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Method of Correlated Basis Functions for the Ground State of an Electron Gas
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The ground state of an electron gas is studied by means of the method of correlated basis
functions developed by Wu and Feenberg. The optimum form of the Bijl-Dingle-Jastrow-
type wave function of a charged-boson gas obtained with the application of the paired-phonon
analysis is used as the correlation factor in a trial wave function describing the electron gas.
Numerical results are given for the correlation energy per particle and the radial distribution
function at metallic densities. The high-density limit of the system is briefly discussed.

I. INTRODUCTION

Considerable progress has been made recently
in the development of quantum theory of interacting
many-particle systems using a wide variety of
techniques. In particular, the method of second
quantization, quantum field theory, and Green's
functions have been used quite extensively. The
elegance of this approach lies in the fact that im-
portant physical properties can be evaluated with-
out the need for dealing directly with the sym-
metrical or antisymmetrical wave function, which
is rather cumbersome to find from the many-body
Schrodinger equation. Yet, in the application of
the field-theoretic techniques one is usually con-
fronted with the problem of having to deal with un-
pleasant divergencies.

The many-body problem has also been approached
from a substantially different direction by means
of the method of correlated basis functions, ' '
which does not lead to any divergencies and hence
is well adopted to numerical evaluation even if the
two-body potential is highly singular so that its
Fourier transform does not exist in any form. For
a fermion system the starting point of this pro-
cedure is the introduction of an antisymmetrical
trial wave function"

Eo = Eo + Em+ Eo2+ Eo3 ~

E B E E E
(Va)

(Vb)
F 3

Eos = ~ NeE,

E$2 = —24NeF f [1 —S(2kFx)](l —2x+ 2x )x dx,
(Vc)

&22 = —(3/«)'NeF f„~„ ia ( F ~2)

x [1 —S(kFx»)] [1 —S(k Fx»)]dx, dx$dx$, (Vd)

in which Eo is the ground-state energy of the boson
system and

The description of the ground state of the fermion
system in the representation of correlated basis
functions is convenient in terms of the boson radial
distribution function

gB(F12) = N(N- 1)p ' f I
+2 I'dr$4-'

or, equivalently, the boson liquid structure func-
tion

S(k) = 1+p f [gB(r) —1]e'"'dr,
where p=N/0 is the particle number density.
Using a cluster-expansion, technique Wu and Feen-
berg (WF) have evaluated diagonal matrix elements
of the identity and the Hami. ltonian operator, ob-
taining the ground-state energy given by

4E = 4'~C, kF=(3m p)', eF = tr kF/2m . (Ve)

in which

4 = D«[e' ' "X~(~&)] (2)

04~ —Eo 4~, (3)

is a Slater determinant constructed from products
of plane wave orbitals and spin functions, and the
correlation factor 4~ is the ground-state boson-
type solution of the Schrodinger equation'

The formula for the fermion radial distribution
function based on a similar cluster expansion is

gF(F12) g ( B12)F(1 2h (kF$12)

p f [gB(—F1$) 1]gB(F28)h (kFF2$)dr$

+ 2 ph(kF$', 2) f [gB(rq$) —1]h(k r»)
&&gB(r»)h(kFF»)dr, + J, (8)

@2 N N

H= — Q v( + Q v(v)~) .
262 f j ](g

(4)
with

h(x) = 3(sinx —x cosx)/x
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Corrections to the results of Eqs. (7) and (8) arising
from nondiagonal matrix elements are discussed
in Refs. 1, 4, and 5.

Applications of the WF formalism to the ground
state of liquid He have given results in semiquan-
titative agreement with experimental values. '
However, the method has not yet been tested in the
case of the electron gas. The purpose of this paper
is to investigate the ground state of the electron
gas using the WF theory. The problem of estimat-
ing contributions from nondiagonal matrix elements
is reserved for a later paper.

+ xs xa xl +,(xj, x2)b„(xg, xs)b„(xp, xs),
(11a)

where

+„(xg, x~) = (I /xq x~) f S(k $)P„(cosa ~) $ d$,

I.O

(a)

II. NUMERICAL RESULTS AT INTERMEDIATE DENSITIES

At the present time no exact form is available
for the boson radial distribution functionge(r) or
the liquid structure function S(k), which contains
almost all of the correlation effects of the system
(except, of course, the statistical effects). There
are, however, some approximate forms considered
in variational studies of the charged boson gas'
in particular, the trial function introduced in Ref.
14 has the form

ge(r) = 1 —o.'[1 —y(r/b)~]e '"~~' ',

where o,', y, and p are variational parameters and
b is the scale parameter determined by the nor-
malization condition

0

l.o

2
k (ao~)

p f [I -ge(r)]dr= 1 . (10)

Quite recently this form has been improved'8
using the paired-phonon analysis' ' 8 for optimiza-
tion of the approximate variational description in
the Bijl-Dingle-Jastrow (BDJ) function space. In
the present study of the electron gas, we use these
improved (optimum) functions S(k) and ge(r) to
evaluate Eo and g~(r) The c. alculation in Ref. 16
shows that the leading corrections to the optimum
energies, which come from three-phonon compo-
nents, are very small except at very low den-
sities where charged particles crystalize. There-
fore, we believe that the use of the optimum S(k)
and ge(r) in Eqs. (7) and (8) is meaningful. Some
plots of the optimum S(k) taken from Ref. 16 are
shown in Fig. 1 at x,= 1, 3, and 6; here the mean
particle separation r, = (8/4wp)'~ ' is given in units
of Bohr radius ao= h /me .

The form of the integral for E~ of Eq. (7d) does
not seem to be suitable for numerical integration.
A more convenient form can be derived first by
expanding the functions of the integrand in terms of
Legendre polynomials and then by carrying out the
angular integrations using the orthogonality proper-
ties of the polynomials. The resulting expression
is

E(q ———(~) ¹~Q(2n+ 1)f dxq f dxp f dxq
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FIG. 1. Liquid structure functions of the charged-
boson gas. (a) r, =1; (b) ~,=3; (c) r, =6. These results,
obtained in Ref. 16, are used in Eqs. (7) and (8) to eval-
uate the ground-state energies (Table g and the radial
distribution functions (Fig. 2) of the electron gas.
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TABLE I, Ground-state energies per particle. Eo is the ground-state energy of the charged-boson gas. g&&, @02,
E03, and Eo are given by Eqs. (7) and the correlation energy E~» is defined by Eq. (12). Energies and the mean particle
distance ~s are given in atomic units.

Ref. 16
E~/X

Wu- Feenberg theory
z~/N z~/N z f/N Z,. /N

Ref. 22
Z,. /N

Hubbard

Z„QN
RPA

Z.,QN

1.

2
3
4
5
6
7
8
9

1.0
20

—O. 7758
—0.4509
—0.3264
—0.2586
—0.2154
—0. 1853
—0. 1.629
—0. 1456
—0. 1318
—O. 1205
—O. 0660

2. 2099
O. 5525
0. 2455
0. 1381
0. 0884
0. 061.4
0. 0451
0. 0345
0. 0273
0. 0221
0. 0055

—0. 1749
—0. 0619
—0. 0328
-0.0207
-0.0144
—0. 0106
—0. 0082
—0. 0065
—0. 0054
—0. 0045
—0. 0013

—O. O309
—o. 0121
—O. 0066
—0. 0042
—0. 0029
—O. 0022
—O. 0017
—O. 0013
—0.0011
—0. 0009
—O. 0003

1.2283
0. 0278

—0. 1203
—O. 1454
—0. 1443
—O. 1367
—o. 1277
—0. 1189
—O. 1109
—0.1037
—0.0621

—O. 0650
—O. 0667
—0. 0604
—o. 0545
—O. 0494
—0. 0454
—O. 0419
—0. 0389
—O. 0364
-0.0342
—0. 0218

-0.124
-0.092
—0. 075
-O. 064
-0.056
-0.050

-0.036
-0.022

-0.131
—0.102
—0. 086
-0.076
-0.069
-0.064

—0.1578
—0. 1238
—0. 1058
—0. 0938
—0.0851-0. 0784
—0. 0730
—0. 0685
—0. 0647
—0.0615

b„(x), xy)

= (1/x, x~) f"~'"& [1 —S(kg)]P„(cose,q) gdg,

cos 8;~ = (x, + x~ —$ )/2x, xq .2 2 2
(11b)

The same type of numerical procedure has been
used in the evaluation of virial coefficients in
statistical mechanics of classical fluids in equilib-
rium. 'Since the method also appears to be useful
in various problems of quantum-mechanical many
particle systems, we outline the derivation of
Eg. (11) in the Appendix.

To examine the convergence of the series of Eq.
(11), we write the sum as

of the ground state. The Fermi energy per particle

&oi/N = ~ (T' &)"' (I/&')

is given by Eqs. (Vb) and (7e). The ciuantities
Eoa/N and E~/N have been evaluated numerically
from Eqs. (Vc) and (11)with estimated errors less
than 0. 05% and 0. 3%, respectively; for the func-
tion S(k) appearing in Eqs. (Vc) and (11)we have
used the numerical results of the optimum liquid
structure function obtained in Ref. 16. Zo/N given
by Eq. (Va) is the ground-state energy per particle,
which does not include contributions from nondiag-
onal matrix elements. Values of the correlation
energy per particle defined by

Z„= NQ W„.
ff=0

carr/ = 0/ sp/

with the Hartree-Fock energy per particle

(12)

At the representative density r, = 3 the numerical
calculation yields 8'o= —V. 70&&10, W, = 1.08x10 3,
8'2= —6. 06~10, 8'3= —3.40&10, and W4= —1.43
x10, in units of Ry (me /28 ). (Henceforth the
atomic units ao and Ry will be used without further
remarks. ) The behavior of convergence of the
series at other densities in the range 1 ~ r, ~ 20
is very similar to that at r, = 3. Thus, the nearly en-
tire contribution (more than 99%) of E~ comes
from the first two terms 8'o and W&, indicating
that the convergence is quite rapid. Our numeri-
cal results for various energy terms evaluated
using the %F theory are summarized in Table I
and compared with earlier results obtained with
different approximation methods based on the di-
electric formulations. (Here again the mean
particle separation r, and energies are given in
atomic units. ) In the table Zo/N is the boson
ground-state energy per particle [Eg. (3)j obtained
in Ref. 16 by means of the paired-phonon analy-
sis, ' ' which optimizes the BDJ-type description

EHF Eo~ 3 eg 1
N N 2m 4 (13)

are listed in Table I for comparison with the cor-
responding values obtained by Sing+i eI; al. 3 and
also with those resulting from the random phase
approximation (RPA) and from the Hubbard ap-
proximation. ' From Table I, we find that the
WF formalism gives energies higher than those
obtained using different techniques. Here we may
point out that the actual differences in total energy~
Zo/N are rather small although the corresponding
correlation energies differ considerably. At r, = 1,
for example, the Hubbard correlation energy is
about twice that evaluated with the VfF theory, while
the difference in total energy is less than 6%. Also
we observe that the numerical results for E&&,
Eo2, and E do not show any indication that the
WF expansion (7) will not converge. It is interest-
ing to note that the relation

EOS 5 802
1 g
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is nearly satisfied at all densities in the range
2(x~ ~ 20.

Using the boson radial distribution function ge(x)
obtained from the optimum boson S(k) through the
inverse Fourier transform of Eq. (16), we have
also evaluated the fermion radial distribution
function g~(x) numerically from Eq. (8); our re-
sults for x,= 1, 3, and 6 are plotted in Fig. 2
against k~x, where the Fermi momentum k~ is
given by Eq. (Ve). In the figure curve A represents
gz(r) found in the present calculation [Eq. (8)]
based on the WF theory, and curve B is the result
obtained by Singwi et al. using an improved di-
electric-function formalism. Curves C and D are
those resulting from RPA and the Hubbard approxi-
mation, respectively. We may remark here that
an important feature of the WF theory is the fact
that it never yields negative values of gz(r) at any
distance x and at any density p, while other theories
previously studied (including those of Ref s. 22-24)
lead to negative values of g~(r) for small values of
~ at all or some values of ~, in the range of metallic
densities.

It must be mentioned that examination of Table
I and Fig. 2 reveals an interesting fact that of the
three calculations 4 with which our results are
compared for E„„/Ã and gz(x), that of Singwi et
al. disagrees least. It is surely signifi. cant in
the sense that the calculation of Ref. 22 is appar-
ently most accurate of the three since it attempts
to remedy some of the deficiencies (in particular,
overestimation of the short-range correlation) of
the two earlier treatments. ~'~4 Another point
calling for explicit notice is that the leading cor-
rection to Eo/N due to contribution from nondiago-
nal matrix elements is a negative quantity and
hence (if not too large) it will reduce the discrepan-
cy between the correlation energy of the present
calculation and that of Singwi 8 t al.

We conclude this section with a brief discussion
of earlier variational treatments of the electron-
gas problem which are, one way or another, re-
lated to the WF method used in the present study.
It may be pointed out here that if the boson-type
solution +& is approximated by the BDJ-type wave
function

1.0

0.5

1.0

0.5

-1.0

1.0

0.5—

0LL
CI

rs =1

I I

kfr 2

I I

1 kFr

@a = e*p 2 Z "("w)) (16)
-0.5—

the trial wave function (1) becomes in the collec-
tive coordinate representation

4z ——4 exp[ —'N Q|-,C(k)(ppp |--N)],
where

N
elk r

C(k) = p f e"'u(r)dr .

(16)

(18)

k rFf 3

FIG. 2. Radial distribution functions of the electron
gas. (a) ~ =1; (b) x =3 (c) r~=6. Lines A are obtained
in the present calculation from Eq. (8} and lines 8 are
results of Singwi et al. Lines C and D result'from BPA
and the Hubbard approximation, respectively.
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The exact form of the optimum liquid structure
function of the charged-boson gas at high density
ls given by

S(k) = P S„(k),
n«o

S,(k) = (I+ Ieve'mp/k'k') '",
(19)

S~(k) =
22 s 2+ ~

[I-So(k')1-22m pJ 2

x [1 —So(R —k')]dk',

and the exact ground-state energy per particle is 3'34

Eo/N= —0. 8031/x, ~ +0.02749+0(r, ~ ). (20)

Here the leading term of Eo/N is obtained from S(k)
of Eq. (19), but only a part of the second constant
term arises from the variational calculation in
the BQJ function space, the remainder being
accounted for by the second-order perturbation
correction generated'by the three-phonon compo-
nents.

Substitution of Egs. (19) and (20) into Eq. (7)

The form of Eq. (16) was used earlier by Ed-
wards, who determined the function C(k) by solv-
ing the Schrodinger equation approximately. Later
Gaskell ' derived C(k) in a variational calcula-
tion which includes effects omitted in the RPA;
his results for E„„/N for 2~ r, ~ 5 agree closely
with Hubbard's values listed in. Table I, and the
corresponding radial distribution function g(r) ob-
tained at x,= 2. 66 remains positive definite at all
values of x. An interesting variational study was
also made by Edwards and Hillel, who, using the
determinantal states, examined the possibility of
crystalization and magnetic ordering of the elec-
tron gas; they introduced the radial distribution
function g(r) into the interaction energy between
electrons of antiparallel spjn, which is neglected
in the Hartree-Fock approximation. While the
above methods make explicit use of the collec-
tive variables, Broyles et al. '3 have developed
a useful scheme for approximating the 5later de-
terminant @ of Eg. (2) by the form of a Boltzmann
factor to apply the method of calculating the classi-
cal radial distribution function when the ground
state is described by the trial wave function of Eq.
(1) with 4s given by Eq. (15). Their variational
method involves the RPA at high density and the
superposition approximation for the three-particle
distribution function at metallic densities. We
remark finally that our calculation of E /0Nand
g(r) is an indirect variational treatment in the
sense that the unknown function u(r) contained in
4's is determined by minimizing (+~ IJf I 4s) rather
than (4'~ IH i 4 ~).

III. HIGH-DENSITY LRVlIT

yields, after some algebra, the ground-state en-
ergy per particle in the form

&o/N=Eas/N+&/&s'"+&/&. '"+ ", (21)
where A and B are constants. Thus, we find that
the Hartree-Fock energy per particle given by
Eq. (13) is reproduced exactly by the WF theory,
but it fails to give the correct correlation energy
since the exact result for the correlation energy '
does not contain terms of O(r,3'4)and O(r, ~ ). In
a similar way, the value of the radial distribution
function at the origin can be determined from Eq.
(8) by using Eq. (19). The resulting expression
is of the form

g~(0) = —,'+ C r, + Dx, inx, + ~ ~ ~, (22)

C and D being constants. This result agrees only
in the lowest order with 'Qfadati and Isihara's for-
mula, which gives a second lowest-order term of
O(~,).

It would be instructive to note that there are at
least two approximations involved in obtaining the
results for Eo/N and g~(0) given by Egs. (21) and
(22). First, as we have already pointed out, the
contribution from nondiagonal matrix elements is
not included in the energy formula given by Eq. (7).
This contribution accounts for about 24% of the
total ground-state energy in the case of liquid He
at equilibrium density. ' Thus, it appears that
inclusion of the nondiagonal effects can improve the
accuracy of the second-order energy term in the
problem of the electron gas. The second approxi-
mation is related to the fact that S(k) given by Eg.
(19) is not exact [except the leading term So(k)]
since it is generated by the BDJ type of variational
wave function, which is not general enough to rep-
resent the exact solution of the Schrodinger equa-
tion (3). Therefore, the failure of the present
calculation to yield the correct correlation energy
may be partially due to the use of the optimum
form in place of the exact form for the boson li-
cluid structure function S(k). No progress has yet
been reported to date in the evaluation of the exact
correction term to S(k) of Eq. (19) arising from
the three-phonon vertex. Further investigation is
planned for clarification of the precise source(s)
of the discrepancy between our results based on
the WF formalism and those obtained previously
with different methods ' for Eo/N and g~(0) at
high density.
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APPENDIX: DERIVATION OF EQS. (11)

The integral for E~ given by Eq. (7d) is of the
form
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where
2 — 2 2+ r& —2r& rz cosa&»

a, (r, , ra) = f' f(r»)P, (cos8,a) sin8, ad8ia,
(AS)

b„(r, , rs)= f'g(r, s)P„(cos8»)sin8, sd8,s,
cn(ra yt rs) f k(ras)pn(cos8as)»n8asd8as

and P, (cos8) is the Legendre polynomial with the
mell-known property

f P,(cos8)P (cos8) sin8d8= [2/(2 i+1)]6,
'(AS)

Equation (A3) then becomes

FIG. 3. Vectors r~, r2, and r3.

I= s Q (2l+ 1) (2m+ 1) (2n+ 1)f dr, f dra
l swan=0 0 0

xf~ drsr, ra rs a, (r» ra)b~(rx, rs)c„(ra, rs)
t~ 2 22

f dr) dradrs f(rga)g(res) k (ras) (A1)
2%xJ

g
&» f g

d&» fs d& pl(&12) pm(u»)pn(Vas)

(Av)
in which the three-dimensional variables of inte-
gration r, , r2, and r3 range over a unit sphere.
If the integration is performed over variables r3,
r2, and r, in this order, we can, without loss of
generality, choose Cartesian coordinates in such
a way that r, is along the z axis, r2 is on the x-z
plane, and r3 is in the x-y-z space as shown in
Fig. 3, with their volume elements given by

24'prgQrg

cfr2 = 2%r2 Gr2SinOi248~2

drs = rs «s»n8&sd8»dk .
Thus Eq. (A1) may be written as

I = Sm g dr, r, f drara f drsrs f d8, asin8, a

x f'd8»sin8» f" deaf(r, a)g(r„)k(ras) . (A3)

Expanding the functions of the integrand in terms
of Legendre polynomials, we have

f(r,a) = —Q (2l+ 1)a, (r, , ra)P, (cos8,a),
1

g=0

g(r, s)= —Z (2m+1)b„(rg, rs)P (cos8»), (A4)
ten0

k(ras)= —Q (2n+ 1)c„(ra, rs)P„(cos8as),1

2m=0

~»ie P&(P&a) and P„(p,s) do not depend on g,
P„(gas) does depend on Q through

P„(gas) P„(p,a)p„(p|s) p 2 Q (n —k)!
(n+ k)!

n (&|a)Pn (Vis) «s(kP) (AS)

But, since
2rf cos(kg)dp=0 k=1 2 ~ ~ ~

0

the P integration reduces to

(f dpP (i as) 2' (ala) p (Pls) ~

Consequently, we have

I=2s' Z (2l+1)(2m+1) (2n+1) f dr, f dpa
f, m, n=0 0 0

"fs «s rg'ra'rs' sg(rg, ra)b (r|, rs)c, (ra, rs)

x fd»a'pi(»a)p. (&|a)f, du»p~(V»)p. (i »),
and by Eq. (AS) we obtain finally

I = (2s') Q (2n+1) f dr, f dra f d r&srrar aasa
tlsa0

x a„(r„ra)b„(r„r,)c„(rs,rs) (A10)

completing the desired derivation of Eqs. (11).
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Some consequences of the Percus-Yevick theory are studies in the neighborhood of the
critical point for adhesive hard spheres and for the 6:12 potential (truncated at 6'). It is
shown that the Percus-Yevick theory gives rise to classical behavior at the critical point.
In particular, it is shown that for the compressibility equation of state the critical exponents
y and p are 1 and 3, respectively, and for the energy equation of state the critical exponents
e and P are 0 and 2, respectively. In addition, the behavior of the Percus-Yevick distribu-
tion function in the neighborhood of the critical point is examined and it is shown that for the
critical isochore the temperature derivative of the distribution function diverges with a
critical exponent of ~ which is independent of y and that for the critical isotherm the distri-
bution function is a linear function of the density for all y.

I. INTRODUCTION

The theoi..~ =:;5 +he behavior of a fluid near its
critical point is one of the most intensively in-
vestigated areas of physics. In this paper we
deal wi.h the critical-point behavior of a fluid in
the Percus- Yevick (PY) approximation. '

I et us consider a fluid of N molecules at a tem-
perature T and occupying a volume V. Thus, the

critical point is specified by T, and p„where
p=N/V. Experimentally it is found that a number
of quantities vanish or diverge at the critical
point. Critical exponents can be used to charac-
terize the behavior of these quantities near the
critical point. For example, the heat capacity at
constant density C is given by

C=constx ~T-T,
~


