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a V" ' type. On the other hand, the V" state Iks)
is unmodified and gives the correct asymptotic be-
havior for a scattered electron. Thus, the two
divergent boundary conditions are resolved by the
usage of two basis sets in the same diagram.

We have given several concrete examples for
which the method of the multiple basis set can be

employed to sum exactly classes of diagrams to
infinite order. In a larger scope the same method
may also be fruitfully used to make approximate
summations. This method of using multiple basis
set should greatly extend the power and usefulness
of the BG-theory approach in an even wider range
of atomic calculations.
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A calculation is carried out within the framework of the Brueckner-Goldstone many-body
perturbation approach for the photoionization of helium. In particular, we have utilized a
newly developed technique of multiple basis sets to circumvent the difficulty of evaluating the
singular integrals which appear in the important final-state correlation. This technique also
enables us to achieve considerable calculational simplicity, reducing the final evaluation to
only two diagrams. Our result agrees well with the accurate experimental data of Samson.

I. INTRODUCTION

In the past few years, the Brueckner-Goldstone
(BG) many-body perturbation-theory (MBPT) ap-
proach has been successfully applied to a diverse
number of atomic calculations. ' Recently, Chang
and M.cDowell, and later Ishihara and Poe,' applied
the BG approach to photoionization problcl~~s in I i
atom. Although, in general, good agreement is
obtained, a detailed test of the applicability of the
BG approach for the photoionization problem is
made difficult by the considerable uncertainty in
the experimental data in the lithium case. For
this reason we report the result of the BG calcula-
tion of the photoionization process in helium:

He(isa) + y -He'(ls) + e

There are several interesting features in the

present calculation. First, with the existence of
very accurate experimental data, this calculation
serves as a critical assessment of the accuracy
and usefulness of the BG approach for general
photoionization problems. From a calculational
point of view, it is also an ideal test case because
of the extreme simplicity of the two-electron helium
system. This avoids the redundancy of evaluating
a large number of similar diagrams while still
preserving the essential features of general photon-
atom reactions.

In addition, there exist very important intrashell
correlation effects between the two valence elec-
trons in He, a feature which is absent in the Li
case. In the conventional MBPT approach, these
terms yield a singularity in the summation of in-
termediate states, making its evaluation quite im-
practicable. We have circumvented this calcula-
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The total Hamiltonian H for an N-electron atom
in the external radiation field is given by

H=H, +H, +H„(t),

where

(2)

H, =Z (T, V), (3)

N N

H, =Z~„-Z V, (4)

and

N

H„(t)=Q G, e "'+c.c

T& is the sum of the kinetic energy and nuclear po-
tential of the ith electron; an arbitrary single-
particle potential V, is to be determined for each
specific problem. See Sec. III. n, &--l/q,

&
is the

electron-electron interaction, and G, is the dipole
interaction on the ith electron.

'fhe time-development operator U(t, tp) is ex-
panded as

U(t, t, ) =Q, dt,dt, dt„
- (-i)"

m~0 to

x T(H'(t, )H'(t, ) ~ H'(t. )), (6)

where

H'(t)=e'"o' [a, +H„(t)]e '"p'e " '~

with g-+0 and T being Kick's chronological op-
erator.

The N-electron eigenfunction C„of the unper-
turbed system IIO satisfying

can be expressed as combinations of Slater deter-
minants of a complete set of single-particle wave
functions y, generated by

(T+ V)pq = eqpq, (9)

and lowest N orbitals are occupied in the ground
state 40. Although our perturbation theory is en-
tirely based on this complete set, we will introduce
another complete set in Sec. III as a result of
partial summation of higher-order terms. ~

tional difficulty by the technique of the multiple
basis set we have developed recently. ' Therefore
the usefulness of the multiple basis set is also
being demonstrated in the present calculation.

In Sec. II, we describe briefly the MBPT ap-
proach to the photionization problems. Important
diagrams for the ionization of He are given in Sec.
III, and the probelm is greatly simplified through
the multiple-basis-set technique. In Sec. IV, we

give numerical results and discussion.

II. MBPT APPROACH TO PHOTOIONIZATION PROBLEMS

Syp ———2vi5(Ey —Ep —(u)Tgp (12)

Contribution of each diagram to T&0 can be cal-
culated by the usual rules' with the exception of
a modification of the energy denominator. Because
of the time dependence in H„(t), the denominators
become (Ep —Hp+~+ig) above the vertex G and
(E', —H, ) below it. '

III. PHOTOIONIZATION OF Hc

For the process of Eq. (1), the logical choice of
the basis set, Eq. (9), of the expansion is the
V ' type defined by

(T+ J p,*, (r')v(r, r')p~, (r')dr'y, (r) = e,p, (r)
(13)

This is the Hartree-Fock (HF) equation for the 18
state, and in excited states the electron sees one
electron in the HF 1s orbital. This type of V" '
basis set has been extensively used in calculations
involving one-electron excitations.

The zeroth-order term in H, is given in Fig.
1(a) and describes the usual one-electron picture.
In the diagrams, the external dipole interaction G

is represented by a wavy line while the electron-
electron interaction v is represented by a dotted
line. The contribution of this lowest-order dia-

The S matrix for the transition from the ground
state 40 to an excited state 4&, where several holes
and particles exist, is given by

S,.=&4, ~U(-, --)~4.& . (IO)

As is well known, the perturbation expansion of S&0

can be represented as a sum of Feynman-like dia-
grams. Each diagram is decomposed into linked
and unlinked parts, and the latter can be factored
out to give the expression

S„=&C,iU, (, — )iC, &
"o

The sum of all the unlinked connected diagrams
Uo, is shown to be pure imaginary, and we can
omit the factor e o in the calculation of transition
probability.

Consider the ionization process due to a single-
photon absorption. Multiphoton processes can be
treated similarly. S&0 is then given by the sum of
linked diagrams of first order in G, with hole and
particle lines of 4» at the top of the diagrams,
e.g. , diagrams in Sec. III. After the t integra-
tions of Eq. (6), all these diagrams have a factor
(-2')5(E& —Ep-&u) which represents the energy
conservation in the unperturbed system. However,
this may be replaced by the true energy conserva-
tion ( —2')5(E& —Ep —u&) if we take into account
certain interactions in the final state up to infinite
order. In the case of single ionization such as
Eq. (1), this is given by the self-energy insertion
to the hole line in the final state. Thus
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FIG. 1. Diagrams representing zeroth-order contribu-
tion to the photoionization and higher-order intrashell
self-consistency corrections.

FIG. 3. (a) and (b) EPV diagrams which give rise to
the shift of the energy denominator. (c) and (d) Second-
order polarization corrections.

gram to T&0 in Eq. (12) is simply

(14)

There are two diagrams representing the next-
order terms. Figure 1(b) contains the first-order
electron correlation in the final state while Fig.
2(a) represents the first-order correction to the
initial (HF) state of He atom. The contributions
of these diagrams are given by

~ (k, ls I v ils, k') (k'i Gl ls)
E'g~ —E'ye +CO +X g

(15)

g (Is I G ik') (k, k'iv [is, ls)
a' 2E'g

~
—6g —6'~s

These terms are not small and tend to cancel each
other. Therefore they should be evaluated accu-
rately. It also turns out that Eq. (15) has a zero
in the energy denominator, and it makes accurate
numerical integration extremely difficult. The
same type of singularity also occurs in other
higher-order diagrams, such as those in Figs.

. 1(c), 2(b), and 2(c). Physically, these diagrams
represent the intrashell consistency effects between
two valence electrons.

This difficulty is avoided in the calculation by
the use of the multiple-basis-set technique we have
developed recently. ' With this technique, the whole
class of diagrams in Figs. 1(a), 1(b), 1(c), and
the higher-order terms are exactly replaced by the
one simple term shown in Fig. 1(d). The double
line in the diagram represents a new basis set g
which satisfies a Schrodinger equation differing
from the original one by the addition of an exchange-
like self-consistency interaction term,

[T+f y„(r')v(r, r')yz, (r') d r'] y~(r)

+ [ J' y„(r')v(r, r')P~(r ') d r']y&, (r) = e~qr~(r)

(I'I)

Through the same technique, the initial-state
correction term Fig. 2(a), and its higher-order
self-consistency terms Fig. 2(b), Fig. 2(c), etc.
can be summed exactly, yielding another simple
diagram as shown in Fig. 2(d). The dot between
the double line k and the single line k~ represents
an overlapping integral (ki kz).

Finally, for diagrams in Fig. 2, there also exist
important higher-order hole-hole ladder terms as
illustrated in Figs. 3(a) and 3(b). These can be in-
cluded in the calculation of Fig. 2(d) by the use of
the shifted energy denominator. ' Figures 3(c) and
3(d) represent core-polarization effects in the
initial and final states. These two effects tend to
cancel each other and are concluded to be small
in the Li case. ' Thus they are not included in this
calculation.

With the use of the multiple basis set, we are
able to circumvent the difficulty arising from the
singularity of the intrashell diagrams. With the
same technique we also achieved considerable cal-
culation simplicity. The large number of diagrams
which occur in the conventional BG approach
[those in Figs. 1, 2, and 3(a), 3(b), . . . ] are re-
duced to only two simple diagrams. Contributions
T,„and T2„ from these diagrams and the cross-
section formula are given by (in atomic units)

O

I~

le is

I

0. 1

I I I I

0.2 o.s 0.4 0.5 o.6
g' (n. L)..)

i' + i~' + &S-+ ~ ~

(Q) (C)

FIG. 2. Diagrams containing first-order correction to
the initial state.

FIG. 4. Comparison of theory and experiment for
helium photoionization cross sections. Curve 1 is from
diagram 1(a), curve 2 is from 1(d), and curve 3 is from
1(d) plus 2(d). Dotted line is the dipole-length calculation
of Stewart and Webb, dot-dash curve is the experimental
result of Samson.
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also compared well with the best conventional the-
oretical result such as the dipole-length calculation
of Stewart and Webb. "

Cross sections by dipole length and velocity
formulas are compared in Fig. 5. Since the Ham-
iltonian is local in Eq. (13), we have the relation

q' —q = c, —c,. q'z q (21)

and there is no length-velocity difference in the
zeroth-order cross section cro.

Using Eq. (21), the length and velocity expres-
sions Tf, and T», respectively, of Fig. 1(b)
have the relation

FIG. 5. Comparison of length and velocity formulas.
00 is the cross section from diagram 1(a), L1 and V1 are
length and velocity calculations from diagram 1(d), L2
and V2 are length and velocity calculations from diagrams
1(d) plus 2(d).

TM ——Zr (ls
I I

"~)&~l~s&(~ ~sl vllsls)~
%yap

9Z

(26„-(1sls V
I
lsls ) —s~ —e„),

o, =1.02'11x10 "cm T,„+TMI, (20)
k eg —sg~

where we have neglected the correction to the
ionization potential discussed in Sec. II.

IV. RESULTS AND DISCUSSIONS

The result of the present calculation by dipole-
velocity formula is shown in Fig. 4. The dot-dash
curve is from the experiment of Samson. Curve
1 is the result of the zeroth-order diagram Fig.
1(a) alone. The considerable deviation from ex-
periment implies that the one-particle picture is
inadequate. Curve 2 is the result of Fig. 1(d)
which takes into account the final-state corrections
but neglects the initial-state correction. The re-
sulting curve 2 is seen to overcorrect the cross
section and must be counterbalanced by the initial-
state correlation given by Fig. 2(d). Our final
result is in good agreement with experiment. It

(22)
where ~ = e~ —e,, is the photon energy in our ap-
proximation. Similarly, we have the following
relation between the length and velocity expression
of Fig. 2(a):

Ts'= —~&& )' 'Ivl ls, ls&(1sl s I~')

(23)
Thus we see that each of the above diagrams has
the same amount of the length-velocity difference
with opposite sign and, therefore, there is no
length-velocity difference in the first-order BG
calculation.

Because of the complete summation of intrashell
correlation, Eq. (17) has nonlocal potential, and
there is a large length-velocity difference between
the cross sections from Fig. 1(d) as shown by
curves L1 and V1 in Fig. 5. This difference is
mainly from the first-order diagram Fig. 1(b),
which is cancelled by that from Fig. 2(a), and it
indeed becomes small in our final result L2 and
V2.

The present work demonstrated that the use of
multiple basis sets is not only desirable but neces-
sary in dealing with problems such as the intra-
shell-consistency effects. It also results in a great
calculational simplification, as exemplified by the
mere two diagrams in this evaluation. The method
is shown to be capable of yielding accurate results.
The BG approach, together with the use of the
multiple basis set should provide a powerful method
in calculating general photoionization problems.
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Positions of the lowest ~' D' autonization states of He and H below the n=2 level of He' and

H have been calculated variationally using Feshbach's Q-operator formalism. The trial wave
function is of the Hylleraas type with appropriate angular momentum factors. The widths and

the shifts of the states have also been calculated. The shifts are found to be positive for all
the states calculated here. The results with 112 terms for most states are lower than any

previously calculated. The calculated lowest autoionization states of He and H (relative to
the ground states of He and H, respectively) are 59.902 and 10.1185 eV, in good agreement
with the observed values of 59. 9 and 10.13 + 0.015 eV.

I. INTRODUCTION

A number of resonances have been observed in
He and H below the threshold of He' and H. Fesh-
bach's Q-operator formalism has been applied
successfully to calculate~'3 the positions and the
widths of the S and P autoionization states. The

purpose of this paper is to extend these calcula-
tions to the D autoionization states in He and H

observed below the n= 2 threshold of the respec-
tive targets. These states lie in the continuum of
electron scattering from the single-electron target

system. They are not the stationary states of the
two-electron Hamiltonian, and they autoionize by
electron emission leaving behind bound states of
the single-electron system. The energy of the
state can be written as4

where 8+ is calculated variationally and 4+ is the
shift of 8 due to the interaction of the discrete
state with the continuum.

The most general D-state wave function of even
parity of two electrons is

4 (r&, r~) =(f+f )[-$3'(8, p, g) + v 3(cose&3)S~'(e, Q, 0)) + (fvf ) &3(sine~2) &z (e, p, g)

+(g+g)[- (co» ) & (e, 4, 4)+ ~» "(8,8, 4)1, (2)

where S are the rotational harmonics, depending
on the symmetric Euler angles 8, Q, g. ' These
functions are eigenfunctions of exchange; indicating
that they satisfy the following property;

(3)

The trial wave function is of Hylleraas type when
the radial i'unctions f=f(r~, ra, r~a) and g =g
(r~, rm, r~~) are given by

f(r„r„r„)=e '""~"~"a'r'

CI~' r'r r", , (4a)
l &0 m&0 n)0

g(r„r~, r,a) = e '"~"~"~"~'r, r,

x E Z Z C(2) r&~ rmrn (4b)
l&0 m&0 n &0

It is implied in Eq. (2) that

f =f(...;,;,)

and

g=g(ra ri ri2) .

(5a)

Using properties (3) and (5) in Eq. (2), we see
that the wave function is manifestly space sym-
metric (upper sign) or space antisymmetric (lower
sign). The space-symmetric and antisymmetric
solutions correspond to singlet and triplet states,
respectively.

To the best of our knowledge, this is the first


