary parts of the Compton amplitude at real fre-
quencies, ' namely,

where 4 x Y' is a phase-space factor, the p's the
spectral functions of the corresponding form factors
in the atomic Compton amplitude, and o' and t de-
note, respectively, the invariant c.m. energy
square and momentum transfer square of the
Compton process. To a first approximation, we
can put'

where

f(x) = coex six —sinx cix,

&EE=&M'M=m~ &Z-4~ &Z+r~ &a-3~~R+3,

(10)

px(&, t) as px(&)=px(&, t=o) .
Then Vx„ in (2) simplifies to

(3) EM ME X6~ R+ 4~ R 4+ R ~

oy oo 1 4 4 1 3 3 1 2 2

It has also been shown by Sucher and O'Car-


