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The behavior of a nonlinear oscillator (NO) coupled to a radiation field is investigated. The
NO considered is an angular momentum oscillator, of energy SwI ~, that describes the collec-
tive effect of a number of identical two-level (or spin-g) systems under given idealized con-
ditions, a large total angular momentum quantum number I p corresponding to a large number
of two-level systems. The field is described by a set of modes. Free decay-with the NO
ir.itially excited and the radiation field in the ground state —and forced oscillation —with the NO
subject to a prescribed resonant driving field —are studied. The analysis is performed both
classically and quantum mechanically, using the classical and Heisenberg equations of motion,
respectively, so as to display explicitly the difference in the results. Interest in the compari-
son between the two formalisms is motivated by the expectation that for large I p, the NO
should behave essentially classically, except near its highest-energy state in the absence of a
driving field. The general equations of motion are reduced to equations for the NO vari-
ables only. In the classical analysis of free decay, expressions for the energy and oscil-
18ting coordinates are derived. The decay time is shown to approach infinity as L3(0)
approaches I p (the limiting condition being that of unstable equilibrium) and the radiative fre-
quency shift is shown to be approximately proportional to L3(t). It is also shown that use of
the rotating-wave approximation alters qualitatively the expression for the frequency shift.
In the classical analysis of forced oscillation, approximate results are obtained for a weak
driving field and a strong driving field, the NO being initially in the ground state. The weak-
field results exhibit a monotonic approach of L3(t) to a constant (negative) value-or steady
state-at which the power absorbed equals the power radiated; in the strong-field case, Ls(t)
oscillates periodically between the limits +Lp, the coupling to the radiation field having negli-
gible effect on the frequency of this oscillation. In the quantum-mechanical analysis, the equa-
tions of motion become simplified for L,p= $, and this case is treated first. The free-decay
results are essentially similar to those of the Weisskopf-Wigner theory, exhibiting anexponen-
tial decay of (Lp(t)) and a radiative frequency shift in the oscillating coordinates. Under forced
oscillation, with (Lp(0)) =-Lp, (Lp(t)) approaches a constant value either monotonically, if
the driving field is sufficiently weak, or by means of a damped oscillation, if the driv-
ing field is strong. For Lp&2 the free decay is treated by a method that involves the
derivation of a set of expressions for the kth derivative of f 3(t)) as an expectation value of a
polynomial in L3 of order 0+1. This set, together with the eigenvalue equation for L3, is
shown to lead to a solution for all the moments of I 3. The method is used to obtain complete
solutions for several low values of Lp, and also to obtain initial derivatives of (Lp(t)) as polyno-
mials in Lp for (Lp(0)) =Lp. For large Lp, a comparison of classical and quantum-mechanical
equations shows that only the condition (Lp(0)) ~ Lp requires quantum-mechanical treatment,
and that for a short time only. The free-decay problem with initial condition (Lp(0)) =Lp is
solved quantum mechanically up to such a time tq by means of the initial derivatives previously
derived, and then this solution is used to provide initial conditions determining a classical
solution for t —t~. The statistical aspects introduced by the quantum mechanics are preserved
in the classical solution, and their significance i.s discussed, with several examples; com-
parison is also made with a nonstatistical approximation. In the case of forced oscillation,
the behavior of (Lp(t)) —for arbitrary Lp—is examined in detail for a strong field, and turns
out to be described by a damped oscillation, the existence of the damping being independent of
Lp The apparent inconsistency of this result with the expectation that a large system subject
to strong forces should behave classically is discussed, and (Lp(t)) is examined. It is con-
cluded that in a single experiment, the NO energy oscillates approximately like the classical
energy, without damping; quantum mechanics introduces, however, a slight randomness (or
unpredictability) in the frequency of this oscillation, because of the coupling with the radiation
field. Since gp(t)) describes the average over an ensemble of which each member consists
of a NO coupled to a radiation field, the random frequency variation among the members ac-
counts for the damping of the average. The usefulness of the combination of classical and
quantum-mechanical analyses in achieving and interpreting theoretical results for a class of
phenomena involving the collective interaction between a number of atoms and a radiation field
is pointed out.

I. INTRODUCTION

In a previous payer, ' hereafter referred to as I,
the resonant interaction between a linear and a

nonlinear oscillator was analyzed in a nonperturba-
tive manner. The type of nonlinear oscillator (NO)
considered was that which can be described by an
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angular momentum system in an external field,
the energy being proportional to l3 and the oscillat-
ing coordinates being proportional to E, and l~. As
pointed out in I, such an oscillator can describe
not only a spin system of arbitrary /, but also a
two-level (electric-dipole) system or, under cer-
tain ideal conditions, an arbitrary number of iden-
tical two-level systems. The linear oscillator,
on the other hand, describes a single field mode or
a lumped constant circuit, so that the coupled sys-
tem represents, in an idealized dissipationless
manner, a number of identical atomic systems in-
teracting with a single resonator. The main inter-
est was related to the long-time behavior of the
coupled system and the absence of a steady state
for general initial conditions.

In the present paper, we consider the same NO
coupled to an entire radiation field, that is, to an
infinite number of modes, or linear oscillators,
covering a range of frequencies. We thus have an
idealized model of a number of atoms coupled to
the entire electromagnetic field or acoustic
field. ~ In view of the fact that the entire field has
properties of a large reservoir to which the NO
loses energy, we will allow for the presence of a
prescribed resonant driving force acting on the NO
so that both the driven and the freely decaying NO
may be studied.

An important feature of the present paper, as in
I, is the fact that the analysis will be carried out in
both a classical and a quantum-mechanical manner,
with the differences explicitly displayed. This
procedure is motivated by the viewpoint that the
radiation fieM interacting with a large number of
atoms acting collectively may be considered in
many respects to be a classical system. In I,
some seemingly puzzling differences between the
quantum-mechanical and classical descriptions
were elucidated. In the present paper, a compari-
son between the two descriptions will likewise be
enlightening. We will obtain further evidence for
the idea, expounded previously, ' that in phenomena
where a large number of atoms behave collective-
ly-such as those of quantum electronics, for in-
stance-the quantum-mechanical expectation value
does not necessarily give even a qualitative de-
scription of the result of a macroscopic experi-
ment, and that a classical analysis is useful in the
interpretation of some of the quantum-mechanical
results.

Certain special aspects of the present problem
are related to one treated in considerable detail
some years ago, that of a two-level system (driven
as well as freely decaying) coupled to a general
dissipation mechanism. The features not present
in the earlier treatment consist of a specialization
of the dissipation mechanism to a radiation field,
the generalization of the two-level system to an

angular momentum oscillator with an arbitrary
number of levels, and the paralle1. classical analysis.
A very early analysis of the average free decay of a
two-level system coupled to the electromagnetic
field is found in the classic paper of Weisskopf and
Wigner. The average behavior of a large number
of microscopic spin systems coupled to a dissipa-
tion mechanism was investigated by WBJlgsness and
Bloch. 5 Spontaneous emission-in its usual sense
as a perturbation-theory description of free de-
cay-from a number of atoms behaving collectively
was analyzed by Dicke. He introduced the term
"superradiance" and a formalism similar to the
angular momentum formalism to describe coopera-
tive spontaneous emission. The meaning of "super-
radiance" in terms of-and its relation to-one-
atom states (recently referred to by some authors
as "Bloch states") was explained subsequently.
The behavior of a driven two-level system and the
free cooperative decay of a number of two-level
systems have been discussed more recently by
Dillard and Hobl while the free decay itself has
been the subject of other recent studies, 6 in
some of which 8 the model is different (the two-
level systems being coupled to a highly damped
single mode rather than to the entire field) but the
mathematical problem is essentially similar.
There will be occasion later to compare the pres-
ent work with-and comment on-some of the above
references.

II. EQUATIONS OF MOTION

The notation to be used will be similar to that
of I, except that the consideration of a large num-
ber of modes will require that the variables of
each mode be labeled with an index. A denumer-
able set of modes will be considered, such as is
obtained by the imposition of appropriate boundary
conditions once field in a finite volume. The
coupling between the NO and the field will be as-
sumed to be sufficiently weak so as not to alter the
qualitative characteristics of either system, but
aside from this requirement, the strength of the
coupling constant between the NO and the kth mode
and the density of modes per unit frequency inter-
val will be left arbitrary in the present discussion
for the following reasons: (i) These matters raise
questions concerning frequency dependence, di-
vergencies, and cutoff, which require separate dis-
cussion for electric, magnetic, and acoustic cou-
pling; (ii) there exists disagreement in the litera-
ture with reference to some of these questions
which merits critical examination 7; (iii) the pur-
pose of the present analysis is accomplished by in-
corporating expressions for coupling strengths and
mode densities into constants that determine the
decay rate and frequency shift of the NO.

The kth mode of (angular) frequency &o„ is de-
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scribed by the Hamiltonian

H» = »Ko»(q»+ p») q

where

[q» P»] =i where

,'A—Z»[y»AtL e'"»'+y»A»L, e '"»'

+y A L e-gv~t+ygAgL e&i'I

+I' L (A e '"»'+A e'"»')], (loa)

8$ Qlt'

or, in general,

L &-iut

0 / 5 )8pt ($ / 0 )H pt

where ~ is a nonreduced variable, R is a reduced
variable, and

Ho= H~+Z»H» .
In the absence of coupling, the reduced variables
are constants, and their (slow) time variation is
due to the coupling only.

The interaction between the NO and the field is
now given by

H' = Z~H»„

the bracket [, ]„standing for the commutator in
the quantum-mechanical description and i times the
Poisson bracket in the classical description. The
NO, of natural frequency +, is described by the
variables l&, lz, and l3, the Hamiltonian being
given by

Hg = Acol3 p

and the variables satisfying the relationship

(4)

with x, s, and t standing for the cyclic permutation
of 1, 2, and 3. The (dipole-type) coupling between
a mode and the NO is specified quite generally by
the interaction Hamiltonian

H»~=@q»(y~»4+y i2»+3ys»4)

where the y's are the coupling constants between
the 4th mode and the NG. It is immaterial whether
q„or p„ is used in the interaction Hamiltonian, and
the coupling can be changed from "q" type to "p"
type by the transformation q~- p„, p~- —q~. A de-
tailed discussion of the coupling constants and cer-
tain assumptions inherent in combining a number
of systems into a single NO, as well as comments
on the model used in Refs. 14-16, is given in Ap-
pendix A.

As in I, it is convenient to use the familiar non-
Hermitian operators

a»= 2 "'(q»+i@»), ~» = 2 "'(q» - iP»)

l, =2 (lg+ila), l =2 (lg —il»),

and then introduce the associated reduced variables
A„, A~, I.„ I. ,

' I.3, specified by

- fcoyt t Af leo&taa — ~, a& =

~1/ P
yp

=-
reap+ &rpp I'p=- "

y3p . (ioi )

The effect of a prescribed resonant driving field
(or force) acting on the NO may be described by

H" = 28fy(A—'L +AL 8 '"')

where A is a, (c-number) constant. 8 We may ap-
proximate H" by dropping the rapidly oscillating
terms, or, what amounts to the same thing, de-
scribe H" in the rotating-wave approximation:

H" = ,'h[yAtL —+y*AL,J . (12)

Although one frequently finds in the literature an
analogous approximation to H', where the e"&'
and the e' '"~' terms are dropped, it will be seen
later that these terms play an essential role in de-
termining radiative frequency shifts, and indeed,
convergence of certain integrals. The complete
Hamiltonian is now given by

infra= [Z, H, ], , (14)

where B stands for any reduced variable. Noting
that the only nonvanishing (equal-time) brackets
are

[L„LJJ =L»,

[L», L,]p = L, , [L», L ]p = —L

we obtain

A» = —,i(y»L e'"»' + yf L.e'"»' + I'»L—se'"»'), (16a)

A,'=-,'i(y,*I.e-'"»'+y L s '"»'+ 1 L e--~~»&)

(16b)

H= Hp+ Hg,

with

H, =H'+H" .
We will assume that the interaction between the

NO and the field is "turned on" at g =0, so that
initially both systems are described by their free
states. Furthermore, in accordance with a previ-
ous statement, the interaction will be assumed to
be sufficiently weak so that a significant change in
the NO occurs only after a large number of cycles
of its natural frequency. Analytically, this im-
plies that the reduced variables change slowly com-
pared to e'"'.

The equations of motion, in terms of the reduced
variables, are obtained from the relationship
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L,= A*L3 + Q, L3 —L3 I. + L, 8 —~ L, ,

L =AL3+L3.8 — Le+6 L —L 6

I.,= —(AL, +A L ) —(L,a+8'L )

(16c)

(16d)

+6)'L, +L ts, (16e)

We also have

ke

I =—L3+L,L +L L,

Lo classically (16)
Lo(LO+ 1) quantum mechanically,

where Lo is the constant that specifies the total
angular momentum, classically, and the cor-
responding quantum number, quantum mechanical-
ly. These are the fundamental equations of motion,
and are valid both classically and quantum mechan-
ically. It should be noted that if the rotating-wave
approximation had been used in H' (which describes
the coupling of the NO to the radiation field), the
e' '"&' and the e' '"~' terms would be missing in Eqs.
(16a) and (16b), while the (s and the (: terms would
be missing in Eqs. (16c)-(16e). It should also be
noted that the order of the factors in the products
of dynamical variables occurring on the right-hand
sides of Eqs. (16c)-(16e) is immaterial, since the
two (equal-time) variables in each product com-
mute. However, for later purposes (of substitu-
tion, where variables at time E are expanded in
terms of variables at other times), we write the
products so that 8 is on the right-hand side and
g' is on the left-hand side of the NO variable, and
do likewise for and e.

Our main interest, in the present payer, will be
concentrated on the behavior of the NO. Of course,
if the NO variables are known, the field variables
can be obtained from Eqs. (16a) and (16b). We
yroceed, therefore, to eliminate the field variables
(except for their initial values) from Eqs. (16c)—
(16e). From Eq. (16a), we have

a«)=ao(t)+l Z~ f,
'

dt) [Iykl'L (t )e "'" "'
+ y+kL (t )e- ( (vk) vkt) ) + yg I' L-(t )e- ( &k) - uk)1)]

(19a)
where

(to= iZ yfAk(0)e— (19b)

For later purposes, we also define 0 and 0 anal-
ogously to (tk. [These quantities, although func-

where, for simplicity, we have introduced the no-
tation

A =- —,'gy~A,

@.= &&~H'n Aa~
-gv t

ki+-kykAke '"",

tions of time, contain only the initial values of the
(reduced) field variables, and may be regarded as
the free o—r uncoupled —values of (t, (8, and (:.]
The only term in the integrand of Eq. (19a) which,
when summed over jp, can be expected to give a
significant contribution is the first, for the follow-
ing reasons: (i) Every 1ykI is positive, while yk
and y,*I'„fluctuate in sign as well as in magnitude,
more or less independently of the exponent; (ii) the
first exponent is the only one that contains terms
that vary slowly with respect to t, (for vk sufficient-
ly small); (iii) as t, approaches t, the number of
terms in the jj summation which contribute to the
integral becomes very large for the first term but
not for the others. We, therefore, retain only the
first term. Furthermore, because of the last rea-
son, the main contribution to the t& integration
comes from t) close to t. Since L (t, ) is a slowly
varying function of t), we approximate L (t, ) by
L (t) and take it outside of the integral sign, ob-
taining

(t =80+pL (t),
where

(2Oa)

p=)g f'dt
~

~k -( (vk- ))&k

We proceed to evaluate p. Integration yields

(2ob)

ik 1 —cos((o„-(o)t+isin((ok —(o)t
i((o, —(o)

(»)
Two approximations will be made in this evalua-
tion. The first consists of a conversion of the
summation to an integration (since the normaliza-
tion volume can be made arbitrarily large):

p = — d(o,
~
y((o, ) ~'p((o, )

1

&
Q

X
I —cos((o —(o)t + i sin((o —(o)t (22

i((o, (o)—
where 1 y((ok) I' is the average of 1y, l' over all k's
corresponding to a small neighborhood about co~,
and p((ok) t),(ok is the number of modes in the inter-
val ~re~ at co~. The second apyroximation is based
on the fact that the NO behavior changes slowly
compared to a natural cycle of oscillation. The
quotient in the integrand of Eq. (22) can be approxi-
mated quite easily for t sufficiently large. For t
much larger than a natural cycle [but small com-
pared to a significant change in the NO, so that p,
in Eq. (20a), may be considered essentially inde-
pendent of the time; strictly spealnng p- 0 as t- 0,
from Eq. (20b)], we can write

p= —l' d(o, ~y((o, )~'p((o, ) v6((o, -(o)-i4 (0~ —(d

(23)
or, for notational convenience,
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P=nl iap i

where n& and a~ are real constants given by

ng=--,'vl y((o)l'p(&u)

and

(asa)

Using approximation methods employed above, we
obtain from Egs. (16a) and (lsb)

Z~H~ = ah&uniL, L + A+So, (33

where

J'0=—L, 60+L $0+L360+H. c.
(asl )

(as)

= $0 —ze3L, ,

= op+ zn3L,
—0 —za4L3,

0+ ZA4L3

where

1, 1
np-=4

'

d~a I y(~p) I' p(~p)
(Op+ (d"0

(asa)

(asb)

(a9a)

(aob)

(SOa)

The expression for 8 can now be written as'

e=~o+(n~ —inp)L .
The Hermitian conjugate relation yields

8 =So+(ng+iap)Li

Using similar reasoning with an obvious slight
modification, we obtain

the tilde indicating that the factor (&u~/~) is in-
serted under the summation sign in the definition
of gp, 0, and Cp,' that is,

a -=-,' Z,(,/ )y„*A,(O)e '" ', etc.

No operations have yet been performed that in-
validate the equations for either a quantum-me-
chanical or a classical analysis. Before special-
ization to one of the tmo analyses, we specify that
the initial conditions for the radiation field are
those of the ground state. Although we mill con-
sider various initial conditions for the NO and
various amplitudes for the driving field (which is
a specified c number), the radiation field will be
assumed to be initially unexcited throughout the
present paper. The reason for the choice of order
of the field and NO variables in the terms of the
original equations of motion is now apparent. The
znztzaf field variables in the final equations of mo-
tion are now ordered so that we can take advantage
of the relationships

a4=— d~a I (&~)p(~~) (Sob) dpi&=~pl &=~pl &= &lao= &l~t= &I ~o=o (34)

the calculation of n4 being based on the assumption
r'(o)p(o) = o.

With the above expressions for the field varia-
bles, the equations of motion for the NO become

L.=A*L, + [n, +i(n, n, )]I.,I., +—s(n, —n, )L,I,.+I o,
(Sla)

L =ALp+ [ni —i(np —n4)]LpL —i(ap —a4)L Lp+I'p,
(Slb)
(31c)Lp= —(AI., +A*L ) —aa)L, L +Gp,

where

Ep —= SpLp Lp Sp + L 8p &pL (Sld)

Go= —(L.@o+QoL )+L So+SoL. . (31e)

Z HZ„(u„h( QA+A+ ) . (Sa)

These equations contain only the NO variables,
the driving field, and the initial (or free) radiation
field. It should be observed that the field variables
and the NO variables in Ep and Gp no longer com-
mute, and their order is significant. As men-
tioned previously, the field variables can be ob-
tained from the NO variables, if the latter are
known. Of particular interest is the rate of change
of field energy, given by

where I ) represents the (initial) state used in
Heisenberg-picture calculations.

=Lp=2L L +L3 y

where Lo is the (constant) total angular momentum,
and the equations of motion for the NO [Eqs. (31)]
become

L,= A*Lp+ (nq +in)L, Ip,

I, =AIp+(ag —ia)L Lp,

I p
= —(AL, +A*L ) —ng(Lp —Lp),

where

(37a)

(37b)

(37c)

A = Ag + Q3 —2 &4

Equation (37c) shows that the energy (in units of
ha) absorbed from the driving field by the NO is
—(AL, +A*L ), and Eg. (37c) together with Eq.
(33) shows that the energy radiated by the NO into

III. CLASSICAL ANALYSIS

The system will be analyzed classically, first.
For this purpose all variables in the equations of
motion are to be considered t.- numbers; the initial
field conditions imply

+0- Gp-~p-o y

we have the relation
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the field is o,&(Lp —I,,'). Since I,.= L*, we can write L,(0) =
I L,(0)l ~"p, (46)

[&(Lp Lp)]1/2 + & 8

and, using the notation

n'-=2I Al', (39)

we can likewise express A in terms of an ampli-
tude and phase (both of which are constant),

A. =2 ' Qe " (40)

A. Free Decay

If A = 0, Eg. (3Vc) can be solved immediately:

L3 Lp tanh agLp(f fp)

where

(42a)

f, = (I/n, L,) tanh '[L,(0)/L, ] . (42b)

Except for the initial condition Lp(0) = Lp, Lp(t)
decays monotonically to —L,. If L,(0) = L„ then
Lp(t) remains constant at Lp. One may refer to this
as the "unstable equilibrium" condition. The rate
of decay is given by

LS Q1Lp sech QILp(f tp) s
2 2

and assumes its maximum value ~&L0 when L3 = O.
As Lp(0) approaches Lp, one can regard tp as a
measure of the decay time, which approaches in-
finity. Specifically. if

The power absorbed by the NO from the driving
field is

—Q(Lp —L,') ' cos(8 —p),
and Eg. (3Vc) reads

I., = —n(L', —L', )"'cos(e —q ) n, (L', ——I.', ), (41)

a form that will be useful later. Both the free de-
cay of an initially excited NO and the behavior of a
driven NO are of interest.

and noting that

I
L (f) I

=&-'[L'- L'(~)]}"'
we can write the expression for L,(f) in the alter-
nate form

L.«)-I-'[L'o-L'(f)l]"' xp:Ie + f, «L (t )].
(so)

I et us consider Lp(0) only slightly less than Lp.
Our explicit expressions for Lp(t) show that Lp re-
mains close to I.p for a long time [of the order of
tp, as given by Eg. (45)], thenpasses from O. V6Lp
(= Lptanh 1) to —0. '76I.p in the time interval
2(o.&Lp) ', and finally approaches —Lp asymptotical-
ly. The magnitude of L,(t) or the —amplitude of
oscillation of the NO —thus increases from a small
quantity to a maximum (when Lp =0) and then de-
creases again. The frequency of oscillation, which
is &o for the free NO [see Eqs. (V)], is affected by
coupling to the field through the term containing
the factor n in the imaginary exponent of L,(t)
above. When the relative change in L3 during the
time & ' is small, we can regard GLS as a fre-
quency shift, the effective frequency of the NO

being K +6 I3.
It may be remarked, at this point, that a, and

therefore the frequency shift, is determined, in
part, by terms that would have been neglected in
the rotating-wave approximation, since o.3 and u4
come from such terms. If we consider the NO to
be coupled to the field by a dipole moment that is
proportional to the angular momentum, then

~2k RI7t ~

so that, from Eqs. (10b),

I.,(O) = L,(1 —~), (44)
And

fp= (I/n, Lp)tarn '(1- &)

= (I/o. &Lp) —,
' ln(2/&), (46)

l~(,) I' p(, )
1 2

Con- co (do+(d Cua
0

so that, approximately,

I., = —Lptanh[Lpn, t ——,'ln(2/&)] . (46)
0

2 240 5'
(63)

In addition to the energy of the NO, which is de-
scribed by L3, the oscillating coordinates, which
are described by L, (t), are also of interest. From
Eq. (3Va), in the case of free decay, we obtain

L,(f)=L,(0)exp[(n, +f6) f, df, L,(t, )]

=L,(o)e~[~~f, '«1 LS(t1)le~b~f, «i L (4)].
(4'7)

Setting

It is seen that u3 and n4 not only affect the value of
n, but may also affect the convergence properties
of the integral (if no cutoff is used), producing a
co,s variation rather than a co~' variation in the last
factor of the integrand as &,—~. The actual value
of the integral depends, of course, on the functions

I y(u&, ) I and p(~, ), specification of which requires
specialization that will not be made in the present
article.



INTERACTION BETWEEN A NONI INEAR OSCILI ATOR. . .

8. Forced Oscillation

The effect of the driving field will now be con-
sidered. We approximate by neglecting the fre-
quency shift in the NO produced by the coupling to
the radiation field; this approximation is accom-
plished by the assumption

therefore set

Is= L-o(1 -x),

treat (Q /o. Lo) and x as small quantities of first
order, and retain only lowest-order quantities in
Eq. (56). This equation then becomes

(54) x+3nLpx+2cPLox- fP =0, (61)

Setting nj -= n for notational simplicity, we obtain
from Eqs. (3'7)

I,, =A*Ls+ uL,Ls,

L.=AL$+uL Ls,

Ls = —(AL, +A~L ) —o.(Lp —Ls) .

(55a)

(5R )

(55c)

Differentiating Eq. (55c), substituting for L. and

L from the two preceding equations, and using Eq.
(55c) again, one obtains a second-order differen-
tial equation for L3 only,

Ls 3+LSLs+ [Q & (Lo Ls)]Ls = 0 (56)

where, it is recalled, 02=2)Al2. In the case of
the undriven NO, our interest lay in the free decay
of the system, and was therefore related to an
initial excited state. In the present instance the
effect of the driving field is illustrated best by con-
sidering initial conditions in which the NO is in the
ground state. We consider, therefore, the initial
condition

Ls(0)=-Lp, (5V )

which immediately implies, in the classical de-
scription,

I,(0)=L (0)=0, L (0)=0 . (56)

that is, the case of a weak driving field. In the
absence of a driving field, Q2= 0, and for the above
initial conditions the solution is, of course, the
stable equilibrium solution L,3 = —Lp. For a weak
driving field, I.3 will increase only slightly above
—Lo. [This can be seen by noting that the power
absorbed from the driving field is of the order of
Q(L,o —L,s)', while the power radiated by the NO

is o.(Lp —Is), so that when the two are of the same
order of magnitude, 1 —(Ls/Lp) - Qs/o Iso.] We

These initial conditions determine uniquely a solu-
tion of the above second-order differential equation
for L3. This equation is, however, a nonlinear
differential equation which does not appear to have
an exact solution in closed form. We will, there-
fore, study the properties of approximate solu-
tions for special, but interesting, relationships be-
tween the coefficients, and then interpolate, quali-
tatively, for some of the remaining relationships.

Consider, first, the case

with the initial conditions x(0) = x(0)=0. The solu-
tion is easily seen to be

0
(l 2~- aLof +~ saLgf -)

~2L2 (62)

Q' = ~s(Ls - L') (65)

Taking the value of Lp —L3 thus obtained and sub-
stituting in Eq. (63), we obtain

—cos(e —y) = 1 .

Although we have explicitly solved the equations
of motion [for the initial condition I,s(0) = —Lo] only
for the range of driving-field strength given by in-
equality (59)rather than for the wider range given by
inequality (64), we may reasonably extrapolate qual-
itatively by assuming that, in this wider range, L,e
increases monotonically and approaches a constant
(negative) value given by Eq. (65), at which the
power absorbed equals the power radiated. One
may regard the equation 0= nLp as the specifica-
tion of the saturation driving-field strength at which
the steady-state value L~ =0 can be maintained for
optimum phase relationship between driving field
and NO. In this steady state, the NO radiates the
maximum power, as mentioned previously.

%e consider now the other extreme relationship,

Q+& QLp . (6V )

which indicates a monotonic increase of L3 from
—Lo to the steady-state (or constant) value —Lo
+-.'(Q'/n'L', ).

In the steady state, we have L,$=0, and Eq. (41)
yields (for arbitrary driving field)

—Q(L —L )
i cos(8 —y)= u(L —L ), (63)

where the left-hand side is power absorbed, and
the right-hand side is power radiated. Substitu-
tion of the above steady-state value of Is (to low-
est order in x) shows that —cos(e —y) must be
equal to unity. In other words, in the steady state
the induced oscillation of the NO has a phase such
as to maximize the energy absorption from the
driving field. The last statement can be seen to
be true for all driving fields such that

0& nLp .
Equation (63), together with this inequality, implies
Ls 40. Equation (56) then implies that in the steady
state we must have
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Lg = Lp cosOt(p) (68)

An explicit closed-form solution of Eq. (68) has
not been found. An analysis of the equation in the
(Lz, L~) plane, carried out in Appendix 8, does
yield considerable information, however. The
most important result, from the present point of
view, is the fact that the exact solution of Eq. (68)
is periodic, and oscillates between —Lp and Lp.
The period, to first order in nLD/0, is unaffected
by coupling to the radiation field (although the
oscillation is no longer sinusoidal), and is given by

T=2v/n. (vo)

The above discussion of forced oscillation can be
summarized qualitatively by the statement that for
a weak driving field, the NO, initially in the ground
state, approaches a.symptotically a constant (nega-
tive) energy, while for a strong driving field, the
NO energy oscillates periodically between —Lp
and I p.

IV. QUANTUM-MECHANICAL ANALYSIS

We consider, now, the quantum-mechanical de-
scription of the NO coupled to the radiation field.
In the classical results, Lp appears as a parame-
ter and the expressions are applicable to arbitrary
Lp. In the quantum-mechanical analysis, systems
corresponding to different values of Lp, especially
low values, require individual consideration. We
begin with Lp = —,', that is, with the case in which
the NO is a two-level system.

A. Two-Level System

Equations (Sl) become simplified for a two-level
system. In this case, we have

L3L,= —L, L3= ~ L, ,
1L3L = -L L3= —
p L

L.L = ,'(I.,+ ,');-- (V la)

(7 lb)

(Vlc)

the terms containing n4 cancel, and we obtain (re-

Under this condition, the driving field is sufficient-
ly strong so that the maximum power that can be
absorbed by the NO is much greater than the maxi-
mum power that the NO can radiate. Equation (56)
becomes, approximately,

Lg —Sn+Lg+0 Ig=0 . (68)

This equation may be regarded as being derived
from Eq. (56) by retaining the first-order term in
nLO/0 but dropping the second-order term. If
we drop the first-order term also, we obtain the
equation which describes the mell-known sinusoidal
energy oscillation of an undamped angular momen-
tum oscillator being driven by a resonant force.
This zeroth-order solution, for the present initial
conditions, is

calling that we have set n~=- n)

L, =A* La —
g [n+i(n2 —ns)] L,+F0,

L = A Lg —
~ [n —i(na —n3)] L + F(},

L3= —(AL, +A*L ) —.n(I 3+ ~)+ Go .

(V2a)

(72b)

(72c)

We calculate first the expectation values of L„
L, and L3. The initial conditions for the radia-
tion field imply [see Eqs. (34)]

and the expectation-value equations of motion be-
come

(L,) =A*(I, ) ——'(n 'n')(L, ),
(L )=A(Lq} ——'(n —in')(L ),

(V4a)

(V4b)

(Ls) = —(A (L,) +A~ (L.)) —n((L~ } ~+), (74c)
where

Q =- Qa —Q3 ~

1. Free Decay

(v4d)

As in the case of the classical analysis, the free
decay of the NO will be analyzed first. For A=O,
the equations of motion yield the solution

(L ) (L (0)) (0+I% }0/2

(L ) (L (0))

(L, )= --,'+((L,(0)}+-,') e-"'.

(V5a)

(75b)

(V5c)

d~a
I &(~a)l P(&a)

2(U 6'

kp (CPy
—4)

It is interesting to note again that had we used the
rotating-wave approximation for the coupling be-
tween NO and radiation field, the frequency shift
would have been z~, which is not only different
from n, but, in its integral form, has weaker
convergence properties.

If (L~(0))=LO= —,', (L~(t)) yields, essentially, the
Weisskopf-Wigner result4 for the exponential decay
of the upper -level occupation probability. That
which appears in the Weisskopf-Wigner theory as
a level shift appears in the present theory as a
shift in the frequency of oscillation of the two-level
oscillator. This frequency shift is also exhibited

From Eqs. (7), which relate the reduced variables
to the original (oscillating) variables, one sees
that n accounts for an effective frequency shift,
and produces a replacement of (d by ~ ——,'n' in the
oscillating factors of (l.) and (l ). Looking at this
fr'equency shift in greater detail, we have, from
Eqs. (25b) and (30a),

I
Q =Qp-Q3

dry, Ir(ro. )~ p(ra. ) I
—

)
(p I

( co& —m (d&+ m(" 0
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Let us consider, next, the case of a driven two-
level NO. We will approximate (as in the case of
the classical forced oscillator), by neglecting the
radiative frequency shift. The equations of motion
for the expectation values become

(V&a)

(L )=A(I,, ) --,' n(L ), {V&b)

&Ls) = —(A (L,)+A*(L )) —n((Ls)+-,') . (V&c)

Differentiating Eq. (V&c), substituting from Eqs.
(V&a) and (V&b), and then substituting for (A(L, )
+A*(L )) from Eq. (V&c) in the result, we obtain

(Ls)+sn(I, ,)+(0 +-,'n )(Ls)+-,'n =0. (V9

The initial condition is chosen, analogously to the
classical treatment, to be the ground state. We,
therefore, have

& Ls(o) ) = - s & Ls(o) ) = o

The solution is then given by

(80)

in the off-diagonal matrix elements of the opera-
tors. For times much smaller than o. ', we can
write for the off-diagonal elements of L„

&, ~-'IL.(f}l+-')=&+s lL.(0)l +-'&e" '" (vv}

The corresponding elements for l, are obtained by
multiplication with the factor e""'.

2. Forced Oscillation

the field increases. Qualitatively, the weak-driv-
ing-field behavior of (I,,) is similar to that of the
classical L3, but the strong-driving-field behavior
of these two quantities is different. While the
latter oscillates periodically, for a strong driving
field, the oscillations of the former are exponen-
tially damped. We shall see that this qualitative
difference persists as the number of levels of the
NO increases.

Once (L,(t)) is known, (L,(i)) can be obtained
immediately (for arbitrary initial conditions) from
Eqs. (V&a) and (V&b):

& L.(i})= (I„(O)) e-""
+A~ J di (L (i )) e ~" s&&~s ~ (84)

0

the complex-conjugate equation yields (L (f}). For
a two-level system, all products of the (equal-
time) operators Ls, L, can be expressed in linear
form by means of Eqs. (Vl) and the additional re-
lationships I.3=-,', I..=L =0. Thus, from a
knowledge of (Ls) and (L,), one obtains immedi-
ately the expectation values of all products of the
fundamental operators.

8. Multilevel Systems

We proceed to an analysis of the behavior of
NO's with Lo & —,

' coupled to the radiation field. As
in the previous cases, the free decay will be
studied first.

(I, ) = ——l1+ +K.e ' +K e-1
n

where

( 160
h, = —fna-,'nl 1—

I|' 1+2 z 4~4 1
4 4I,

for n&40, and

2 1/2
yQ+gQ 1 2 t

2g' 4 16 g 160'

(82a)

(82b)

(8&a)

Ls(0)
l
m) = ml m), (85)

one obtains from Eq. (&la), for a time small com-
pared to ~

&mlL (i) lm -»
= (ml L (0)l m —1& exp{[im(ns+ ns —2n4)

i(n, n, )]f},—(86)

1. Free Decay

A study of the problem in a nonperturbative
manner is greatly facilitated by dropping the terms
whose main effect is the production of a frequency
shift. Before making this approximation, however,
we examine the frequency shift by means of a per-
turbation-theory argument. Using the notation

(8&b)
for Q ~~ 4Q.

This result shows that for a weak driving field
(0& —,'n), (L, ) approaches asymptotically a steady-
state value, which increases with increasing field
from ——,

' until it reaches —g. For a sufficiently
strong field (0 & —,'n), (Ls) oscillates initially, the
frequency of oscillation being 0(1 —n /160s)~~ s,

bat these oscillations are damped by the factor
e'~ "I4. After a time larger than n, (Ls) ap-
proaches a constant negative value which is greater
than -+9 and increases asymptotically to zero as

and the complex-conjugate relationship for (m —1
x I L (i) Im). It is easily seen that for m= s, this
equation reduces to Eq. (VV), and for m large, the
frequency shift indicated here is approximately the
same as the classical frequency shift obtained
from Eq. (50).+

Resuming the nonperturbative approach, we find
it necessary-for reasons that will be apparent
later —to return to the equations of motion in which
the NO variables commute with the field variables,
Eqs. (16). The approximation of dropping the fre-
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quency-shift terms involves the neglect of the
terms containing the factor or 6 in these equa-
tions. This approximation is then equivalent to
the rotating-wave approximation, or the retention
of only resonant terms in the equations of motion.
(Generally speaking, resonant terms produce
mainly an energy transfer, while nonresonant
terms produce mainly a frequency shift. ) To be
consistent, we also neglect the frequency-shift
constant ua in Eq. (26). The equations of motion,
in the absence of a driving field, are now

I = L38,
I 3= -L,8 -8

with
8 =Qp+ uL, 8 =Cp+ QL, .

(8Va)

(87b)

(8Vc)

(88)

Our interest will be directed chiefly at L3, the en-
ergy of the No (in units of K&d).

It is convenient to introduce the dimensionless
time

(89)

and to indicate the nth derivative of L~ with respect
to v by a parenthetical superscript (n). Equations
(8Vc) and (88), together with the relationship

2L, L = L —Lg+ I3, (9o)
yield

(»)
which expresses the first derivative of {I3)as the
expectation value of a quadratic polynomial in L, .
Equation (91) is not, of course, a differential equa-
tion for {L,), since {L1)4{L,), in general. The
following procedure is aimed at deriving such an
equation; it will also provide information about the
higher moments of I.3.

We set up a hierarchy of equations for succes-
sively higher-order derivatives of {L1), in which
the derivative is expressed as the expectation val-
ue of a polynomial in J.3. Consider the second
derivative, which, from Eq. (91), is given by

( L(I) ) {LI) &1& (L (1)) (92)

The equations of motion yield

(L2)(1) (L L(1)~L(1) L )

{LsL,C + L18 L

+L,S L1+8 L L3) . (93)

Since 8 and g t commute with L3, I.„and t. , we
can move 8 to the extreme right of the term in
which it appears, move e~ to the extreme left of
the term in which it appears, and then substitute
for a and 6' from Eq. (88). The expectation value
of each term removes the terms containing Cp and
Cot, according to Eqs. (34), and we have

{d,"')={I„„(L,)), (98)

where P„,& is a polynomial of the order n+ I, and is
obtained by the application of Eqs. (9V) to each
term of {P„(L,)). For the third derivative, we ob-
tain, in this manner,

{,LP ') = 2 (SL3 —10I1+(11—4L ) I 3

+(8I,'-4)I., +I.'(I,'-4)) . (99)

An iterative procedure is set up in Appendix C for
obtaining the coefficients of P„,j from those of P„.

Of particular interest, for later purposes, is the
initial condition in which the NO is in its highest-
energy state. Since classically, this is the un-
stable equilibrium condition, we will refer to this
initial condition also in the quantum-mechanical
treatment as the "unstable equilibrium" (UE) initial
condition. We list here, for later use, the first
six initial derivatives for UE initial conditions ob-
tained by the methods of Appendix C:

(L&'&(O)) = —2L, ,

{L3 '(0)) = —2 (Lo —Lo),

&I,e&'&(o) ) = —2'(I,,' —4I.,'+ 2L,),
(100)

(Ls"'(0)) = —2 (L40—11L()+19LO —VIO),

{I 1( '(0) ) = —2 (L(& —26I() + 107L() —123Lf)+ 38I&)),

{L1( '(0)) = —2 (L() —57L()+4V4L(& —1195L10

+ 1076L() —295LO) .
Although generalized expressions for the numerical
coefficients in these derivatives are not easily ob-
tained, we assume the following generalizations:
(i) The term with the highest power of Lo in

(Ls"'(0)) is —(2LO)". (ii) The term with the next-
highest power of Lo in {L1("&(0))is (2"—n —1)
x 2nLn-g

Returning to the quest for a differential equation

(Ls) ' ' = —{L1L,L + 2L,Ls L + L, I, L1) . (94)

Using Eqs. (15) and (90), one obtains

{L1) ' ' = {(L1—L1 —L ) (2L1 —1)) . (95)
Thus, the second derivative can be expressed as

{L1( ') =2{L1—2L1+(1 —I, ) L1+L ), (96)

the expectation value of a cubic polynomial in L3.
The third derivative of {L1) is obtained by differ-
entiating Eq. (96), which means that we need the
(first) derivative of {L,') as the expectation value of
a polynomial in L3. It is shown in Appendix C, us-
ing a generalization of the method just applied, that
we can write

(L )' '={(L —L —L ) fL —(L, —1)~]) . (9V)

[It is seen that Eqs. (91) and (95) are special cases
of this relationship. ] It is clear that we can write,
generally,
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(Ls —1) Ls=p for Ls= 1,
(L3 4 }(L3 g}=0 for Ls= s

(101b}

(101c)

for (Ls), we utilize a well-known identity for pow-
ers of L„namely, the expression of the fact that
L3 satisfies its own eigenvalue equation. Thus,

(lola)

&Ls(~)& = --,'+e '. (10V)

(108a)

The expression for (Ls) is given trivially by Eqs.
(104b). Equation (106) is identical to Eq. (V5c),
which is to be expected.

For n= 3 (Ls = 1), the set of Eqs. (103) becomes

(L' ')=&L —L —2),

and so on. For an n-level system, the eigenvalue
equation reads

Q„(Ls)= 0, (lo2)

and

&L"'&=&I'.(L )),
«s"&= &I's(Ls}&

«'" ")= &I.(Ls}),

(Q„M,,)&=o

(103)

where Q„(L,) is the nth-order polynomial in Ls, the
roots of which are the n eigenvalues of L3.

Let us consider now an n-level system. The set
of equations

(Ls ') = 2 (Ls -2Ls —Ls+ 2),
&Ls —Ls&=o .

Elimination of (Ls) and (Ls) leads to

(Lss')+4 (Is ')+4 (Is&+4=0 .
For the UE initial conditions,

&.Ls(o})= &Ls(o)) = 1

so that, from Eq. (108a},

&L,"'(0))= —2,
and the solution of Eq. (109) is

(I,s) = —1+2 e '(7'+ 1) .

We also obtain,

(108b)

(108c)

(109}

(110)

(112)

form a set of n equations from which we can elimi-
nate the n —1 quantities (Ls), (I,s ), . . . , (I.s), the
result being a linear differential equation (with
constant coefficients) of order n —1 for the quantity
(I,s). One can then solve this equation by standard
methods, subject to initial conditions which specify
(Ls) and the first n —2 derivatives at 7 = 0. The
initial derivatives may be obtained from the initial
moments by the first n-2 equations of the above
set. (Any initial moment can be obtained from a
knowledge of the initial state, in principle. )

It is worth noting that an explicit expression for
&Ls(v)) yields information about all moments of
Ls, through Eqs. (103). Thus, &Ls(&.})is obtained
from the first equation if &Ls(v)) and (Ls &(v}& are
known, &Ls(s })is obtained from the second equa-
tion if &Ls(v}), (Is(7)), and (Ls &(v}& are known,

and so on. Higher moments than the nth for an
n-level system are reduced to lower moments by
means of Eq. (102).

a. Small Lo. We illustrate the above method
for several systems. For n=2 (Ls= —,'), we have

«s"'& = (Ls —Ls --'& (104a)

(113)

Our last illustration is that for a four-level NO

(n =4, I,,= s), for which we have the set of four
equations

(Ls ') =(Ls Ls —
4 ),

(Ls ') =2(Ls —2I.s —
4 Ls+ 4 ),

(Ls ') =2 (SLs —10Ls —4Ls+26Ls —
4 ),

(Ls —sLs+is &=0 .
Elimination of (I,s), (Ls), and (I.s) leads to

(114a)

(114b)

(114c)

(114d)

(I,,"(o)) = (-,')",
which yields

& L O&(P}
&

—
& L (s&(P})

and the solution of Eq. (115}is

(Ls)= —s+Se '(47' —1+2e ').

(116)

(11V)

(118}

(LP& ) + 10(I ~a& ) + 33(Is"') + 36& I, ) + 54 = 0 .
(115)

Assuming the UE initial condition again, we have

(Ls) a
-—0 .

Eliminating (Ls), we obtain

the solution of which is

(Ls) = - s+(&Ls(0})+s) e '
~

If the NO is initially in the upper state, then

(104b)

(105)

(106)

The application of the above method to cases of
increasing Lo becomes tedious, of course, and if
the NO is of macroscopic proportions, the applica-
tion becomes prohibitive. It is natural, there-
fore, to seek approximation methods that may be
applicable to the case of large Lo.

b. Large Lo; semi-quantum-mechanical aPPxoxi-
mation. We return to Eq. (91). Since &Lss —Ls)
& I, the slope of &Ls(v}& is negative (which is con-
sistent with the fact that the physical phenomenon
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is one of radiative decay). Also, since

(119)

the slope of (Lp) is less negative (less steep) than
the slope of L, , where L, is a c number satisfying
the differential equation

(120)

ables do not commute with L3. If we consider an
ensemble of identical NO's, with L,3= +Lp, then l,
and l2, according to the uncertainty principle,
must be considered random variables (random with
respect to members of the ensemble) for which
the ensemble average of the sum of their squares
is given by the corresponding quantum-mechanical
expectation value,

and the same initial condition as (Lp) . We there-
fore have (Ii+ Ia) = L (Ls) = Lp ~ (126)

(Ls& - Lp . (121)

The first-order nonlinear differential equation
(120) can be solved simply in closed form, the re-
sult being

L, = —,
' —(I.,+ —,') tanh[{L, + —,') (~ —~,)],

where

1 g Lp(0) ——,
'

p
p+ 2 p+ 2

(122a)

(122b)

1 „g 1 —(2Lp)ij)= —, tanj" j (2 j g) . {123)

As Lp becomes large, one can write, to lowest
significant order in Lp,

~p=Lp'tanh '(1 —Lp') = {2Lp) ln2Lp, (124)

and

L,= —Lp tanh(Lp ~ ——,
'

ln2Lp) . (125)

Comparison with Eq. (46) shows that Lp, for UE
initial conditions, behaves like the classical L3 for
slightly-off-UE initial conditions, with the initial
energy given by Lp(0) = I.p —l.

It is clear that an improvement over the SQM ap-
proximation requires cognizance of the fact that
(Lp) 0 (Lp), in general, and must involve statisti-
cal considerations. We seek such an improvement
by investigating the physical aspects of the differ-
ence between the quantum-mechanical and the
classical problem.

c. Large Lp, statistical approximation. For
large L,p, the NQ may be regarded as an essential-
ly classical system except under two limiting con-
ditions, when L3 is near Lp or —Lp. It is then
that the uncertainty principle is significant, be-
cause, classically, l, and l2 —or L,, and L —vanish
for L3=+Lp, while according to the uncertainty
principle, ), and l2 cannot vanish, since these vari-

L, may be regarded as an approximation for
(Lp) in which the difference between (LpP) and

(Lp) is neglected. We shall refer to this approxi-
mation as the "semi-quantum-mechanical" (SQM)
approximation. For initial conditions in which the
NO is in an energy state, Lp and (Lp) have the
same initial derivative, and L3 exhibits the correct
(initial) spontaneous emission. In particular, set-
ting Lp(0) =Lp, we have

Lp-'Lp —Ls (123)

holds. For large Lp, this condition can be written,
approximately,

(129)

(The symbol "&"is to be read "less than, or of the
order of.") The quantum-mechanical aspects of the
field should also be taken into consideration, of
course. It can be shown, in fact, that the zero-
point oscillation of the field (or, more precisely,
a quantum-mechanical treatment of the field when
it is in the lowest-energy state) doubles the radia-
tion effect of the "highest-point" oscillation of the
NO, and cancels the radiation effect of the zero-
point oscillation of the NO. We can therefore
drop the absolute-value sign in Eq. (129). In con-
clusion, it can be said that a quantum-mechanical
treatment is necessary if, and only if, the NO is
near UE, or

Lp-L3-1 . (130)

The above reasoning is consistent with the clas-
sical and quantum-mechanical expressions for the
expectation value of the power radiated into the
field by the NO. For the free decay of the NO, we
can write, from Eqs. (31c) and (3Vc),

where

Qg ((Lp + Lp) (Lp —Lp) + 3I. (Lp+ Lp) ) &
(131)

0 classically~

~

~1 quantum mechanically . (132)

These "quantum-mechanical" coordinates of oscil-
lation —which may be considered as remaining ap-
proximately constant in the neighborhood of the two
energy extremes —are significant only when they
are not much smaller than the classical coordi-
nates of oscillation, given by

lg+ l2= LP —L3 .2 2 2

It is, therefore, reasonable to regard the problem
as essentially quantum mechanical (in the sense
of nonclassical) only when the "quantum-mechani-
cal" amplitudes (or "uncertainty-principle" ampli-
tudes) are of the order of, or greater than, the
classical amplitudes, or when the condition
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Consider a classical statistical description of the
decay (necessary, for instance, if the initial con-
ditions are specified statistically, with respect to
an ensemble). The expectation-value brackets are
then entirely appropriate in the classical descrip-
tion, and indicate an ensemble average. Further-
more, classically, also, we have (L~) w(L, ), in
general. On the basis of Eqs. (131)and (132), it is
reasonable to regard the behavior of the system as
describable classically (but statistically, if neces-
sary) when the X term (with X= 1) is insignificant
compared to the first term, and requiring a quan-
tum-mechanical description otherwise. We thus
have

L0-L, » 1, (133)

as the condition which allows a classical descrip-
tion. This inequality is consistent with that of
(130). It is worth noting that, although Eq. (131)
contains explicitly only NO variables, the quantum-
mechanical effects of the field are already built into
it, since the order of the NO variables L, and L
was determined, in part, by the quantum-mechan-
ical properties of the field.

Obviously, the "most quantum-mechanical" prob-
lem —and, therefore, the most interesting problem,
for present purposes —is that for UE initial condi-
tions. We proceed to consider this problem for
large L0. In accordance with the above discussion,
the quantum-mechanical solution need be carried
only up to a time when the energy radiated is large
compared to unity (in units of K~), beyond which
the behavior of the system is describable classical-
ly. Let that time be given by 7 = ~&. More pre-
cisely, since the quantum-mechanical solution
offers only a statistical description, we take v&

to be the time when the average energy radiated
is large compared to unity. Our method of ap-
proximation will be the following: (a) For 0 ~ v ~ v~

(which will be referred to as the "quantum-me-
chanical region"), the problem will be treated
quantum mechanically, with UE initial conditions;
(b) for 7~ ~ 7 (which will be referred to as the
"classical region"), the problem will be treated
classically; the results of the quantum-mechanical
solution will be considered initial conditions, and
the statistical properties introd'uced by the quan-
tum-mechanical solution zvill be preserved. We
note that this method of approximation explicitly
avoids the assumption (L3) = (Lg . We also note
that a small statistical spread in initial conditions
near unstable equilibrium will have a significant
effect on the classical solution, as can be seen
from Eqs. (44)-(46). The result of this method
will be referred to as the "statistical approxima-
tion. "

Let (Ls) be expanded in a Taylor series at ~= 0,

00 gal

(L,(~)) =I., + Z (Lf&(0))
n~1 n ~

(134)

Taking note of Eq. (100) and the two following gen-
eralizations, we can write

«,())=L, f, (L, ) L,'f, (L. )'",
where

(136a)

0 0 (136b)

f,(LO7) = Z (2" —n —1)(2LO~)"
n=&

= e ~o'(e o'- 2Lov. —1) . (135c)

For L0 sufficiently large and 7 sufficiently small,
or more precisely, for the condition

2I 0v
0 (136)

0 &»1 (138)

It is convenient to consider
v'g- L0

We will now use Eq. (13V) to determine the ini-
tial conditions for the problem in the classical re-
gion. As mentioned previously, the statistical
properties of L3(~), expressed by the moments of
L~(7'), can be determined from the explicit expres-
sion of (L3(v)) as a function of 7. [The moments
can be determined if the derivatives are known, as
is illustrated by Eqs. (91), (96), and (99). ] In
order to facilitate the following discussion, we will
label orders of magnitude in terms of powers of
L0, with e 0' being considered of the order of L0,
that is, unity. Thus, the three terms in Eq. (13V)
are of the orders of L0, unity, and L0, respec-
tively. In the classical region, the problem will
be treated with the approximation in which only
terms down to order unity are considered. In
other words, terms of the order of L0 or smaller
will be neglected. Furthermore, the statistical
properties will be specified only to the extent of
an explicit expression for the first and second mo-
ments and the sign of the third moment. It will be-
come obvious that these approximations are dic-
tated by the fact that (L,(T)) is given explicitly
in Eq. (137) only to order Lo .

(L3(r) ) can be approximated by the relationship

(L,(~) ) = L,+ (I -e"o')

+Lo e 0 (e 0 —2Lor —1), (13V)

In accordance with the previous discussion, we
need to treat the problem quantum mechanically
o»y up to T = ~&, ~h~~~ l(L, (7,)) LO I is sig-nifi-
cantly larger than unity. The requirement on 7& is
thus
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The initial conditions for the classical problem
can now be written as

Lp(wg) = Lp+ (1 —e P'&)+ D, (140)

where D is a random variable. Some of its statis-
tical properties are given by

(D) =0 (141)

(I.,') =
&, d,'&

&+ (L,&+ L,(L, + 1)

and Eq. (13V), one obtains

(DP) ePI 1P'g( ReIPTg 1)

(143)

(144)

It is seen that (D ) is of order unity. One can
show, from Eqs. (100), that (DP

& is also of order
unity and is negative. The derivation of a closed-
form expression for (DP) by the above method,
however, would require (dp '& to order unity, and
therefore & Lp& to order Lp, which we do not have
in closed form. The rms deviation of D (and of the
initial I,, in the classical region) is given by

(D2&i/p eRLpv& (1 e-2Ipvl )1/8 (145)

Now, the maximum (positive) value that D may as-
sume, since the initial L3 in the classical region
cannot be greated than L0, is

pLpvg(1 -2E,peg )

This quantity is slightly smaller than the rms
deviation; hence the negative value of (D & .

The classical solution for 7. ~v.
1 xs, from Eqs.

(42),

L3 (w ) = —I p tanhI. p(7 —Yp)

where

tanh + v1 .1,Lp(7'&)

0 0

Noting that

h-1 Le ~1 t h-1
0 0

we have, approximately,

(14'1b)

(148)

h 1 3 1 Lln 0

(149
1 —(1 + D) e P~P"

The strong formal dependence on ~1 cancels, and
Eqs. (14V) yield

(142)

with the right-hand side to be obtained from the
quantum -mechanical solution. Using the quantum-
mechanical relationship

Lp~~= —,'ln2Lp —in[1 —(1+D)e P~P'~ ] . (151)

The average of v.„requires an average of the log-
arithmic term. Expanding formally the logarithm
about zero, and retaining only the first two terms,
we have

(in[1+ (1+D)e P~P'~])

= —((1+D)e P"+ p(1+D) e P'i) . (152)

It is possible to utilize, now, the expressions for
the first and second moments of B, to obtain, for
the avera, ge of the logarithm,

(153)

the approximation being based on the inequality
(138). We thus obtain

(7'~) = (2Lp) (1n2Lp+ 1) . (154)

It is not the purpose of the present treatment to
investigate the statistical properties of I.3 in de-
tail, but only to illustrate the above method. Some
qualitative observations can be made easily, how-
ever, and are instructive. Since the second log-
arithm in Eq. (150) approaches —~ as D ap-
proaches its maximum value e 0'1 —1, while this
logarithm is finite for all other values of D (and
the spread in D is of the order of magnitude of
unity), it is apparent that the average effect of this
logarithm on the argument of the hyperbolic tangent
will be negative, and its effect on I p(7.) will there
fore be positive. Comparing Eq. (150) with Eq.
(125), that is, the statistical approximation with

L3 (r ) = —I p tan h[L p r —p 1n2L p + ln [1 —(1 + D )e P'& ]]'

for 7&r~ . (150)

Equation (150) is the "statistical approximation";
it differs from the SQM approximation by the
presence of the last term (the statistical term) in
the argument of the hyperbolic tangent. The sta-
tistica1. properties of D that have been derived are
contained in Eqs. (141), (144) or (145), and (146).
The fact that (D ) is of order unity and is negative
has also been mentioned. In principle, the statis-
tical information about D can be increased to any
required amount by expanding (Lp(~)) in Eq. (134)
to a sufficient degree of accuracy.

The dependence of Lp(y), as given by Eq. (150),
on the exact value of v1 is less significant than may
appear at first glance, since the ~, dependence of
D mainly cancels the effect of the exponential con-
taining 71. %e illustrate this point by making an
approximate calculation of the average time of de-
cay of the NO energy to zero, that is, to half its
initial value. For any particular member of the
ensemble, this decay time 7„ is given by setting
the argument of the hyperbolic tangent in Eq.
(150) equal to zero. This yields
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In the analysis of the driven multilevel NO, the
same approximation will be made in the equations
of motion as that which was made in the analysis
of the free decay, namely, the neglect of the fre-
quency-shift terms. Vfe merely have to supple-
ment Eqs. (87) and (88) by the driving terms con-
tained in Eqs. (16), to obtain

L,=A~L +~&L

L =ALS+I38,
Ls= —(AL, +A*I ) —(L, .8+.8 "I, ),
.8=@0+&L~, 8 = Cto+ eL, .

(156a)

(156b)

(156c)

(156d)

Since the classical analysis was carried out on the
basis of the same approximation, it is instructive
to write the following equations (unless otherwise
indicated) in a manner that displays explicitly the
corresponding classical equations. This will
facilitate a physically meaningful comparison be-
tween the classical and quantum-mechanical re-
sults. We make use again of the factor X, which,
as indicated in Eq. (132), is zero in the classical
interpretation and unity in the quantum-mechanical
interpretation of the equations.

the SQM approximation, we see explicitly that the
former gives a larger value of (L3(r)) than the lat-
ter, a result consistent with the previous discus-
sion of the error contained in the SQM approxima-
tion. For instance, for r = (1/2LO) ln2Lo, which
yields L, = 0, the average of I 3 over the three val-
ues D = 0, + 2 (D ) I is approximately 0. 07L0

It is also interesting to comment on a disagree-
ment in the literature (involving numerical calcula-
tions) concerning the maximum power radiated by
the NO. '~ " From Eq. (150), we obtain

- L& '(~) = L,'sech'(Los - —,
'

ln2LO

+ in[1 —(1+D) e 0"]} (155)

which is the radiated pomer, in units of o.'S. We
see that for any one member of the ensemble under
consideration (any specific value of the random
variable D), the maximum power radiated is Lo.
Therefore, the average of the maximum power
radiated is I.o. However, the maximum of the
average power radiated is another matter. At any
given time 7', an average over ILst '(w) ) yields a
value less than Lo, because the argument of the
hyperbolic secant has a statistical spread that
reaches out to —~ (thus giving a range of i L3 'l
from Lo down to zero). One must, therefore,
carefully define the meaning, in statistical terms,
of "the maximum power radiated. " For instance,
the average of IL,' 'I obtained analogously to the
average of L3 in the last statement of the preceding
paragraph is 0. 83LO.

2. Forced Oscillation

The present equations of motion yield

(I,s) = —(A(L,)+A*(I )) —2o'.(L,L ),
~ ~

«, )= —n'(L, ) 3a—(AI.,L,+A*I,,I. )
—4a'(L, L, L ),

(157)

(158)

where, it is recalled, 0 =2IA I . Utilizing the
relationships

L.Ls = -.([L„Ls}-».),
LqL = g(( LsL }—AL ),

(159a)

(159b)

59c)2 [Lo-Ls+ &(Lo+ Ls)], (1

notation [X, F}—=XF+ FX is used, we

L, L =

where the
obtain

(Lq)+ ~aX «3)+ fl'(L3) —-'& (P.s, Ls})

'([I,', -L,' X(L, I.,)](L,, —X)) .

As in the classical (and two-level ) analysis of the
driven oscillator, we consider the problem for
which the NO is initially in the ground state:

(Ls(o)) = —Lo ~ (161)

The striking difference between the classical
equation (56) and the quantum-mechanical equation
(160) is the presence of the «~) term in the latter.
We have seen in the classical analysis that Le will
oscillate periodically between -I.o and Lo for a
sufficiently strong driving field. In the present
instance, however, such an oscillation of (I,e) ap-
pears impossible, since —as is mell knomn-the
(I,s) term is a damping term The i.nterest of the
qualitative difference in the equations of motion
is enhanced by the consideration that, from a
physical viewpoint, a strongly driven NO of large
Lo may be expected to behave, essentially, as a
classical system, since the amplitudes of oscilla-
tion of the NO and of the force acting on the NO are
large compared to the (quantum-mechanical) un-
certainties in these amplitudes. 3 In the case of a
weak driving field, for which, classically, L 3 ap-
proaches a constant value, we may expect the effect
of the (L3) term to be less significant. We will
therefore consider, in the present analysis, only
the case of a strong driving field, mhich, as in the
classical analysis, satisfies the inequality

0» 0.'Lo (162)

Approximating Eq. (160) by dropping the o'3 term,

It is seen immediately that, for X= 0, thjs equa-
tion (without the expectation-value brackets) re-
duces to Eq. (56), the classical equation. It may
also be noted that if the NO is a two-level system,
this equation reduces to the corresponding Eq.
(79) by use of the applicable relationships

(L..I,, }=(L,L,}=[L„L,}=0, I,,'= —,',
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(I 3(t))= (Lg '( f)& + — —
dt's sinQ(t —tg)

x &Ls (t~) —&L3(ti)& . (165)
l

In order to obtain &Lq(t)& to order a, we need only
the lowest- (zeroth-) order contributionof the inte-
grand. For t such that

L,,A'«t«0. ',
we obtain, thus, to order &,

&Ls(f)&= (1 —4 &«) &Ls (t)& .

(166}

(16V)

This perturbation-theory expression is consistent
with a long-time quantum-mechanical solution con-
taining a damping factor e 3 ' 4, the same damping
factor that is found in the solution for the two-level
NO. (Classically, this expression shows that
there exists no damping at least to order a. } Thus,
although we have not obtained an exact solution for
&Ls(t)& in the case of a NO with an arbitrary num-
ber of levels, we can reasonably conclude that the
behavior of &Lq(t)) is described quantum mechani-
caOy by a damped oseiDation, and differs qualita-
tively from that of the classical L~(t), for which

we obtain

&L.&+ -'~~ &LB&+ fl'&L~& = -'~&{4, LSB. (168)

This equation (with X=-1) differs from the corre-
sponding classical equation for a strongly driven
NO, Eq. (66), in two respects essentially: the
presence of the damping term, and the fact that
({L~,L~)& is not equal to {&L3&, (L3&j, in general.
If we approximate by ignoring the latter difference,
Eq. (168) becomes a nonlinear differential equation
for &Lz& that differs from the corresponding clas-
sical equation only by the presence of the damping
term. An analysis of this equation by means of
phase-plane trajectories, somewhat similar to
the analysis of the corresponding classical equa-
tion, ' shows that &L~& executes a damped oscilla-
tion in time, and approaches zero. For the two-
level NO, the right-hand side of Eq. (168}vanishes,
and the solution is an exponentially damped sinu-
soidal oscillation, a result consistent with that pre-
viously obtained.

We can also analyze Eq. (168) by a perturbation-
theory approach in which it is not necessary to
approximate explicitly the right-hand side by a
product of expectation values. In this a,nalysis, one
considers the coupling to the radiation field (but
not to the driving field) to be a small perturbation.
The zeroth-order oPerator solution of Eqs. (156)
is then obtained immediately (by setting 8 = 0) as

Iz ' = Is(0)cosQt+0 [AL,(0)+A*L ( )0] isOnt .
(164)

Equation (168) is formally satisfied by

the oseillations are undamped.
The explanation of this difference —which seems

paradoxical, in view of the fact that it exists even
under conditions for which the system may be re-
garded as essentially classical —must be sought (as
in 1) in the statistical aspects of the quantum-me-
chanical description. While an individual member
of a quantum-mechanical ensemble may behave in
a manner only slightly different from that of a
classical system, the differences among the mem-
bers (these differences are the "quantum fluctua-
tions") may add in such a way as to make the
average behavior appear greatly different from the
classical behavior. In the present instance, the
most obvious aspect of the behavior in which the
differences ean account for such an effect is the
frequency of oscillations of L3. Either a slight
spread in (constant) frequencies among members
of the ensemble, or a slight random variation of
frequency with respect to time for each member of
the ensemble, can result in a damped oscillation
of the average, even though the oscillation of each
member is undamped.

Qf course, one could argue that classical con-
siderations are of little relevance, and that each
member of the ensemble-or, at least, a, typical
member —being a large system, behaves in a man-
ner described by the expectation value, the energy
being a damped oscillation specified by (I ~&. It
should be possible to distinguish between the two
types of ensembles, which are associated, respec-
tively, with the two conflicting arguments, by an
examination of &L~). If the individual members of
the ensemble are damped (in the sense that L,3 ap-
proaches zero), then (L,') will likewise be damped,
while a spread in frequencies of an ensemble of un-
damped oscillations will not lead to a damping of
(L3&

We use perturbation theory to examine (I3).
The coupling constant between the NO and the radi-
ation field will be considered a quantity of first
order, with e, therefore, being a quantity of second
order. The perturbation-theory orders will be
indicated by a parenthetical superscript (which
should not be confused with previous similar nota-
tion indicating differentiation with respect to v; no
such differentation is used in the present section).
We seek results up to second order. (Note, how-
ever, tha, t the driving field is taken into account
to all orders )Equation. s (1M) lead, by suitable
substitution in the expression for Le, to the opera-
tor equation

Ig= —[AI,(0)+A*I (0)j—0 f dtgLg(tg)

—f d4 [A~o(4) Ls(4)+A*Le(4) ~0(4)1
0

dt's AL, tj Ls tg +A+L3 tg L tj
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Z =- —[ACotI 2+ A*LsCo] —a[AL, Ls+A ~LsL- l

(L.Co+ CoL-) -2a —(L, L ) (169b)

and

& =- [L.(o)Co(o)+'C'(o) L-(o)+ 2aL.(0)L-(0}l.
(169c)

[The simplest way to see that Eqs. (169) satisfy
Eq. (168) is to note that both equations yield the
same Ls(t) and I,s(0). Incidentially, these equa-
tions are valid both classically and quantum me-
chanically. ]

Writing

L(0) + L(1) L(2)
3 S + 3 + S (170)

we proceed to calculate the expression

(L2 ) (L(o)2) ({L(o) L (1)}) (L (1)2)

+ ({Ls ' Lsa']) (171)

The details of the calculation, utilizing previously
used approximations, with t satisfying inequality
(166), are outlined in Appendix D. The results are
(in the quantum-mechanical analysis only)

(Ls ' ) = Lp cos'0 t + —, Lp sin'Qt,

({L'" L")))-0
(L,"' )= —,

' atL, [(4Lp+ 1)sin'0t+ 3 cos Qtl,

(172a)

(1V21)

(172c)
({Lss),Ls )})= —

2 atLp[Lpcos Qt+ 2 sin Qt],
(1V2d)

so that, up to second order,

(Is)= [I p
—2 atLp(Lp -s)]cos Qt

+ [sLp+ atLp(Ip —2)] sin Qt . (173)

To the same accuracy we have, from Eq. (167),

(I,s) = Lp(1 —sat)cos 0 t. (1V4)

As a check, we note that for Lp= —,', Eq. (1VS) yields
(Ls)= —,, the exact result.

Equation (1VS) serves as a qualitative corrobora-
tion of our physical interpretation of the quantum-
mechanical damping. If we were averaging over
an ensemble of (say, exponentially) damped oscilla-
tions, all of frequency 9, then there could not
exist in the expression for (I 2 ) a sinsQt component
that increases with time, the increase being of the
same order of magnitude as the decrease in the
cos gg component. However, such a component is
entirely consistent with the assumption that the

—(L,C o+ C
o L-) - 2 a L,L ~ (168)

This equation is formally satisfied by the relation-
ship

Is=Ls '+0 f dt)sinQ(t-t()Z(t, )+If't, (169a)

ensemble consists of undamped oscillations that
have a random frequency spread.

It should be possible to explain, in a qualitative
manner, the physical origin of this random fre-
quency spread by means of the uncertainty princi-
ple. We continue to use a perturbation-theory
viewpoint. In lowest order, the frequency of
oscillation of LS is determined by the externally
applied fieM only (and, indeed, in lowest order
there exists no damping). In higher order, the
NO sees not only the external field but also the
radiation field, and the frequency is now deter-
mined by the superposition of the two fields. Clas-
sically, the radiation field is well defined; it is
the radiated field, determined by the oscillating
components l, and E of the angular-momentum vec-
tor, or, in terms of reduced variables, by L, and
L . Quantum mechanically, however, the situa-
tion is different. Consider, for simplicity, the
time t=0, at which both the NO energy and the
field energy have their well-defined minima, re-
spectively. There will now be an uncertainty in
L,(0) and L (0), as well as in C p(0) and Cp(0),
since these dynamical variables do not commute
with the energy variables of the NO and the field,
respectively. The uncertainty in L, and L will
produce an uncertainty in the radiated field. The
effective field acting on the NO —in perturbation-
theory language-is the superposition of the driving
field, the radiated field, and the zero-point field,
the resultant being determined by both the magni-
tudes and relative phases of these three fields.
There exists, thus, an uncertainty in the net, or
effective, field, which will produce an uncertainty
(or a spread among members of the quantum-
mechanical ensemble) in the frequency of oscilla-
tion of LS. .

This explanation may be presented in a more
formal manner. Let us replace L, and I, in Eq.
(168), according to the approximation

L.(t) = L.(0)+A*] dt(Ls(t) ), (1VSa)

I (t) L (0)+A) dt)Ls(t1) . (1VSb)

This substitution yields

I,s
---. —[AL,(0)+A oL (0)]—[L,(0)Co+ CpsL (0}]

—2aL, (0)L (0) —2 a02[ ) dt1I s(t1)]

—1'dt, O[L,(t,)1, (176a}

where 0 is a linear operator that operates on
Ls(t, ); it is given by

0 =- 0' + Sa {[AL.(0)], + [A*I, (0)]„)

+ [Aco(t))]) + [A*co(t()l. ~ [Aco(t)])

+ [A*C p(t)]„, (1V6b)
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Let the fieh~ under consideration be the electro-
magnetic fiejd„ It may be described in terms of
the modes by

K= —Z (4:,L ) i u (r)p (t),

a (4m c'ri/(oa)' ' V x u, ( r) q, ( t),

(A1)

the subscripts "l"' and "r" indicating that the cor-
responding terms are placed on the left- and on the
right-hand sides of Ls(t|), respectively. In lowest
approximation, this operator determines the fre-
quency of oscillation of L,(t) by specifying the
square of the frequency. Considering, now, the
dynamical variables to be random e numbers, we
can regard this operator as the square of the
effective frequency, which exhibits, explicitly, its
dependence on the magnitudes of the random quan-
tities L,(0), L (0), go, a 0, and on their respec-
tive phase relationships with the driviog field.
These quantities, for the present initial conditions,
vanish classically, ' but constitute the uncertainties
in the oscillation amplitudes-the zero-point oscil-
lations-when the uncertainty principle is taken into
account, and produce an uncertainty in the effective
frequency of oscillation of I 3, Vfe will not carry
this formal analysis further, since one should not
regard zero-point oscillations too literally in a
classical sense. As was pointed out in an earlier
paper, such a course can lead to absurdities if
taken too far. It does, however, indicate the for-
mal (quantum-mechanical) origin of the frequency
spread among the ensemble members.

%e see, in the present instance, that the calcu-
lated quantum-mechanical expectation value cannot
be considered even qualitatively illustrative of the
results of an experiment, even though the system
under consideration may be essentially macro-
scopic. In fact, some qualitative features of a
single experiment (and in the macroscopic domain,
one is interested in results of single experiments)
are better described by the classical solution than

by the expression for the quantum-mechanical ex-
pectation value. The greatest insight into the class
of phenomena of the present type —one that includes
a number of quantum-electronic processes —is,
obviously, obtained by an analysis of both descrip-
tions, as illustrated not only by the consideration
of the forced oscillations, but also by that of the
free decay.

ACKNOWLEDGMENTS
where y;~™is given by Eq. (AS) with r„replaced
by r' '. lf, and only if, pq&

' is independent of m,
H» can be written in the form of Eq. (5), where

(m) (m)
7]y ~ l (A6)

Now, the dependence of y&~
' on m arises only from

the factor u~(r„). If one is concerned with only a
single mode, then the requirement that y&&

' be in-
dependent of rn is met approximately by either
placing the molecules within a region small com-
pared to a wavelength, or placing them at (periodic}
locations where u,„(r'"') has approximately the
same value. It can be shown' that if a single reso-
nant traveling-wave mode-or a, number of almost
identical resonant traveling-wave modes —is con-

where Gaussian units are used, q, and P~ are di-
mensionless dynamical variables satisfying Eqs.
(1) and (2), and u, (r} satisfies the equation
V~u~+ (&ugc ) u„= 0, and is normalized over a suffi-
ciently large volume. The same volume is used
to impose boundary conditions on u that make the
modes denumerable. This description corresponds
to a standing wave for each mode; traveling waves
can be obtained by a suitable superposition of
standing waves. The decomposition into modes is
not unique, of course.

If the NO is coupled to the field through a dipole
moment, this moment can be described by

3 = p(ag lg + a2lp + as ls),
where the a's are dimensionless vectors of the
order of unity and p is the dipole-moment strength,
either magnetic or electric. (For a magnetic mo-
ment due to spin or orbital angular momentum,
the a's are orthonormal vectors. ) Setting the in-
teraction energy to be either —d ~ H or —d ~ E, de-
pending on whether the coupling to the field takes
place through the q or the p coordinate, the cou-
pling constants used in Eq. (5) are given by

y&~
——(4' /k&u~) p, a& v x u„(r~), i= 1, 2, 3

(AS)
for q-type (magnetic) coupling, and

y&, = (4m~, /I')'~'pa, u, (r„), i=1, 2, 2 (A4)

for p-type (electric) coupling, where r„ indicates
the location of the NO. If the NO were described
by a current rather than by a dipole moment, the
w~ dependence of the coupling constants would be
different.

Consider now a number of identical two-level
systems ("molecules") coupled to the field. If we
label the variables of the mth molecule by a paren-
thetical superscript, then the interaction Hamil-
tonian referring to a single mode is given by

~ Ha =~ @a(yea i~ + yaa la
(fft) (m) (fft ) (m)
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APPENDIX 8

We consider the nonlinear differential equation
(66)

~0

L, —S~L,L, + O'L, = 0, (81)

with the initial conditions Lo(0) = Lo, Lo(0) = 0-.

The change of variable I 3= x, Ls = y, permits this
equation to be written as a pair of first-order
equations,

Sc = y,
y = (3oy —0 )x,
x (0) = —Lo, y (0) = 0,

which leads to

(3o.'y —0 )x

(82a)

(82b)

(82c)

(83)

sidered, a trivial transformation of the molecular
variables will make the coupling constant uniform
in a region unrestricted —or almost unrestricted-
in the direction of propagation. (This transformation
essentially "phases" the molecules so that the
phase relationship between the oscillation of the
mth molecule and that of the mode at r' ' is the
same for all m. ) If, however, one is concerned
with a large number of modes haveing a wide range
of characteristic properties, then the molecular
coupling constants will be approximately indepen-
dent of m only for modes which have wavelengths
significantly larger than the region where the
molecules are located. The collective effect of
the molecules on modes with shorter wavelength
(with the exception of the resonant modes mentioned
above) will be reduced, and this reduction may be
incorporated approximately in the present theory
by a reduction in the absolute value of the effective
y&„or, essentially, by a cutoff.

The model used by Bonifacio et al. ,
' ' who con-

sider a single traveling-wave mode, appears to im-
pose the least restriction on the location of the
molecules, and, therefore, on the number of
molecules which behave cooperatively. These
authors consider a waveguide closed at one end
and open at the other, so that field radiated by
the molecules escapes, and they assume the single
mode to be that of a traveling wave. This model is
subject to the criticism that it implicitly neglects
all other modes that exist in such a waveguide
structure, modes arising from the fact- that a com-
bination of traveling waves is required to form a
field node at the closed end, and a range of fre-
quencies is allowed by the open end.

Integration of both sides yields

x =Lo+ 3 3ay+0 ln I —~y2 o 2 ~ 2

(85)
Consider, now, a graph of the solution in the x-y
plane. Equations (83) and (85) imply the following
statements: (i) The graph is symmetrical with
respect to the y axis. (ii) The slope is zero at the

y intercept(s). (iii) The slope is infinite at the x
intercepts +Lo. Tracing the graph with time from
t = 0, we start at x = —Lo, y = 0, and go up into the
second quadrant (since y &0 for y = 0, x & 0). The
slope decreases as y increases, from Eq. (83),
and becomes zero as we reach the x axis. One
has to show, of course, that the factor 3ny —0'
remains negative, and does not change sign before
x does. This can be done by noting that y= 0'/3o.
is a solution of Eqs. (82a) and (82b). In view of
the theorem that the graphs of two solutions (cor-
responding to different initial conditions) cannot
join, we have

y & 0'/3n, (86)

APPENDIX C

and 3y —0 is everywhere negative.
Proceeding clockwise with the graph into the

first quadrant, we obtain the mirror image of that
in the second quadrant. As we enter the fourth
quadrant, x=LO, y &0. The slope, therefore,
starts to decrease from ~, and, as y decreases
(or increases in absolute value) x approaches zero,
at which po nt the slope becomes zero. The graph
in the third quadrant is a reflection of that in the
fourth quadrant, and when we reach the x axis,
at —Lo, the graph is closed and a cycle has been
completed. x and y thus execute periodic oscilla-
tion, the period being

T = gdx/y(x) .
One can show, either by expanding the logarithm

in Eq. (85) in powers of o.', or by applying pertur-
bation theory to Eq. (81) with o.'as the perturba-
tion parameter, that, to first order in o.', the
period T is independent of o.', and given by T= 2v/Q.
While the time of rise of L3 from —Lo to Lo is
increased approximately by o'Lo/203, the succeed-
ing time of fall from Lo to —I.o is decreased by
approximately the same amount. The physical
explanation is obvious: On the way up, the power
gained by the NO is the power absorbed from the
driving field minus that radiated, while on the way
down, the power loss is the power given up to the
driving field plus that radiated.

A method for obtaining the successive derivatives
(Lo"(v)), (Lo '(v)), . . . , Ls"'(v) [where aparenthetical
superscript (n) indicates the nth derivative with
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respect to ).] as expectation values of a polynomial
in I.s will be developed. We need, first, an ex-
pression for (d/d). ) (I ss) (P being an ordinary power
index). Consider

(n+1) A (n+1) A (n+1)
8+1 tt n+1

(n+1) g (n+1)
an+2 = An+1 ~ (C9)

(L)(+1) Q (LsL(l) Ls s)

= —o.''5~ (Ls(L,C —8 L )Lss '), (Cl)

LSL L (L 1)n (C8)

which, when utilized in Eq. (C2) to bring L, and
adjacent to each other, together with the rela-

tionship

L L = —,(I —L,s+ Ls),
yield

(Ls ) = ((Ls —Ls —L )[Ls" —(Ls —1) j)
(C5)

If we start with a set of polynomial coefficients
a'"' such that

n.1
(g( I& Qg( ly )m=0

(C6)

where Eqs. (87c) and (89) have been used in the
second step. Since all variables refer to the same
time, 0, can be moved to the extreme left-hand side,
and 8 can be moved to the extreme right-hand side,
and then replaced by the expression from Eqs.
(88). The expectation values of the terms contain-
ing @2 and 6 2 vanish [see Eq. (84)], and the result
ls

Q(L'L I.''I. +I. I.'I. L'')
s=O

(C2)
The commutation relationships of Eqs. (15) lead to

The A's have a computational significance of their
own, since

(L&n+1&) g (Lp+1 L&( L2LP-1)g(n+1)
p=1

(C10)

( L (n+1& (0) ) 2 Q g (n+1 & L2 (C11)

It should be noted that the coefficients themselves
involve Ls. Equation (Cll) was used to obtain the
first six derivatives presented in Eq. (100).

APPENDIX D

An expression will be derived for (Ls(t)) up to
order a (that is, up to second order), with the No
initially in the ground state. We utilize the op-
erator expression for I.s(t) given by Eqs. (169).
lt is clear that those terms in Ls(t) which yield
zero when operating on the ground state both from
the left- and the right-hand sides [note that
(I L, ,(0) = I. (0) I) = 0] can be neglected for present
purposes. Thus, we drop the term containing K
in Eq. (169a) immediately. Using a parenthetical
superscript to indicate perturbation-theory order
in the present Appendix, the expressions we need
are Ls ', I,s ', and I2, with (I.s) given in terms
of these by Eq. (171). From Eq. (164), we can
write

This expression is useful in calculating (Ls"') when
the NO is in an energy state. In particular, for
(Ls(0))=Ls, we obtain

then, we obtain, from Eq. (C5), Ls ' = Ls(0) cosQt -M(0) sinQt, (D1)

(L,"')=((L,' L, L'))Qa„'"'[Ls —(I., —1) ],
m=1

n+1-p

~ in+1) Q ( 1)) p + g(n)
p y g

p+t t
t=0 +

and

(n+1) L 2A(n+1)ao

(n+1) A (n+1) I 2A (n+1)
2

(CV)

which permits the determination of the next-higher
set of polynomial coefficients. Equation (99) is
thus obtained from Eq. (96). In order to be able
to obtain a set of coefficients a'"" from the previ-
ous set a("), it is convenient to break the process
into two steps:

where, for notational simplicity, we set

~(0).=Ls's)(0) = Q-'[AL, (0)+X*L (0)].
From Eqs. (168), we obtain

Ls"-Q ' f dt, sinQ(t —t, )Z '(t, ), i=1, 2

(DS)
the arrow indicating that terms (not necessarily
all) which will not contribute to (Ls ') up to order
o. are dropped, with Z' ' and Z' ' given by

g"' =-[Aa'L"'+A L'"+] ——(L 'tt +n'L ')
dt

(D4)

Z(2) [pter t L(l) As(L(l) g ] (L(1)~ 1L(1))d

a &n+1) A(n+1) A (n+1) L 2A(n+1) 2 (y (~t'+?.

& gL (0) L (0) ~+I (0}1(0) 2 ~+(0)+(0)&
+ 3 + 3 - +

dt's +

(D5)
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(D6a)

L' (t) = L (0)+A J dt's Ls '(tg), (D6b)

lt is convenient to express L,"'(t) and L"'(t) in
terms of L, (t) by the equations

L, '(t) = L,(0)+A*f dt, L3 '(tg),

In the calculation of {L~"' ), we encounter the
expectation value of a product of two zeroth-order
field variables. The only expectation value which
does not vanish is {Qp(fg)8t(fg) ). From Eq. (19),
we obtain

Since Q(0) I)= —Lol) and

{m'(0) ) = Q 'l Al'(I. (0)L.(o) )=-,'L, ,

one obtains, from Eq. (D2),

(DQ)

L, i (t)=A f dtj Lg '(tg)+ J dtg@0(tg)Lg (tg),
(D6c)

L"'(t)=A f' dt, L,"'(t,)+ f dt, L~"'(ti) ~0(t,).
(D6d)

Making the appropriate substitution, again dropping
terms that will not contribute to the result we seek,
and performing an integration by parts, we obtain

L~"'(t)- —Q ' f dt& sinQ(t —tq)Lq '(tq)

x [Aai~(f, )+A~no(t, )]-f 'dt, cosQ(t —t, )

x [Anat(t, )+A*no(ti)] f, dt, L,' '(tp) . (D7)

Using similar techniques, we also obtain

L,"(f)-—{3n/Q) f, dt, sinQ(f —t, ) [AL,{0)L,"'{f,)

+A'L,"'(f )L (0)+.'Q' f '
dt (L' -'(t, ), L,' '(f, )] ] .

(D8)

(D12)

where, it is recalled, v~ —=&~ —~. Using the same
notation as that of Eq. (22), and familiar approxi-
mation methods, one gets

&&o«»&o«a) &=l f d~. I ~(~.) I'p(~.)e""' "'"' "'
0

=-,*ly( )l'p( ) f d, "'"-."-'
0

=2'(tg —tg), (D13)

where, as previously, the subscript has been
dropped from a~. The calculation of {L~") also
involves the integration of oscillatory functions
and products of oscillatory functions. We approxi-
mate by retaining only secular terms in such in-
tegrations, that is, terms which (after the integra-
tion is carried out) contain factors that increase
with time. This approximation is essentially equi-
valent to that of neglecting Lo/Q compared to f,
and is acceptable if t satisfies the inequality (166).
Using Eqs. (D7), (D13), and the above approxima-
tion, one obtains

{L~ '2)=Locos Qt+2Losin Qt . (D10) {Lq ' )= —, &tLO[3cos Qt+ (4L +1) sin~Qf]. (D14)

One also has, immediately,

{(L(0j L0&}) 0 (D11)

in view of the fact that 6, 0 and @to (which are the
zeroth-order field variables) commute with the
zeroth-order NO variables.

The same approximation, using Eqs. (Dl) and (D8),
yields

((L,' '(t), L,"(t)))= —3at(-, Losin Qt+ —,Locos Qt).
(D15)

Equations (Dlo), (Dll), (D14), and (D15) consti-
tute Eqs. (1'72) of the text.
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A quantum theory of diffusion is presented and applied to the diffusion of isotopic impurities
in solid helium. For temperatures much less than the Debye temperature 8 and much more
than the impurity exchange temperature KJ/k&, it is shown that the diffusivity is given by
D=(js /o g). The effective cross section o* for the scattering of two mobile impurity atoms
is of the order of a square lattice spacing a2, and the mole fraction x of the impurity atoms
is assumed to obey (Kl/k&6) (T/OH) «x «1. Observation of the concentration dependence
D ~1/x would constitute strong evidence of quantum mobility, whichhas been of considerable
theoretical interest in recent years.

I. INTRODUCTION

In the limit of low temperatures, where ther-
mally activated diffusion is virtually zero, the
conventional picture of a crystalline solid is one
of atoms immobile on equilibrium lattice sites.

This picture cannot be precisely correct. For
low concentrations of impurity atoms a simple
counting argument shows that a macroscopic de-
generacy wouM exist at zero temperature leading
to an entropy of solid solution in violation of the
third law of thermodynamics. ' This apparent


