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ting.'® When 80 steps were taken between planes
(as they were for the third movie), there was about
about 0.1 period per step. This is a little more
than necessary, but from an information-theory

viewpoint the focusing inhomogeneity is not sam-
pled frequently enough. This explains the unphysi-
cal roughness of the last frame. It was felt that
further refinement was not justified.
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A number of radiating two-level systems subject to an external resonant driving field are

treated as a single angular momentum system.

It is shown that the damping of the oscillation

of the energy expectation value is the result of quantum-mechanical averaging over an ensemble
of experiments, the energy oscillation in a single experiment being undamped.

In the case of spontaneous emission, a collection
of identical two-level atomic systems in an ideal-
ized situation have been treated by a number of
authors as a single angular momentum system
(AMS) of large quantum number L,. =% No such
treatment appears to exist for resonance fluores-
cence. It is the purpose of the present paper to
outline such a treatment for a strong incident field
and discuss a result which not only requires mod-
ification of previous theory, but is also of interest
from a general quantum-mechanical viewpoint and

illustrates the use of classical solutions in the in-
terpretation of the quantum-mechanical results.
The advantages of the AMS method in the analysis
of spontaneous emission are the following: (i) Cer-
tain correlations between the atomic systems, which
are unaffected by theelectromagnetic field, are
automatically accounted for and preserved by the
conservation of total angular momentum. (ii) A
large AMS may be expected to behave in an essen-
tially classical manner except when its energy is
near maximum and the external field is weak.
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Since the difference in experimental conditions be-
tween spontaneous emissionand resonance fluores-
cenceis the presence of an external drivingfield, the
above advantages exist alsoin the case of resonance
fluorescence, with the second advantage acquiring
additionalimportance when the driving field is strong.
Infact, itis the comparison of the classical and quan-
tum-mechanical analyses that contains, at first
glance, surprises, and affects the physical inter-
pretation of the quantum-mechanical results.

The system under consideration is an AMS driven
by a prescribed (c-number) field and coupled to a
radiation field consisting of a large number of
(denumerable) modes closely spaced in frequency.
The Hamiltonian is given by

H=nwly+ 2 iwy(aja, +3)
+ 3020, (vl +vEal,) + S (vaxl_ +v*al,) (1)

and is explained as follows: The AMS variables are
the (dimensionless) angular momentum components
1,, 1, and I,, satisfying [l,,1,]=1l;, etc., with
1,=(1/V2)(1,+il,); the variables of the #th mode,
of (angular) frequency w, are a, and a;, satisfying
la,,afl=1; a and a* represent the prescribed
driving field, of frequency w; the rotating-wave
approximation has been used. The preceding
commutators become Poisson brackets multiplied
by 7 in the classical analysis. Introducing “re-
duced” variables 4,, A], L,, and L,, defined by

ap=Ageiont [ =L.e*“t [.=L,, (2)
and utilizing the additional definitions

=100 A e et A= Livae'™?,
(3)

a()E %iz;kyz(Ak(o)e-wkt, VkE wk - w,

we obtain for the equations of motion, both clas-
sically and quantum mechanically,

L,=@*+ GHL,, L= LA +a),
Ly==[L,(A+@)+(A*+@NL_], : ()
Ay=—tiv,Le™t, Al=LtiviL.e ¥,

Itis tobenoted thatA is aconstant. One also notes

that the square of the total angular momentum,
given by
L%=1%+L,L_+LL,, (5)
is a constant of motion which is equal to LZ classi-
cally and Ly(Ly+ 1) quantum mechanically.
If we assume sufficiently weak coupling between
the AMS and the radiation field so that the reduced

variables vary slowly compared to e’ we obtain,
by integrating A, and A}, 87

at)=Qy(t) +aL_(2), a't)=al(t)+aL,@?), (6)

a=i|yv(w)|%(w), (7
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where |7(w)|? is the average of |7,!% over all #’s in
a small neighborhood about w,=w, and p(w) is the
number of modes per unit interval of w, at w. The
significant approximations contained in Eq. (7) are
the neglect of the imaginary part of o« (the main
effect of which is the production of a frequency
shift in the AMS, a shift that has already been
qualitatively affected by the rotating-wave approxi-
mation) and the neglect of the time dependence of
o, such that ¢ increases from an initial value of
zero to the value given by Eq. (7) in a time period
which is small compared with that for a significant
changle in the reduced variables but large compared
to w™,

Substitution from Eqs. (6) yields equations of
motion for the AMS variables only;

L,= (A% +G})Ly+aL L, (8a)
i,_: LiA+@y)+aL,L, , (8b)
Ly=-[L.(A+a) +(A*+@d)L.]-2aL,L_.  (8c)

We consider initial conditions in which the radiation
field is in the ground state, that is,

<|a(¥=@o|>=0 9)
quantum mechanically, and
Go=a4=0 (10)

classically. One obtains, with some obvious ap-
proximation,

<(10(t1) a(;(ta» = 2015(t1 —t5) (11)

quantum mechanically. The physical meaning of
« is displayed by the consideration of a (quantum-
mechanical) two-level system in absence of a
driving field. For A=0, Eq. (8¢c) yields, for such
a system,

(Ly=-a((Ly)+3) . (12)

It is seen that a is just the spontaneous transition
probability per unit time or the Weiskopf-Wigner
decay constant.

Setting 2|A |?= Q2 and using the notation {4, B}
=AB+AB, we obtain from Eqs. (8)

(g +3on L)+ Q¥ (Ly) - 2al{Ly, Ly}

=a?([L3- L+ MLy+Ly)(Ly-2)) (13)

quantum mechanically, with A=1. The correspond-
ing classical equationis obtained by setting A = 0 and
dropping the expectation-value brackets. We consid-
er only the case of a strong driving field, such that

Q> aL,. (14)

Equation (13) can therefore be approximated by
dropping the o term, with the result

(B +3aN(Lg) +QXLy) - $a{ly, Lehy=0. (15)
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For simplicity, the AMS will be considered to be
initially in the ground state, so that the initial con-
ditions are

(Ly(0)) ==Ly, (Ls(0))=0. (18)

Classically, the AMS energy is described by the
differential equation

Lg—30Lyly+Q%Ly=0, amn

with Ly(0)= ~ Ly and L4(0)=0. It is possible to
analyze the trajectory of this equation in the Lg,
Ia plane and show that this trajectory is a closed
curve about the origin, ? which means that the solu-
tion is a periodic function of the time. One can
also show, by perturbation theory, that the period
is independent of @ to the first order in a and is
given by 27/%, although the oscillation of L4 is not
sinusoidal. Thus when analyzed classically, the
energy of the driven AMS oscillates periodically.

Quantum mechanically, we consider, first, a
driven two-level system. In this case, {Lj,L,}=0,
so that Eqs. (4) yield {Ls, L3}=0 and Eq. (15) be-
comes

(Ly) +3a(Ly)+ XLy =0. (18)

The solution is a damped oscillation which in view
of inequality (14) can be written approximately as

(Ly=-Le3*/tcost. (19)

Although the period of the oscillating factor is the
same as that of the classical oscillation, the am-
plitude of (L;) is damped and approaches zero.

Consider now a {nultﬂevel system. I weapproxi-
mate the term {Lg, L3} by {(Ls), (L9}, Eq. (15) be-
comes a second-order nonlinear differential equa-
tion for (Ly), which may be analyzed in the (L),
(I:3) plane by a method similar to that used for Eq.
(17). This analysis shows that (L) is a damped
oscillation that approaches zero, the behavior being
qualitatively similar to that of the two-level case.
Another approach to Eq. (15) is one of perturbation
theory. We consider the coupling to the radiation
field (but not to the driving field) to be a small
perturbation, and obtain (Lj) to first order in «
for ¢ such that

LQl<txal, (20)
The result is given by
(Lg)y~ (1 = rat)(— Ly cosQt) . (21)

It is seen that, quantum mechanically, the first-
order expansion is consistent with an exponential
damping of the oscillationof (L3) whichis the same
as that of the two-level system. Equation (21) also
shows explicitly that, classically, the oscillations
of Lg are undamped at least to order a.

There appears, at first glance, a paradox: A
large AMS subject to a strong field should be de-
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scribable classically, and yet the behavior of

(L is qualitatively different from that of the
classical Ls! The explanation must be sought in the
statistical aspect of (Ly), associated with the un-
certainty principle.? The expectation value repre-
sents the average over an ensemble, each member
of the ensemble being an AMS interacting with a
radiation field. While a given member may be-
have in a manner only slightly different from that
of the classical system, that is, exhibit an un-
damped oscillation of the energy, the differences
among members (the quantum fluctuations, or the
“uncertainties” of the uncertainty principle) may
add in such a manner as to make the average be-
havior appear greatly different from the classical
behavior. This is indeed the case for slight ran-
dom variations in the frequency of oscillation of
L; among members of the ensemble; as is well
known, a small spread in frequencies will lead to
a damping of the average.

The frequency of the AMS energy oscillation can
be shown to contain a random part that is of quantum -
mechanical (in the sense of nonclassical) origin.
Consider a “classical” analysis in which quantities
introduced by the uncertainty principle (i.e., the
quantum fluctuations) are treated as random vari-
ables. (This type of analysis illuminates certain
differences between classical and quantum-me-
chanical results, but may lead to difficulties when
carried too far quantitatively.) Let us assume a
perturbation theory viewpoint with respect to the
coupling of the AMS to the radiation field. In low-
est order (i.e., in the absence of coupling to the
radiation field) Eq. (17) shows that L, oscillates
with a frequency §, which is proportional to the
amplitude of the driving field. In higher order, one
can consider the frequency of oscillation of Lj to be
given approximately by $,, which is the corre-
sponding quantity proportional to the effective, or
total, field acting on the AMS. Classically, the
total field is the superposition of the driving field
and the radiated field, both of which are well de-
fined. Quantum mechanically, the total field is
the superposition of the driving field, the radiated
field, and the zero-point field, with the last two
fields subject to the uncertainty principle and not
well defined. The randomness of the zero-point
field requires no discussion. As far as the radiated
field is concerned, consider, for simplicity, the
time £=0. Since L4(0) is well defined, L,(0) and
L _(0) are not. The radiated field, determined by
A, and A} in Eqs. (4), reflects the uncertainty in
these quantities, and is therefore random with re-
spect to the ensemble under consideration. Thus,
the effective field acting on the AMS contains a
random component due to both the zero-point and
radiated fields, and produces a random component
in the frequency of oscillation of L.
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In order to show that the customary practice of
predicting the result of an experiment involving a
large system by an expectation value is not applica-
ble in the present instance, we examine the expres-
sion for (L§). With the same perturbation-theory
approach as that used in obtaining Eq. (21), one
derives (to order @) the relationship’

(LY~ [LE-20tL Ly~ %)) cos®t

+[5Lg+ atLy(Ly- 1) Isinqt.  (22)

(It may be noted that this expression yields the
exact result for Ly=3.) For large L;, we need
consider only the L2 terms. Since, from Eq. (21),
(L9%=L¥1 - 30at) cos®t to order a, the term
atL? sin®Q¢ cannot be reconciled with an ensemble
of damped oscillations in which each member is
approximated by the expectation value, and is, in-
deed, of the order of magnitude that would be ex-
pected for an ensemble of undamped oscillations
for which the frequency spread introduces the in-
dicated damping of the average.

One may ask where the fallacy lies in the view-
point that a large number of two-level systems sub-
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ject to a strong driving field should behave approxi-
mately independently, with the result being the
sum of the expectation values. The answer is
furnished by noting the fact that the deviations from
the average are due to essentially spontaneous-
emission effects, and the coupling between the two-
level systems through the radiation field is pre-
cisely strong enough, in relation to these sponta-
neous emission effects, so that the deviations can-
not be regarded as independent.

The amplitude of the radiating oscillation (at
frequency w) is determined by L, and L_, which,
in turn, are affected by L, according to Eq. (5).
An oscillation of Ly will produce an amplitude mod-
ulation in the radiation which, from a spectral
point of view, introduces sum and difference satel-
lite frequencies, the nonsinusoidal aspect of the
modulation accounting for a number of such satel-
lites. It is clear that an undamped oscillation of
L;, predicted by the present analysis, will result
in different radiation properties from those for a
damped oscillation predicted in the literature®:8-1°
on the basis of a calculation of (L;) for a two-level
system.
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