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It might be argued that prescribing a c-number driv-

ing field is inconsistent v ith a quantum-mechanical treat-
ment of the field and its interaction with the NO. It
should be understood, however, that such a prescription
merely indicates that the som'ce of the driving field is
undisturbed by the behavior of the NO, as discussed in
detail in several earlier papers on quantum optics: I. B.
Senitzky, Phys. Rev. Letters 15, 233 (1965); 16, 619
(1966); Phys. Rev. 155, 1387 (1967). The reaction of
the NO on the field is fully taken into account through
the coupling of the NO to all the modes, which are re-
ferred to as the radiation field, with the word "radiation"
sometimes omitted when no ambiguity is possible.

leThe expressionfor 8 thus obtained consists of the un-
coupled field (whichis go) and the reaction of the field due
to the presence of the NO. If one regards the field as
a loss mechanism or a thermal reservoir, it is easily
seen that this derivation is similar, in principle, to that
for a more general dissipation mechanism treated in
Ref. 3, and also in two later papers: I. B. Senitzky,
Phys. Rev. 137, A1635 (1965), Sec. II A; 155, 1387
(1967), Sec. I. The present analysis differs from that
of Dillard and Robl (Ref. 8) by the presence of the con-
stant &2, and also terms which are dropped in the rotat-
ing-wave approximation used by them. (This accounts
for the fact that they obtain no frequency shift. ) o'~L

may be regarded as a purely resistive, or dissipative,
effect of the field of the NO, while i 0'2L may be re-
garded (in the language of circuit theory) as a reactive
effect. The expressions for 0,

&
and 0,2 illustrate the fact

that the dissipation is mainly a resonant phenomenon,
due to the coupling to modes of approximately the same
frequency, while the frequency shift is mainly a nonreso-
nant phenomenon, due to the coupling to modes of signifi-
cantly different frequency.

2oIt is to be noticed that the frequency shift canbe written
as mat' —0.', . where & and o" are defined by Eqs. (37d)
and (74d), respectively. As mentioned in connection with
these equations, the frequency shift is determined mainly
by terms that are discarded in the use of the rotating-
wave approximation. It is found by G. S. Agarwal [Phys.
Rev. A 4, 1778 (1971)], who used essentially a Schro-
dinger-picture description of the system, that the rotat-
ing-wave approximation affects the solution significantly
only if the initial state of the NO has awell-defined phase.
The physical reason for this effect becomes obvious in
light of the present discussion. Oscillators with slightly
different frequencies will be in much different "states"
after a number of cycles if the "states" describe the in-
stantaneous values of the oscillating coordinates, that is,
if they describe the phase of the oscillation.

2'The above expressions for (I q) are equivalent to
those of Dillard and Robl, Ref. 7, who derive, essential-
ly, (L3) for n =2-5, 9. Their method may appear more
complicated because they do not take explicit advantage
of the fact that L is a constant of motion.

2 I. R. Senitzky, Phys. Rev. Letters 19, 1062 (1968).
tBThe amplitude of oscillation of the NO for (L3) in the

neighborhoods of +L0 is very small, of course, but-on
the one hand —these neighborhoods become relatively
smaller as Lo increases, and —on the other —they are
passed through more quickly as the driving field increases.

4 Leon Kotin (unpublished).
The classical equation for the strong-driving-field

case may be recovered by setting these quantities equal
to zero, differentiating both sides, and noting that
—c'Q f dtqLq{tq) is equal to o'L3 up to order o.

I. R. Senitzky, Phys. Rev. 134, A816 (1964).
See, for instance, %. Hurewicz, Lect'.es on Ordi-

nary Differentia/ Equations 6Viley, New York, 1958).
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A quantum theory of diffusion is presented and applied to the diffusion of isotopic impurities
in solid helium. For temperatures much less than the Debye temperature 8 and much more
than the impurity exchange temperature KJ/k&, it is shown that the diffusivity is given by
D=(js /o g). The effective cross section o* for the scattering of two mobile impurity atoms
is of the order of a square lattice spacing a2, and the mole fraction x of the impurity atoms
is assumed to obey (Kl/k&6) (T/OH) «x «1. Observation of the concentration dependence
D ~1/x would constitute strong evidence of quantum mobility, whichhas been of considerable
theoretical interest in recent years.

I. INTRODUCTION

In the limit of low temperatures, where ther-
mally activated diffusion is virtually zero, the
conventional picture of a crystalline solid is one
of atoms immobile on equilibrium lattice sites.

This picture cannot be precisely correct. For
low concentrations of impurity atoms a simple
counting argument shows that a macroscopic de-
generacy wouM exist at zero temperature leading
to an entropy of solid solution in violation of the
third law of thermodynamics. ' This apparent
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macroscopic ground-state degeneracy is split by
(i) static lattice forces due to zero-point phonon
oscillations which lead to phase separation of the
impurities or, at the very 1.east, strong statistical
correlations in the positions of the impurity atoms,
and (ii) quantum mobility, i.e. , a quantum pro-
cess by which substitutional (interstitial) impurity
atoms exchange (tunnel) onto a neighboring lattice
site. From the viewpoint of the third law of ther-
modynamics, quantum mobility is of prime im-
portance in reducing impurity configuration en-
tropy and in preventing a disordered metastability.

Quantum solids (e. g. , helium) with relatively
large zero-point phonon oscillations should ex-
hibit prominent quantum mobility. This is ap-
parent by the ease with which isotopic impurity
atoms phase separate in crystall. ine helium.

Here we examine the diffusivity of isotopic im-
purities in solid helium. Let J be the exchange
frequency of the impurity, 8 the Debye tempera-
ture of the host crystal, and a the lattice spacing.
In the concentration (i. e. , mole fraction) range

(LT/OBS)(T/8) «x«1
and temperature range

(Kr/u, ) «r «8,
we show that the diffusivity is given by

V„(n,l, I
(H —Z, ) I (8)

leading to diffusion. The transition rate between
initial and final. quasiequilibrium lattice sites is
given by Fermi's Golden Hule,

&(I -1)=ZZP —
I
I' I'8+~-E)

nq n]
(7)

D= — = —Q g(a)a'(d, ~&

6 w„6
Equations (7) and (8) imply

D= —~ i'~14-li I'I I'~~ I' ~+~- E~)38

(8)

In order to write Eq. (9) in a more conventional
form, we defined a lattice position operator by

1, nl)=1 nl) (10)

and a diffusional velocity operator by

v= (i/S)[a, 1.,).
Equations (8), (10), and (ll) imply

where the initial phonon states have been thermally
averaged and the final phonon states have been
summed.

The diffusivity is now given by

D= (Za'/ex), (3)
I I& -1&

f f V&& I
= 0'

f (n&1& f
v

I n&l&& I

I
n 1 ) = (localized impurity wave functions),

E„(1)= (localized impurity energy levels de-
generate with respect to 1).

(4a)

(4b)

We further suppose that overlap integra1. s have
been taken into account to the extent that )nl& are
orthonormal wave functions,

(n~l~ In;1,&= &~, .
Since the localized wave functions In 1) are not
quite eigenfunctions of the true Hamiltonian H,
there will be small transition-matrix elements

where 0 ~ is an effective cross section for the
scattering of bvo quantum mobile impurities. For
isotopic impurities with short range host crystal
distortions a* will be of order u~.

Observation of the concentration dependence
D ~ 1/x confirms the general picture of quantum
mobility as well as measures the exchange- (or
tunneling-) energy bandwidths ~ Ll.

II. QUANTUM DIFFUSION

Let us imagine that the wave functions for a
crystal with an impurity 1.ocalized at site l are
known. Let n represent the quantum numbers
which describe the phonon oscillations of the crys-
tal. Then we have

hence

D=-.'vamp, (f ffi& '~(E, -E,).
kf

Equation (13) is a Kubo formula, '
(13)

m. QUANTUM MOBILITY

The theory in Sec. Q can be improved for the
purposes of this paper by taking into account, from
the start, that the degeneracy of the levels E„(1)
with respect to 1 is split by the exchange (or tun-
neling) process into energy bands E„(k). Equa-
tion (4) should now read

Ink&= (mobile impurity wave function), (15a)

E„(k)= (mobile impurity energy band). (18b)

D = —,
' Re f ( v (t) ~ v (0)) dt, (14)

in a not-too-disguised form. At first sight it would
appear that Eq. (14) is well known. However, v
defined in Eqs. (10) and (ll) is not the usual velo-
city operator —gfV/m The yoin. t is that the im-
purity oscillations, which contribute to the finite
frequency power spectrum of velocity fluctuations,
are not relevant to diffusion which is a measure
of the zero-frequency part of the power spectrum.
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The localized and mobile wave functions are
connected by the Bloch expansions

I
«& = (i~~ ZI eI"'I ~»,

which preserve orthogonality [Eq. (5)],

&nqkq[ nIk;& = 5~I.

It is not diffucult to prove the group-velocity
formula

given that [IIk& are approximate eigenstates of the
true Hamiltonian H. Equation (14) now reads

2~ elt-Sn()k) 3/ne T n( )

plitude is proportional to the total cross section.
For phonons scattering off point defects this is mell
known to obey

im&g~~t„~g~& q' as q-o. (24)

Thermally averaging over initial phonon occupation
numbers

IIo) = [exP (@~ok/4 &) —1]

leads to

[~;"]-' z(r/o)', r«e.
The lifetime due to scattering off other impurities

is calculated in a similar manner:

[~f '] '= I Z n„- (&kfc'~t(~f&~'

E&=
3~2 (2O)

In order to calculate D one needs to compute the
energy bands and the lifetimes of the mobile im-
purity atoms.

1V. MOBILE-STATE LIFETIMES

p OO

xae' (ek~ ekp -~kn [ n (kk)l) ~

k)e-d .e

"0
(i9)

The integrand on the right-hand side of Eq. (19)
represents the decay amplitude of the mobile state
( nk&; hence the integral represents the lifetime
of the state )IIk&.

Our final result for the diffusivity can be written
in the compact form

(~™)'=- Z n„-. Im(kk'~ t,.
~

kR'& . (28)

In the temperature range of Eq. (2), n, is approxi-
mately constant and proportional to x. In the con-
centration range of Eq. (1) the phonon-induced life-
time [Eq. (26)] is large compared to the impurity-
induced lifetime [Eq. (28)]. We then write [Eq.
(2o)]

Qg 2

+ilNP J 4 (29)

where me define the exchange frequency J via

x5(E(k)+E(kI) g~ ), (P7)

where possible spin indices have not been included
to avoid a certain amount of algebraic ceremony.
The optical theorem implies

In the temperature range of Eq. (2) the impurities
should move as a Boltzmann "gas'" of particles in
a quantum mobile band Z(k). The impurity life-
times are due to (i) scattering off phonons, and
(ii) scattering off each other. Hence we write

(21)

Let &kQ&l t,hl f) be the scattering matrix element
for an impurity in state k and a, thermally excited
phonon in state @to be scattered into a final state
f; then

10 =

C
«9

10

I I I I I IIe( I I I I I )II] I I I I I III-

("„")-'=—"Z ~;„Z ~&rq~~t, „~f&~'

x 5(Z(y)+a~,„s,). (22)- 10
10 10

e e . , eIel

10

I I ~ e I e ~ ~

10'

Using the optical theorem (unitarity), Eq. (22)
reads

(~ ) '=- Z —;„im&kq~~t,„~kq~&.
QX

The imaginary part of the forward scattering am-

I'IG. l. Spin diffusion coefficient D of He impurity
in solid 4He vs x, the mole fraction of 3He. The temper-
ature of the sample is 0.53 K and the molar volume 21
cms. The Larmor frequency is 5 5&K. The data points
are from Richards gt gE. (Ref. 7), and the solid line
represents Dx=l. 2xl0 ~~ cm~ sec ~.



QUANTUM THEORY OF DIFFUSION WITH. . . 1199

= za J az, T » lr J/P s (So)

as a measure of the mobility band thickness, and
o* as an appropriately averaged total cross sec-
tion for the scattering of two mobile impurities.

V. CONCLUSION

We may estimate the range of validity of Eq. (29)
by taking in Eg. (1) J-10' sec ' (the value for 'He-
He tunneling in pure He of the same lattice spacing)

and Q~ = 30 K. This leads to the condition 10 8 T'
«x«1, which is easily satisfied for, say, T-1 K
and x-10 z. If the dependence D~ 1/x is observed,

then strong evidence for the above theory would be
available.

In Fig. 1 we show some recent data for spin
diffusion in dilute solutions of 3He impurities in
solid He. %without the concept of quantum mobility
or ' gaslike" behavior for the impurity subsystem,
it would be very difficult to explain the observed
concentration dependence of D.

Further information on impurity motion is ob-
tainable from NMR relaxation times T& and T2.
Theoretical calculations of the dipole field fluctua-
tions necessary to explain NMR relaxation are quite
subtle. They are presently being carried out and
mill be reported elsewhere.
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A theoretical calculation of the stimulated thermal scattering of picosecond laser pulses
by common liquids is presented. The calculation is made for the experimental configuration
of Mack. The behavior of the first-order diffraction spots is studied in detail by varying
liquid and laser parameters. A comparison with Mack's observations is made.

I. INTRODUCTION

In this paper we present a theory of the stimu-
lated thermal scattering of picosecond laser
pulses for the experimental configuration of

Mack. ' In Mack's experiment a train of pico-
second laser pulses derived from a mode-locked
ruby laser is sent through a beam splitter creat-
ing two beams, one much weaker than the other.
The two beams are then sent through a colored li-
quid at a small angle to each other. The trans-
mitted beams are then studied either photographi-
cally or electronically. In addition to the two

original beams, additional beams are generated in

the colored liquid. This is because the mechanism
of thermal deposition creates a diffraction grating
in the region where the original two beams over-
lap. Shortly thereafter, Scarlet performed a
similar experiment using two beams of equal in-

tensity. In his experiment he pointed out the dif-
ferent behavior of the scattered beams depending
upon whether saturable or nonsaturable dyes were
used to color the host liquid.

Theoretically, we shall restrict ourselves here
to Mack's type of experiment involving nonsatu-
rable dyes and incident weak and strong beams.
Experimentally, of course, it is just as easy to
create two beams of equal intensity. The theoreti-
cal problem is much more difficult to solve, how-

ever, because one can no longer neglect depletion
of the strong beam by the other beams. Although
Mack himself gave a brief theoretical discussion
of his experimental results he did not actually
carry out any quantitative calculation following
the development of the fields, initial plus scat-
tered, through the pulse train. A systematic
quantitative comparison of theory and experiment
was not made. The first attempt to carry out a


