6 NUCLEAR-SPIN-LATTICE RELAXATION OF ... 1107

(1968).

YA, B. Harris, Phys. Rev. B1, 1881 (1970).

2¢, F. Coll Il and A. B. Harris, Phys. Rev. B2,
1176 (1970).

Bc. F. Coll I, A. B. Harris, and A. J. Berlinsky,
Phys. Rev. Letters 25, 858 (1970).

%5 3. Berlinsky, A. B. Harris, and C. F, Coll III,
Solid State Commun. 7, 1491 (1969).

#p, Ramm, H. Meyer, J. F. Jarvis, and R. L.
Mills, Solid State Commun. 6, 497 (1968).

%3, F. Jarvis, H. Meyer, and D. Ramm, Phys. Rev.
178, 1461 (1969).

“"A. B. Harris and E. R. Hunt, Phys. Rev. Letters
16, 845 (1966).

BA. Abragam, Principles of Nuclear Magnetism (Ox-
ford U.P., London, 1961).

®W. P. A. Haas, N. J. Poulis, and J. J. W. Bor-
leffs, Physica 27, 1037 (1961).

¥p, S. Metzer and J. R. Gaines, Phys. Rev. 147,

644 (1966).

L35 T Amstutz, H. Meyer, and S. M. Meyers, J.
Phys. Chem. Solids 30, 2693 (1969).

82N, Bloembergen, E. M. Purcell, and R. V. Pound,
Phys. Rev. 73, 679 (1948).

N. S. Sullivan and R. V. Pound (unpublished).

343, A. Dickson and H. M. Meyer, Phys. Rev. 138,
A1293 (1965).

L, L Amstutz, H, Meyer, S. M. Meyers, and D. C.
Rorer, Phys. Rev. 181, 589 (1969).

%N. S. Sullivan and R. V. Pound, Phys. Letters 39A,
23 (1972).

M. J. Smith, D. White, and J. R. Gaines, in Pro-
ceedings of the Eleventh Intevrnational Confevence on
Low Temperature Physics, edited by J. F. Allen, D. M.
Finlayson, and D. M. McCall (University of St. Andrews
Printing Department, St. Andrews, Scotland, 1969); J.
Chem. Phys. 49, 3317 (1968).

PHYSICAL REVIEW A

VOLUME 6, NUMBER 3

SEPTEMBER 1972

Coherent- and Incoherent-Scattering Laws of Liquid ArgonT

K. Sk6ld,* J. M. Rowe, and G. Ostrowski
Solid State Science Division, Avgonne National Labovatory, Avgonne, Illinois 60439

and

P. D. Randolph?
Nuclear Technology Division, Idaho Nuclear Covporation, Idaho Falls, Idaho
(Received 17 January 1972)

The inelastic-scattering functions for liquid argon have been measured at 85.2 K. The co-
herent-scattering function was obtained from a measurement on pure A% and the incoherent-
scattering function was derived from the result obtained from the A% sample and the result
obtained from a mixture of A% and A% for which the scattering is predominantly incoherent.
The data, which are presented as smooth scattering functions at constant values of the wave-
vector transfer in the range 1.0—4.4 A1, are corrected for multiple-scattering contributions
and for resolution effects. Such corrections are shown to be essential in the derivation of
reliable scattering functions from neutron-scattering data. The incoherent-scattering function
is compared to recent molecular-dynamics results and the mean-square displacement as a
function of time is derived. The coherent-scattering function is compared to molecular-dy-

namics results and also, briefly, to some recent theoretical models.

I. INTRODUCTION

Although a considerable amount of insight into
the dynamical behavior of atoms in liquids has
been gained during recent years through the re-
sults obtained from inelastic-neutron-scattering
experiments, earlier studies have been of limited
utility because of various experimental uncertain-
ties —most importantly, the effects of multiple
scattering. The present report attempts to cor-
rect these deficiencies for liquid argon, and we
describe in detail the data analysis leading to the
corrected scattering laws presented. In spite of
some remaining problems (principally connected
with estimation of errors in the final results), we
believe that the present results are sufficiently

reliable to allow quantitative comparisons with
both theory and molecular-dynamics results. An
important feature of the present results is that the
absolute normalization of the scattering functions
has been obtained experimentally.

The theoretical description of the complex many-
body problem which the liquid constitutes is con-
veniently made in terms of two functions. One of
these is concerned only with the average motion
of one atom among the other atoms (Van Hove self-
correlation function) while the other function de-
scribes the relative motion of atoms (density-
correlation function). In principle the neutron-
scattering experiments allow a complete deter-
mination of both of these functions. In practice,
however, competing requirements on intensity and
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resolution and systematic errors such as multiple~
scattering contamination limit the amount and re-
liability of the information that is obtained. The
information about the density-correlation function
is contained in the coherent-scattering function
while the Van Hove self-correlation function is
obtained from the incoherent-scattering function.
In general, the scattering properties of a sample
are such that a combination of both the coherent-
and incoherent-scattering function is observed in
the neutron-scattering experiment. The theoreti-
cal efforts, on the other hand, are concerned ex-
clusively with either the density-correlation func-
tion or the self -correlation function, even though,
in principle, both functions should follow from a
complete theoretical description of the liquid
state. In order to facilitate comparison between
experimental results and specific theoretical pre-
dictions it is therefore important that the scatter-
ing laws be obtained separately. Also, in several
recent models the density-correlation function is
obtained in terms of the self-correlation function
and the equilibrium pair distribution function.-"
in order to test these models against experimental
results for the coherent-scattering function, it is
important that the incoherent-scattering function,
which is used as input in the theory, be determined
separately.

A large amount of theoretical work has been
done during recent years both on the self-motion
and on the correlated motion!~"1"-% of atoms in
liquids. The theoretical studies have so far dealt
almost exclusively with monatomic systems. In
the case of the self-correlation function there are
no neutron-scattering results available at all in
which the incoherent-scattering function has been
obtained separately for a simple monatomic liquid.
The only elements with almost totally incoherent
scattering are hydrogen and vanadium. Due to the
high melting point and the difficulties in finding a
suitable container material, liquid vanadium has
not yet been studied. Hydrogen, on the other hand,
forms a molecular system which considerably
complicates the theoretical analysis. The only
data available so far for the self-correlation func-
tion in monatomic liquids are the molecular-dy-
namics results of Rahman’ and of Levesque and
Verlet. &

Several liquid metals with predominantly coher-
ent scattering have been studied®-*' and the re-
sults have been analyzed in terms of simple theo-
retical models. The main result obtained so far
is that collective excitations with a wave-vector
dependence resembling that observed in solids
seem to exist in the liquid metal. Rather similar
conclusions were drawn from the neutron-scatter-
ing results for liquid argon obtained by Skold and
Larsson®Z and by Chen ef al.® However, as the
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samples had the natural abundance of argon iso-
topes, the observed scattering was a mixture of
incoherent and coherent scattering and, as men-
tioned above, this makes the analysis of the re-
sults less straightforward. The results by
Dasannacharya and Rao* are also obtained from a
sample of natural argon and are thus subject to the
same limitations. With the increased theoretical
efforts and the lack of experimental results in this
area in mind the present experiment, in which the
separated incoherent- and coherent-scattering
laws for liquid argon at 85. 2 K were obtained,
was undertaken,

The coherent-scattering law was obtained from
a measurement on A%® for which the scattering is
purely coherent. There is no composition of argon
isotopes for which the scattering is purely inco-
herent. The incoherent-scattering law was in the
present experiment derived from the scattering
data obtained from a mixture of A% and A% with
the composition adjusted so that the ratio of in-
coherent to coherent scattering was close to the
maximum value possible (oync/0con =2.9). The
coherent-scattering contribution to the mixture
data was removed by subtracting the properly
normalized results obtained for the coherent scat-
tering from the A%® sample.

Much effort has been devoted to the correction
of the data for contamination by multiply scattered
neutrons. This contamination is especially serious
in the case of the coherent-scattering law for
small values of the wave-vector transfer, where
the primary intensity is low. The data have also
been corrected for energy-resolution broadening.
This correction is of major importance for the in-
coherent-scattering data at small values of the
wave-vector transfer, and is also of importance
for the coherent-scattering law at values of the
wave-vector transfer in the region of the first
peak in the structure factor.

This report is concerned mainly with the pre-
sentation of the experimental results and the de-
scription of the various procedures employed in
deriving smooth scattering functions at fixed
values of the wave -vector transfer from the raw
data obtained in the scattering experiment. The
results are compared to the molecular-dynamics
results by Levesque and Verlet? in the case of the
incoherent -scattering data and to the molecular-
dynamics results by Rahman® in the case of the
coherent-scattering data. To keep the size of the
report within reasonable limits, only a limited
comparison with theoretical results is made. A
more complete discussion of the theoretical inter-
pretation of the present results will be given in a
forthcoming paper. ¢

The basic formulas relating the neutron-scatter-
ing cross sections to the correlation functions for
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the target atoms and some general properties of
the scattering functions are summarized in Sec. II.
The spectrometer, the sample arrangement, and
the procedure used to obtain absolute normalization
of the data are described in Sec. III. The raw data
and the double -differential scattering cross section
at constant angle are presented in Sec. IV and the
correction for multiple scattering is described in
Sec. V. The separation of the incoherent scatter -
ing from the mixture data and the correction of the
data from the almost-pure-A% sample for the in-
coherent-scattering contribution is described in
Sec. VI. Details of the resolution correction are
given in Sec. VII. The representation at constant
value of the wave -vector transfer of the data origi-
nally obtained at constant angle is described in
Sec. VII, where also the final smooth scattering
functions are presented. In Sec. IX, we discuss
the incoherent-scattering function and compare it
with molecular-dynamics results. Similarly, we
discuss the coherent-scattering data and (briefly)
some current theoretical results in Sec. X. Section
X1, finally, comprises a summary of the major
results.

II. BASIC FORMULAS

The double-differential scattering cross section
which, after some trivial corrections, is obtained
directly in the neutron-scattering experiment is
related to the sample dynamics via

a’o _0 (E+E, 1/2
deE_47r(Eo ) s@, E), ()

where E, is the initial energy of the neutron and E
is the energy transferred to the neutron in the scat-
tering process. @ is the wave-vector transfer and
S(®, E), the scattering function, is the double
Fourier transform of the Van Hove space-time
correlation function.

For convenience we will often use a symmetric
form for the scattering function:

5(@, E)=¢£%/?*75(Q, E) . (2

The zeroth and first energy moments of the scat-
tering functions are known exactly, and are there-
fore very useful for testing the reliability of the ex-
perimental results. The second energy moment is
known exactly for a classical system with velocity-
independent forces, and the first quantum correc-~
tion, which can be estimated, is small for liquid
argon in the region of interest. With the nth energy
moment defined as

(E"y= [CE"S(Q, E)dE, (3)
the three first moments are given by

(E° >mc =1,

(E%con=5(Q) ,
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(E1>mc = <E1 >con ='72Q2/2M ’
<E2>mc =<Ez>con =n zszT/M ’ (4)

where S(Q), the structure factor, is the Fourier
transform of the pair correlation function and (E2)
is the classical resuit.

The intermediate scattering function Fs(Q, ¢) is
obtained from the scattering function via a Fourier
transform in energy:

Fs(@, #)=2] cos(Et/M5wc(@Q, E)AE.  (5)

As shown by Nijboer and Rahman, ¥ the interme-
diate scattering function is conveniently expressed
as a Gaussian in @ multiplied by a factor that de-
scribes the non-Gaussian behavior:

-n2Q2 .02
Fs(Qy t)=e héQ /8MkTe Q%(t)

x{1+ % a,(0) [@%()])%+--.} . (6)

The first factor on the right-hand side is a conse-
quence of the use of the symmetric form for the
scattering function. From the analysis of molecu-
lar-dynamics results Nijboer and Rahman conclude
that it is sufficient to include the first correction
term in the expansion above. In this approximation
Fg(Q, t) is thus specified by the width function p(z)
and the coefficient a,(f) which is defined by

ay()=*/3(r?2-1, ()

where ("™ is the nth » moment of the Van Hove self-
correlation function Gg(», #). As seen from Eq.

(7), for a Gaussian Gg(r, t) the coefficient a,(t) is
zero. It should be noted, however, that the conver-
gence of the series in Eq. (6) is not assured for all
values of @.

III. EXPERIMENTAL DETAILS
A. Spectrometer

The experiment was performed at the phased-
chopper velocity-selector spectrometer at the MTR
reactor at Idaho Falls. A detailed description of
the instrument is given in Ref. 28 and we will re-
view the most important features only. The detec-
tors, arranged in 15 independent groups between
18.4° and 94° with 1-3 detectors in each group,
were 1-in. -diameter 18-in, active length He®
counters. The number of detectors in a group was
chosen in accordance with the requirements on
angular resolution in the case of the coherent-scat-
tering sample (compare Fig. 1). As the data ob-
tained from the A% were to be used as a correction
for the coherent-scattering contribution to the scat-
tering from the mixture sample, the same detector
configuration, and thus the same angular resolu-
tion, was used in both cases. The flight path from
sample to detector was 2.25 m. To avoid scatter-
ing of the direct beam in the air immediately before
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FIG. 1. (a) The solid and the dashed curves show the
trace in the E-@ plane for the smallest and largest scat-
tering angles for both incident energies. The dashed
rectangle shows the area over which smooth scattering
functions are obtained. (b) Standard deviation of energy
resolution function for elastic scattering for both incident
energies. (c) Standard deviation of wave-vector trans-
fer-resolution function for elastic scattering for both in~
cident energies and the structure factor S(Q).

and after the sample and scattering of the deflected
beam between sample and detector, the helium-
filled flight path described in Ref. 28 was used.

For the monitoring of the incident-beam flux and
for the determination of the incident-energy distri-
bution, three flat fission counters were placed in
the beam. One of the counters was placed before
the sample and could therefore, together with the
two counters placed after the sample, be used to
monitor the transmission of the sample. Great
care was taken to shield off illuminated construc-
tion material in the sample area so that it should
not be seen by the detectors. As seen below, Bragg
scattering from the aluminum in the vacuum jacket
around the sample did, nevertheless, contaminate
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the beam in some cases.

For each of the two samples data were collected
at two incident energies Ey=15,03 meV and E,
=19,97 meV. Due to irregular behavior of the
beam monitors the data for Ey=15.03 meV could
not be used in the case of the mixture sample. The
ranges of energy and wave-vector transfer covered
in the present experiment are shown in Fig. 1, to-
gether with the resolution in energy and wave-vector
transfer for elastic scattering. The resolution
functions shown in Fig. 1 include the effects of an
average over five consecutive time channels de-
scribed in Sec. IV. Both the energy and wave -vec-
tor resolution increase monotonically with energy
transfer.

B. Sample Arrangement

The mixture sample was contained in an aluminum
tube wrapped back and forth to make up a vertical
plane slab. The axis of the tube was parallel to
the horizontal scattering plane over the beam area,
with cadmium plates inserted between adjacent
tubes in order to eliminate scattering between
tubes. The inner diameter of the tube was 0.58
cm and the wall thickness was 0. 254 cm.

For the A®*® sample an aluminum tube with nomi-
nali.d. =0.046 cm was used. Due to the small
dimension of the tube it was not possible in this
case to insert neutron absorbers between adjacent
tubes. In order to obtain absolute values for the
scattering functions it is necessary to know the
sample volume accurately, i.e., the tube dimen-
sions must be accurately known. In the case of the
narrow tube used for the A% sample a direct me-
chanical measurement of the i.d. is rather diffi-
cult. The i.d. of the tube was in this case obtained
by condensing B“’F3 in the sample container and
measuring the transmission of neutrons through the
sample. The transmission was measured to be
40.5%. From the known absorption cross section
and number density of B! and assuming that the
tubes were ideal cylinders it was then possible to
derive a value for the tube diameter. The value
obtained was 0.055 cm. For comparison, two
tubes from the same batch were calibrated by mea-
suring the outer diameter, the length, and the
weight. For these tubes the value obtained for i.d.
was 0.056 and 0. 053 cm, respectively.

In the case of both samples the beam was masked
off by cadmium immediately before the sample.
The size of the mask was such that only the straight
horizontal portions of the tubes were illuminated.
This was done in order to ensure a homogeneous
distribution of sample over the beam area and also
to make possible the calculation of the number of
atoms per unit area from the known dimension of
the tube. In both cases the measurements were
done in transmission with the sample at 45° angle
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TABLE I. Composition of samples and scattering cross
sections for argon isotopes.
A% sample  Mixture sample o (b)
A% 98,535 7.128 77.8%0.4
A%8 0.815 0.099 1.6+1.6
AY 0.080 91.773 0.419=+ 0.003
N, 0.550 0.300
0, 0.010 oo
CO, 0.010 e
H, oo 0.600
H,0 - 0.100

to the incident-beam direction.

The sample was kept at constant temperature in
a liquid-nitrogen cryostat. The temperature was
determined by a NBS-calibrated platinum resistor
included in the copper block to which the sample
container was attached. The platinum resistor
also served as a sensing element in the electronic
temperature-control device. The temperature was
(85.2+0.1) K for both of the samples measured.

C. Sample Data

Both of the sample gases were obtained from
Mound Laboratory, Monsanto Research Corp. The
composition (in mole %) of the samples and the
bound scattering cross sections for the isotopes as
obtained by Krohn and Ringo® are shown in Table I.
From these values for the abundance and the cross
sections for the isotopes, the cross sections for
the two samples are as given in Table II. In com-~
puting the cross sections shown in Table II the ef-
fect of the chemical impurities has not been in-
cluded.

It will be seen below that the uncertainty in g,y for
the A% sample gives rise to large uncertainties in
3:.0u(Q, E) at small values of @ and E and, in this
case, we should also take the chemical impurities
into account. An accurate evaluation of the effects
of the chemical impurities would, however, require
precise information about the quantity of each im-
purity which is actually dissolved in the sample
container. The scattering functions for the impuri-
ties should also be known. A rough estimate of the
effect of an impurity is obtained if it is assumed
that the impurity is completely dissolved in the
sample liquid and that the scattering function for
the impurity is the same as for the argon isotopes.
In the case of the A% sample, where only the nitro-
gen needs to be considered, this would lower oyy¢
by ~0.1 b and ocon by ~ 0.2 b. The maximum over-
all effect of the nitrogen impurity on the cross sec-
tions is thus of the same magnitude as the error
obtained from the uncertainties in the cross sec-
tions for the individual isotopes.

1111

D. Calibration of Spectrometer Constants

In order to obtain accurate absolute values for
the cross section several spectrometer functions
must be calibrated. In the present case this was
done by determining the elastic scattering from
vanadium, which is given by

do Js _(a@?)
- =-%e , 8
(dﬂ )elastic 4n ( )

where o,, the scattering cross section, is 5.13 b
and a, the temperature factor, is 0.00677 A% After
correcting for absorption in the sample, d%/dQ2d¢
for vanadium was determined with nominal values
given to the spectrometer constants. The result
was then integrated over the elastic peak and com-
pared to Eq. (8) for each angle separately. From
this comparison the factor by which the experi-
mental results should be multiplied was determined
and this factor was subsequently used in the evalua~-
tion of the argon data. For the relative energy de-
pendence of the detector efficiency, which is the
only spectrometer function that varies with energy,
a table corresponding to the nominal counter char-
acteristics was used.

The correction for self-shielding in the sample
was obtained by computing the average “effective”
scattering per unit volume. The “effective” scat-
tering for a volume element is defined as the prod-
uct of the primary scattering in the volume element
multiplied by the probability that a neutron scat-
tered in the direction of a detector will escape from
the sample without suffering a second collision.

The data were multiplied by the ratio of the macro-
scopic scattering cross section per unit volume and
the average “effective” scattering cross section
per unit volume. The influence on the data of neu-
trons scattered several times will be considered in
Sec. V.

IV. PRESENTATION OF DATA

Figure 2 shows the raw data for seven out of the
total of 15 angles measured in each run. In the
case of the mixture sample, inconsistent behavior
of the beam monitors made it necessary to discard
the data obtained at Ey=15 meV. Also shown in
Fig. 2 are the data obtained for the empty sample
container. Bragg scattering from the container
material is evident in the case of A% for Ey=15
meV and 6=69.06°. Due to the large uncertainties

TABLE II. Scattering cross sections for both samples.
A% sample Mixture sample

Ocon 76,6+ 0.5 1.64+0.01

Owe 0.54%0.08 4,76+ 0.07
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resulting from the subtraction of two large and
nearly equal numbers, both affected by statistics,
the data in the region of a Bragg peak were replaced
by a smooth curve fitted to the data on either side
of the peak.

The double-differential scattering cross section
is shown in Fig. 3 for the same angles for which
the raw data were shown in Fig. 2, Before sub-
tracting the scattering obtained without the sample
from the result obtained with the sample, a correc-
tion was applied for the shielding by the sample of
the scattering from the container material. This
correction was obtained by assuming that the scat-
tering properties of the container material are

- homogeneous over the tube and that a neutron scat-
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tered in the sample either after being scattered in
the first wall of the tube or before reaching the
point of scatter in the second wall does not contrib-
ute to the open count. This approach underesti-
mates the total amount of container scattering pres-
ent in the sample data but gives a nearly correct
estimate of the influence on the data of the sharp
elastic peak in the container scattering. Also
shown in Fig. 3 are the resolution functions at each
angle as obtained from scattering from vanadium.
As can be appreciated from Fig. 3, the resolution
broadening will seriously distort the data at the
smallest scattering angles in the case of the mix-
ture data. Resolution effects will also be rather
severe for the A% data in the angular region where

A% E =15 mev A%% E =20 mev AMEE B 250 mev
o o o
2r . lsaee 2r 18.42° | 1O '. 18.42°
. N
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the elastic scattering occurs at wave vectors close
to the first peak in the structure factor.

As the next step in the data handling the double-
differential cross sections at constant angle were
converted from wavelength to energy scale and then
interpolated at equidistant points in energy. The
interpolation was done in steps of 0. 2 meV which
corresponds roughly to the resolution width. For
each of these energies a parabola was fitted by
least squares to the five original data points that
were closest to the selected energy. The value for
d%0/dQLdE at the desired energy was then obtained
from the value of the parabola at this point.

V. MULTIPLE-SCATTERING CORRECTION

In the derivation of absolute scattering functions
from the results of neutron scattering, it is essen-
tial to correct the data for the effects of neutrons
scattered more than once by the sample. This

problem has long been recognized (although few
realistic corrections have been attempted) and
several authors®~* have proposed methods of cal-
culation and used these to estimate such effects for
various geometries. Experimentally, the problem
has been attacked in several ways, the principal
ones being to use samples of high transmission
(>90%), and to use absorbing spacers** to further
limit the scattering in the plane of the sample. As
Slaggie® has shown, for geometries which allow
adequate primary intensity, such procedures re-
duce, but do not remove, the problem. Thus, al-
though our samples were of high transmission (and
in the mixture case had absorbing separators), we
have calculated the multiple-scattering corrections
to our data. At the time of this work the results of
Bischoff, * who applied generalized Monte

Carlo methods to the problem, were not available,
and we followed the same general procedure used
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3+ 5 e H
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2+ e 3L 4+
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by authors, *~*2 adapted to our geometry.

The general procedure used was to solve the
transport equations for once- and twice-scattered
neutrons by dividing the sample volume into cells
for first scattering, and then dividing the first-
scattered neutrons into a grid of angles (both polar
and azimuthal). The total probability of second
scattering of these neutrons was computed from
the geometry of the sample for each point on the
angular grid. The scattering probabilities were
calculated using the total scattering cross section
of each sample. In the case of the A%® sample,
proper account was taken of second-scattering
events which occurred in neighboring tubes. Tests
of the program showed the need to include ten such
tubes. Various tests were also run to check the
adequacy of the cell size used for first scattering.
This procedure yielded a table of numbers for the
total second scattering due to a first scattering
through a given pair of angles. At this point it was
necessary to insert a model or kernel for singly
scattered neutrons. As this kernel is precisely
what we wish to measure, this presents the most
serious difficulty in doing multiple-scattering cal-
culations. We tested two different models for the
coherent-scattering law, one due to Ailawadi
et al. " and the other to Pathak and Singwi.'® These
two models have quite different functional forms,
but both satisfied the zeroth, second, and fourth
moments for our sample. Comparison of the re-
sults showed little sensitivity to the models, and
so we used the Pathak-Singwi model, which has
somewhat better characteristics at large @ and E.
For the incoherent-scattering kernel, we used a
simple diffusion model. This is certainly not valid
at large values of @ and E but as shown later, it is
a reasonable representation of the data, as the peak
height and width predicted agree with our results to
within about 20% over the range measured. The
use of this kernel is certainly the largest source of
error in the calculations for the mixture sample.
Having chosen kernels, we used these to calculate
the second scattering at each detector for both
samples at 20-meV incident energy and for the
coherent-scattering A% sample at 15-meV incident
energy. (For the mixture sample we used a proper-
ly weighted sum of the two kernels.)

To estimate third scattering, we assumed that
the flux of second-scattered neutrons was isotropic,
and then calculated third scattering at each detec-
tor. The assumption of isotropic second scattering
was justified by the fact that the calculated second
scattering only varied by 20% over the entire angu-
lar range. As third scattering was only 10% of
second scattering we did not estimate higher -order
scattering events. Representative plots of the
multiple-scattering contribution are shown together
with the uncorrected data in Fig. 4.
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After the second and third scattering were esti-
mated for each run, they were subtracted from the
measured scattering to obtain the corrected dou-
ble-differential scattering cross sections which
were then used to extract the scattering functions
at constant @ as described below. From these
constant-@ scattering functions we were able to
derive the zeroth, first, and second energy mo-
ments, which were then compared to theory. The
resultant improvement in the moments can be seen
from Fig. 10, where we show the moments for both
scattering functions divided by the theoretical mo-
ments before and after the correction. The results
show both the accuracy of the present correction
and the absolute necessity for such corrections.
The zeroth “theoretical” moment used for the
coherent-scattering function was the structure fac-
tor measured by Yarnell ef al.* which was cor-
rected for multiple scattering and then normalized
to the accurately known values at small and large
@. The present result for S(Q), with and without
the multiple -scattering correction applied, is
shown in Fig. 5 together with the result obtained
by Yarnell et al. As both our experimental data and
our multiple-scattering correction were derived in
absolute terms, with no adjustable constants, we
feel that the agreement, particularly at small @,
is most impressive.

VI. SEPARATION OF SCATTERING FUNCTIONS

The scattering functions at constant angle are ob-
tained from the double-differential scattering cross
sections via Eq. (1). The appropriate scattering
functions for the two samples are

5%(Q, E)=mz [@¥)?Scon (@, E)

+(a?5 )zsmc (Q, E)] , (9a)
s™(Q, E) =(a—g,)§1—(a—7,72'[(a3')23con @, E)

+(a?)2smc(Q, E)], (9b)

where the superscripts refer to the almost-pure
A% and the mixture sample. Equation (9a) is solved
for Scon(Q, E) which is substituted in Eq. (9b).
From Eq. (9b) we then obtain S;y.(Q, E) in terms

of the observed scattering functions $°®(Q, E) and
S™@, E) and the scattering lengths for the two
samples which are given in Sec. III. In the deriva-
tion of S;xc(Q, E) from the mixture data, only the
results from the A®® sample for Ey=20 meV were
used. This ensures that the functions involved are
affected by resolution in the same way, and further-
more, the wave vectors are the same for corre-
sponding points in energy so that the correction can
be made channel by channel using the original func-
tions. Having obtained Syyc(®, E), this function
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FIG. 4. Double differential scattering cross section at small, medium and large scattering angle are shown for the three
measurements together with the multiple-scattering contribution (solid lines). “Second” and “third” are the contributions
from neutrons scattered two and three times, respectively.

can now be used to obtain S¢ox (@, E) from Eq. (92)
and the observed function $%(Q, E). Again the
computation is properly done channel by channel in

S(Q)

LIQUID-STRUCTURE FACTOR

® THIS EXP. AFTER MULT.-SCATTERING CORRECTION
—— YARNELL 850 K

X THIS EXP BEFORE MULT.-SCATTERING CORRECTION} 852 K

the case of the 20-meV data from the A®® sample.
In the case of the 15-meV data the incoherent-
scattering function must be interpolated in @. The

FIG. 5. The present result
for the structure factor before
and after the multiple-scattering
correction is applied compared
to the neutron-diffraction result
by Yarnell et al. (Ref. 45).
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FIG. 6. (a) Solid dots show the spectrum observed at

0=34.17° from the mixture sample. The solid line shows
the result obtained for the resolution-corrected spectrum
from the Fourier transform program. (b) Solid line
shows the same curve divided by a Lorentzian function
with the same width. The dashed curves in (a) and (b)
show the result of the smoothing described in the text.

resolution broadening is slightly different for the
two functions involved in this case but as the in-
coherent-scattering contribution to the A3® data is
small this should not give rise to significant er-
rors.

In writing down Eqs. (9) it has been assumed that
the scattering functions are the same for the argon
isotopes involved. Although this is not exactly
true, the differences are expected to be small.

VII. RESOLUTION CORRECTION

Before the data can be reduced to constant-@
representation the correction for resolution broad-
ening must be applied. The corrected spectra were
obtained by the fast-Fourier-transform technique
suggested by Cooley and Tukey.‘® The Fourier
components of the data are first computed from

f,- = }N: fo ety G-ny2r /N , (10)
=1

where f, are the original data points and N is a
binary number chosen such that f, is negligibly
small for 2 >N. The deconvolved Fourier compo-
nents are obtained by. dividing the inverted data
term by term by the inverted resolution function.
The deconvolved spectrum, finally, is obtained by
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inverse transformation of the deconvolved Fourier
components:

1 & .
(fk)dmmv = F E je-i(j-l)(k-l)ZN/N’ 11)

where é, is the ratio of f ; and the corresponding
component for the resolution function, The res-
olution function was represented by a Gaussian
with the width equal to the resolution width for
elastic scattering, i.e., the energy dependence
of the resolution was neglected. Due to statistics
the components f ; Will oscillate around 0 for large
values of j, while the Fourier components of the
resolution function will tend smoothly to 0 when
j=3N. The divided series g, will therefore show
large fluctuations for large values of j and this
will spoil the deconvolved spectrum,

To avoid this difficulty it is necessary to trun-
cate the series g;. The truncation, however, gives
rise to ripples in the deconvolved spectrum. The
amplitude of the ripples is minimized if the series
is truncated at the component for which |g,| is
minimum. *” An example of the results obtained
is shown in Fig. 6(a) for one of the smallest angles
in the case of the mixture sample. The points
show the original data and the full line shows the
result obtained for the deconvolved spectrum.

The example shown in Fig. 6(a) is worse than
average as the spectrum in this case is very nar-
row. To avoid the effects of the Fourier ripples
on the final data, the results obtained from the de-
convolution program were smoothed by hand, In
order to simplify the smoothing in the most diffi-
cult cases, e.g., the smallest angles in the case
of the mixture data, the deconvolved spectrum was
first divided by a Lorentzian with full width at
half-maximum (FWHM) equal to 27ZDQ?, where @
is the wave vector for elastic scattering and D is
the diffusion constant. In this way an oscillating
function with an almost constant mean value is ob-
tained. This function was then smoothed by hand
and the resulting curve was multiplied by the
Lorentzian function to obtain the smoothed spec-
trum. The smoothing procedure is demonstrated
in Fig. 6(b) and the smoothed deconvolved spec-
trum is shown by the dashed line in Fig. 6(). For
energies larger than ~2 meV the resolution cor-

_rection had rather little influence on the data and

therefore for E >2.2 meV, the uncorrected data
are used in the subsequent analysis.

VII. SMOOTH SYMMETRIC SCATTERING FUNCTIONS
AT CONSTANT Q

In order to obtain the scattering functions at
constant values of @ the constant-angle data must
be interpolated. This was done by plotting the
scattering function at constant-energy transfer
as a function of @, drawing a smooth curve through
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the points, and then reading off the value of the
scattering function from the curve at the desired
value of @. If the data are represented in the
symmetric form as given in Eq. (2), both the
positive and the negative transfer can be used in
the same constant-energy plot. In the case of

the coherent-scattering function the data obtained
at both incident energies can be used together so
that the density of points is even further increased.
Representative constant-energy plots are shown

in Fig. 7 for the incoherent-scattering function
and in Fig. 8 for the coherent-scattering function.
The solid lines show the smooth curves from which
the scattering functions at constant @ were ob-
tained. The consistency of the data for energy
gain and energy loss is very satisfactory in the
case of S;yc (@, E) and can be taken as a justifica-
tion for the data-correction procedures described

LIQUID ARGON 85.2-K INCOHERENT-SCATTERING LAW

above. In the case of the coherent-scattering
function there is a tendency for the energy-gain

to be slightly lower than the energy-loss data for
large energy transfers. This might indicate that
the multiple-scattering correction, and especial-
ly the choice of kernel, is not correct for the large
energy transfers in this case. From the curves
shown in Figs. 7 and 8 the scattering functions
were obtained for Q=1.0-4.4 A" in steps of

0.2 A and, for each @, for E=0.0-10.6 meV.

In the case of the largest energies, the data points
do not actually extend down to @=1,0 A-! (com-
pare Fig. 1). In this case the curves were smooth-
ly extrapolated in Q.

The final smooth scattering functions are shown
in Fig. 9 as functions of energy and wave-vector
transfer. The well-known de Gennes narrowing
for Sgox(Q, E) at the peaks in the structure factor
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FIG. 7. Final corrected incoherent-scattering function versus @ for selected values of E. The smooth-scattering function
at constant @ is obtained from the solid curves drawn through the data points.
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is clearly displayed, as is the smooth behavior of
the incoherent-scattering function. The scatter-
ing functions are listed in Tables III and IV, In
order to avoid the systematic uncertainties involved
in the unfolding procedure described above, it

may be desirable to fold theoretical models over
the resolution function and compare the result

with the uncorrected data. In the region E= 0.0 -
1.8 meV, the results obtained if the resolution is
not corrected for are therefore also given.

As a check of the reliability of the experimental
results, the energy moments for the measured
scattering functions are compared to the exact
theoretical results as given in Eq. (4). In the
case of the zeroth moment of the coherent func-
tion, for which the exact theoretical result is not
known, the data by Yarnell et al. 45 were used.
Figures 10(a) and (d) show the ratio of experi-
mental to theoretical moments before the multi-
ple scattering and the resolution corrections are
applied. The effects of multiple scattering are

more severe for the coherent data where, in the
case of small @, even the zeroth moment is strong-
ly influenced. The absolute intensity of multiply
scattered neutrons varies only slightly with angle
but, due to the low value of S(Q) at small @, the
relative correction is very large in this case.

For both scattering functions the first and second
moments increase with @ and the relative impor-
tance of the multiple scattering, which is rather

Q independent, therefore decreases. The moment
ratio after correction for multiple scattering and
resolution are shown in Figs. 10(b) and (e). The
effect of the resolution correction on the moments
is small and is therefore not demonstrated sepa-
rately. The experimental momentswere obtained by
numerical integration of the scattering functions
over the energy range — 10.2 < E <10. 2 (meV),
The contribution to the moments for energy trans-
fers larger than 10. 2 meV was estimated by as-
suming that 5;,¢(Q, E) can be represented by the
gas model in this energy range. The coherent
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5(Q,E) (mev™)

function was represented by®
Scon (@, E>10.2)=5(Q) Saxs (@', B), (12)

with Q"= Q/[S(Q)]'2.

With this contribution added the moments ratios
are as shown in Figs. 10(c) and (f).

After correction for multiple scattering the ze-
roth moment of 5S¢4 (@, E) is everywhere within
10% of the value obtained by Yarnell et al.*® while
the first and second moments are everywhere
within 20% of the theoretical values. In the case
of Sync(®Q, E), the zeroth moment is within 3% of
the theoretical value. The first moment is in
this case within 10% of the exact value for @
>1.4 A‘l, while the maximum error in the second
moment is less than 20% over the same @ range.
The reason for the large deviations of the first
and second moments at small @ could, at least
partly, be due to a failure to account properly for
the resolution effects which, in this case, are
large enough to influence the moments. The er-
rors could also originate from the extrapolation
of the data at small @ for large energies. In the
case of S;yc(Q, E), where only the results for E,
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FIG. 9. Smooth-scattering func-
tions shown versus @ and E. The
dashed line and the solid line show
the envelope of the incoherent and
coherent-scattering functions, re-
spectively.

=20 meV are used, the extrapolation is more dif-
ficult than in the case of Syox(Q, E). We suggest
that the latter effect accounts for the major part
of the discrepancies.

As an over-all estimate of the fulfillment of the
moment relations the standard deviation ¢ is com-
puted from

o2 L f;[.(ili'hm

N i=1 E" )THEOR

i, ]2, (13)

where the sum is over the 18 values of @ for which
the experimental moments are evaluated. The re-
sults for o are shown in Table V.

Wewould like to stress that the moment ratios
are a very sensitive test of the various correc-
tions that have been applied to the data, especial-
ly the multiple-scattering correction, and the
final agreement as shown in Table V is therefore
most encouraging.

IX. INCOHERENT-SCATTERING FUNCTION

In this section we will discuss some features of
the incoherent-scattering function and compare the
present results to those obtained by Levesque and
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Verlet?” from molecular-dynamics computations.
The main features of the incoherent-scattering
function are apparent from Fig. 9, inwhich §;y (@, E)
is shown to be a smooth monotonically decreasing
function of E at all values of Q. From a brief in-
spection of the scattering function, it is clear that
the vibrational modes are heavily damped, and in
fact merge with the small energy-transfer region
in which the diffusive modes dominate the scatter-

ing. In fact, it appears that a separation of the
spectrum into a diffusive part and a vibratory part
is unlikely to be fruitful as an approach to the
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understanding of the dynamics of liquid argon.

In Fig. 11 the scattering at zero energy trans-
fer [S;yc(Q, 0)] and the width (FWHM) of Sinc (@, E)
are compared to the simple diffusion results. For
the diffusion constant the value D=1, 94X 10-° cm?/
sec, which is obtained by interpolation from the
values obtained by Naghizadeh and Rice?® at 84
and 90 K, respectively, was used in all cases.
Also shown in Fig. 11 are the results obtained if
the resolution is not corrected for. It is seen that
the relative correction is very large at small val-
ues of @, and the uncertainties in the unfolded data

TABLE III. Incoherent-scattering function: §INC (Q,E). Data are corrected for multiple scattering and, except for the
data in parentheses, for resolution broadening.

Q (&Y
AE
(meV) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.0 2.7500 1.8000 1.2500 0.9500 0.7700 0.6450 0.5400 0.4500 0.3700
(0.9750)  (0.8350)  (0.7300)  (0.6550)  (0.5900)  (0.5000)  (0.4250)  (0.3700)  (0.3250)

0.2 0.6100 0.6950 0.7500 0.7000 0.6100 0.5250 0.4500 0.4000 0.3400
(0.7150)  (0.6950)  (0.6700)  (0.6100)  (0.5350)  (0.4700)  (0.4000)  (0.3400)  (0.2950)

0.4 0.1250 0.2380 0.3150 0.3670 0.3920 0.3680 0.3340 0.3030 0.2750
(0.5060)  (0.4890)  (0.4700)  (0.4460)  (0.4180)  (0.3790)  (0.3430)  (0.3100)  (0.2780)

0.6 0.0750 0.1350 0.1820 0.2210 0.2510 0.2600 0.2500 0.2380 0.2250
(0.3520)  (0.2690)  (0.2820)  (0.2880)  (0.2880)  (0.2850)  (0.2690)  (0.2510)  (0.2320)

0.8 0.0655 0.0950 0.1230 0.1470 0.1660 0.1790 0.1825 0.1820 0.1800
(0.1180)  (0.1450)  (0.1690)  (0.1870)  (0.2030)  (0.2080)  (0.2060)  (0.2010)  (0.1940)

1.0 0.0555 0.0690 0.0830 0.0980 0.1140 0.1290 0.1440 0.1540 0.1545
(0.0670)  (0.0860)  (0.1050)  (0.1210)  (0.1360)  (0.1490)  (0.1560)  (0.1600)  (0.1590)

1.2 0.0415 0.0500 0.0600 0.0735 0.0875 0.1010 0.1135 0.1240 0.1275
(0.0420)  (0.0560)  (0.0730)  (0.0920)  (0.1080)  (0.1100)  (0.1300)  (0.1370)  (0.1330)

1.4 0.0285 0.0395 0.0495 0.0595 0.0710 0.0850 0.0965 0.1015 0.1040
(0.0320)  (0.0440)  (0.0560)  (0.0680)  (0.0780)  (0.0918)  (0.1055)  (0.1135)  (0.1130)

1.6 0.0215 0.0335 0.0435 0.0510 0.0600 0.0710 0.0815 0.0850 0.0875
(0.0260)  (0.0360)  (0.0460)  (0.0545)  (0.0620)  (0.0720)  (0.0825)  (0.0875)  (0.0920)

1.8 0.0180 0.0255 0.0345 0.0495 0.0585 0.0645 0.0740 0.0760 0.0750
(0.0235)  (0.0300)  (0.0370) (0.0440)  (0.0515)  (0.0640) (0.0770)  (0.0800)  (0.0780)

2.2 0.0160 0.0195 0.0240 0.0305 0.0375 0.0465 0.0550 0.0615 0.0670
2.6 0.0110 0.0145 0.0190 0.0235 0.0290 0.0340 0.0400 0.0460 0.0500
3.0 0.0090 0.0114 0.0139 0.0170 0.0206 0.0244 0.0314 0.0394 0.0418
3.4 0.0072 0.0090 0.0107 0.0129 0.0154 0.0185 0.0248 0.0307 0.0332
3.8 0.0054 0.0070 0.0085 0.0103 0.0125 0.0157 0.0200 0.0237 0.0269
4.2 0.0041 0.0053 0.0067 0.0083 0.0102 0.0126 0.0165 0.0196 0.0222
4.6 0.0032 0.0041 0.0051 0.0063 0.0084 0.0109 0.0137 0.0165 0.0189
5.0 0.0026 0.0033 0.0041 0.0054 0.0072 0.0088 0.0114 0.0136 0.0157
5.4 0.0023 0.0028 0.0033 0.0042 0.0054 0.0074 0.0097 0.0116 0.0134
5.8 0.0021 0.0023 0.0026 0.0034 0.0047 0.0061 0.0080 0.0102 0.0115
6.2 0.0020 0.0020 0.0020 0.0027 0.0032 0.0046 0.0061 0.0077 0.0090
6.6 0.0015 0.0016 0.0018 0.0021 0.0026 0.0038 0.0053 0.0067 0.0081
7.0 0.0013 0.0015 0.0016 0.0018 0.0019 0.0026 0.0036 0.0049 0.0063
7.4 0.0010 0.0010 0.0010 0.0011 0.0012 0.0018 0.0027 0.0038 0.0051
7.8 0.0008 0.0008 0.0008 0.0008 0.0008 0.0012 0.0018 0.0029 0.0041
8.2 0.0005 0.0005 0.0005 0.0005 0.0007 0.0011 0.0017 0.0024 0.0033
8.6 0.0004 0.0004 0.0004 0.0005 0.0006 0.0008 0.0011 0.0018 0.0025
9.0 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0008 0.0014 0.0019
9.4 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0005 0.0008 0.0012
9.8 0.0000 0.0000 0.0000 0.0000 0.0000- 0.0001 0.0004 0.0007 0.0012
10.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0008
10.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003
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TABLE IIl. (Continued)
Q (&Y
AE
(meV) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4,2 4.4
0.0 0.3030 0.2600 0.2330 0.2120 0.1920 0.1750 0.1580 0.1440 0.1340
(0.2800)  (0.2400)  (0.2200)  (0.2000)  (0.1800)  (0.1650)  (0.1500)  (0.1400)  (0.1350)
0.2 0.2900 0.2520 0.2270 0.2070 0.1890 0.1730 0.1590 0.1450 0.1330
(0.2600)  (0.2350)  (0.2150)  (0.2000)  (0.1850)  (0.1700)  (0.1600)  (0.1450)  (0.1320)
0.4 0.2500 0.2300 0.2140 0.2010 0.1870 0.1740 0.1600 0.1450 0.1290
(0.2480)  (0.2230)  (0.2080)  (0.1960)  (0.1780)  (0.1620)  (0.1540)  (0.1440) '(0.1260)
0.6 0.2130 0.2010 0.1900 0.1800 0.1690 0.1590 0.1480 0.1370 0.1250
(0.2140)  (0.2000)  (0.1900)  (0.1800)  (0.1680)  (0.1560)  (0.1460) (0.1350)  (0.1230)
0.8 0.1760 0.1710 0.1660 0.1600 0.1530 0.1450 0.1370 0.1300 0.1220
(0.1860)  (0.1770)  (0.1680)  (0.1610)  (0.1540)  (0.1460)  (0.1370)  (0.1280)  (0.1190)
1.0 0.1510 0.1480 0.1440 0.1400 0.1360 0.1300 0.1250 0.1200 0.1140
(0.1550)  (0.1510)  (0.1460)  (0.1420)  (0.1370)  (0.1320) (0.1270)  (0.1200)  (0.1140)
1.2 0.1280 0.1285 0.1285 0.1275 0.1245 0.1200 0.1160 0.1120 0.1070
(0.1280)  (0.1280)  (0.1290)  (0.1280)  (0.1250)  (0.1210)  (0.1170)  (0.1130)  (0.1090)
1.4 0.1070 0.1095 0.1115 0.1130 0.1125 0.1110 0.1085 0.1055 0.1020
0.1125)  (0.1155)  (0.1175)  (0.1180) (0.1160)  (0.1125)  (0.1085)  (0.1045)  (0.1010)
1.6 0.0925 0.0980 0.1020 0.1035 0.1035 0.1025 0.1010 0.0990 0.0970
(0.0960)  (0.1005)  (0.1045)  (0.1065)  (0.1050)  (0.1020)  (0.0995)  (0.0970)  (0.0950)
1.8 0.0810 0.0890 0.0935 0.0960 0.0950 0.0950 0.0945 0.0930 0.0910
(0.0810)  (0.0875)  (0.0935)  (0.0970)  (0.0955)  (0.0940)  (0.0925)  (0.0915)  (0.0905)
2.2 0.0710 0.0740 0.0775 6.0800 0.0835 0.0870 0.0865 0.0825 0.0785
2.6 0.0540 0.0580 0.0625 0.0665 0.0695 0.0720 0.0725 0.0725 0.0720
3.0 0.0439 0.0479 0.0521 0.0562 0.0592 0.0613 0.06286 0.0637 0.0643
3.4 0.0355 0.0390 0.0440 0.0477 0.0502 0.0521 0.0538 0.0553 0.0566
3.8 0.0301 0.0336 0.0370 0.0462 0.0426 0.0448 0.0470 0.0490 0.0505
4.2 0.0249 0.0278 0.0307 0.0335 0.0361 0.0386 0.0409 0.0430 0.0448
4.6 0.0212 0.0236 0.0262 0.0286 0.0310 0.0335 0.0358 0.0380 0.0400
5.0 0.0177 0.0203 0.0229 0.0251 0.0271 0.0292 0.0313 0.0335 0.0353
5.4 0.0154 0.0173 0.0192 6.0211 0.0230 0.0251 0.0275 0.0296 0.0310
5.8 0.0131 0.0147 0.0164 0.0183 0.0201 0.0219 0.0238 0.0254 0.0267
6.2 0.0105 0.0123 0.0140 0.0156 0.0172 0.0188 0.0203 0.0218 0.0232
6.6 0.0093 0.0105 0.0116 0.0130 0.0148 0.0161 0.0173 0.0185 0.0197
7.0 0.0077 0.0088 0.0097 0.0110 0.0125 0.0137 0.0147 0.0157 0.0172
7.4 0.0062 0.0071 0.0079 0.0090 0.0102 0.0114 0.0127 0.0141 0.0155
7.8 0.0052 0.0059 0.0065 0.0073 0.0085 0.0097 0.0109 0.0122 0.0135
8.2 0.0042 0.0048 0.0053 0.0060 0.0069 0.0081 0.0094 0.0108 0.0121
8.6 0.0039 0.0040 0.0044 0.0050 0.0060 0.0070 0.0081 0.0093 0.0105
9.0 0.0025 0.0031 0.0036 0.0044 0.0056 0.0060 0.0071 0.0081 0.0092
9.4 0.0017 0.0023 0.0030 0.0036 0.0042 0.0050 0.0059 0.0069 0.0079
9.8 0.0016 0.0021 0.0026 0.0032 0.0039 0.0046 0.0053 0.0062 0.0070
10.2 0.0012 0.0018 0.0023 0.0029 0.0035 0.0041 0.0048 0.0055 0.0062
10.6 6.0007 0.0011 0.0016 0.0020 0.0024 0.0028 0.0033 0.0037 0.0042

are therefore expected to be large at small values

of @ and E.

Figure 12 shows the peak height and the width
divided by the corresponding simple diffusion re-
sults. As can be seen from this figure the pres-
ent results for S;y-(Q,0) are within 10% of the
simple diffusion results while the difference inthe
width at half-maximum is less than 20% at all
values of @. Also shown in Fig, 12 are the molec-
ular-dynamics results by Levesque and Verlet.?’
The present neutron results and the molecular-
dynamic results show the same qualitative be-
havior—the width is in both cases below the simple

diffusion result for @ in the range 1-3 A and is
above the simple diffusion result for larger values
of Q. In fact, within the estimated uncertainties
of the present results the molecular-dynamics data
and the neutron data are entirely consistent.

From the analysis of S;yc(Q,0) and the FWHM of
Sinc(Q, E) we thus conclude that the small energy-
transfer region agrees rather well with the simple
diffusion results. In order to bring out the be-
havior of the scattering function for larger ener-
gies, in Fig. 13(a) we show the ratio of the ex-
perimental scattering function and a Lorentzian
with the same width at half-maximum. The gen-
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eral behavior of the curves shown in Fig. 13(a)
may be summarized as follows. For E<2 meV
the shape S;yc(Q, E) is close to Lorentzian. For
2<E X7 meV the scattering function shows in-
tensity in excess of the intensity predicted by the
Lorentzian shape. This is the region where the
vibrational modes would be expected to show up
and the “excess” intensity may be interpreted as
a remnant of the phonon spectrum in the solid
state. (The energy corresponding to the Debye
cutoff in solid argon is ~7 meV.) For Ex7 meV
the scattering function decreases faster than the

Lorentzian, However, as noted earlier, the fre-
quency regimes overlap completely, so that inter-
actions between the various types of rotion are
clearly essential to the understanding of the over-
all dynamics.

As shown in Sec. II the intermediate scatter-
ing function Fg(Q, ¢) is accurately described by the
width function p(#) and the first “non-Gaussian”
coefficient @,(f). These twoquantitieswerederived
from the present experimental scattering function
in the following way. The Fourier integral in Eq.
(5) was evaluated numerically for a given ¢ for all

TABLE IV. Coherent-scattering function: :S‘COH(Q, E). Data are corrected for multiple scattering and, except for the
data in parentheses, for resolution broadening.

Q (&)
AE
(meV) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.0 0.0240 0.0360 0.0580 0.1800 1.1000 2.4000 0.6100 0.2250 0.1390
(0.0220)  (0.0320)  (0.0560)  (0.1500)  (0.8400)  (1.7900)  (0.5300)  (0.2000)  (0.1300)

0.2 0.0215 0.0300 0.0550 0.1550 0.8500 1.9800 0.5400 0.2000 0.1280
(0.0200)  (0.0290)  (0.0510)  (0.1420)  (0.7000)  (1.6550)  (0.5000)  (0.2000)  (0.1170)

0.4 0.0175 0.0235 0.0470 0.1200 0.4750 1.1150 0.4200 0.1900 0.1200
(0.0185)  (0.0250)  (0.0435)  (0.1250)  (0.5500)  (1.2200) (0.4400)  (0.1850)  (0.1100)

0.6 0.0140 0.0200 0.0400 0.1100 0.3400 0.5600 0.3400 0.1600 0.0960
(0.0145)  (0.0190)  (0.0380)  (0.1025)  (0.3750)  (0.8000)  (0.3450)  (0.1600)  (0.1000)

0.8 0.0124 0.0160 0.0320 0.0840 0.2400 0.3620 0.2540 0.1330 0.0880
(0.0124)  (0.0183)  (0.0325)  (0.0830)  (0.2700)  (0.4900)  (0.2800)  (0.1400)  (0.0900)

1.0 0.0112 0.0140 0.0270 0.0660 0.1840 0.2820 0.1960 0.1140 0.0800
(0.0108)  (0.0173)  (0.0296)  (0.0710)  (0.1940)  (0.3250)  (0.2220)  (0.1130)  (0.0810)

1.2 0.0100 0.0125 0.0230 0.0560 0.1400 0.2050 0.1620 0.0980 0.0720
(0.0085)  (0.0150)  (0.0248)  (0.0580)  (0.1340)  (0.2300)  (0.1700)  (0.1070)  (0.0720)

1.4 0.0088 0.0118 0.0224 0.0490 0.1050 0.1480 0.1350 0.0880 0.0630
(0.0086)  (0.0130)  (0.0200)  (0.0520)  (0.1100)  (0.1670)  (0.1400)  (0.0930)  (0.0660)

1.6 0.0080 0.0110 0.0190 0.0435 0.0795 0.1175 0.1110 0.0800 0.0590
(0.0080)  (0.0112)  (0.0198)  (0.0440)  (0.0870)  (0.1280)  (0.1200)  (0.0800)  (0.0600)

1.8 0.0070 0.0100 0.0160 0.0360 0.0665 0.1000 0.0950 0.0705 0.0495
(0.0068)  (0.0120)  (0.0173)  (0.0350)  (0.0690)  (0.1000)  (0.1000)  (0.0730)  (0.0520)

2.2 0.0050 0.0080 0.0135 0.0285 0.0490 0.0620 0.0655 0.0555 0.0415
2.6 0.0035 0.0060 0.0120 0.0235 0.0345 0.0450 0.0495 0.0405 0.0365
3.0 0.0028 0.0060 0.0112 0.0188 0.0264 0.0318 0.0394 0.0380 0.0335
3.4 0.0027 0.0050 0.0095 0.0145 0.0180 0.0225 0.0290 0.0300 0.0285
3.8 0.0028 0.0049 0.0081 0.0114 0.0134 0.0163 0.0212 0.0230 0.0254
4.2 0.0027 0.0047 0.0070 0.0091 0.0100 0.0118 0.0187 0.0201 0.0217
4.6 0.0026 0.0042 0.0059 0.0072 0.0079 0.0090 0.0127 0.0163 0.0186
5.0 0.0024 0.0037 0.0051 0.0058 0.0059 0.0067 0.0100 0.0136 0.0165
5.4 0.0018 0.0032 0.0044 0.0050 0.0048 0.0055 0.0080 0.0114 0.0136
5.8 0.0015 0.0026 0.0035 0.0036 0.0036 0.0043 0.0062 0.0096 0.0113
6.2 0.0015 0.0022 0.0030 0.0026 0.0025 0.0033 0.0052 0.0087 0.0096
6.6 0.0017 0.0021 0.0022 0.0021 0.0019 0.0022 0.0040 0.0062 0.0079
7.0 0.0014 0.0019 0.0021 0.0017 0.0013 0.0015 0.0030 0.0048 0.0065
7.4 0.0012 0.0016 0.0016 0.0013 0.0012 0.0012 0.0021 0.0036 0.0051
7.8 0.0009 0.0013 0.0014 0.0011 0.0008 0.0009 0.0014 0.0020 0.0035
8.2 0.0009 0.0012 0.0012 0.0011 0.0009 0.0008 0.0013 0.0020 0.0030
8.6 0.0009 0.0010 0.0010 0.0010 0.0009 0.0008 0.0009 0.0013 0.0022
9.0 0.0007 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0011 0.0016
9.4 0.0005 0.0007 0.0008 0.0008 0.0008 0.0007 0.0009 0.0012 0.0016
9.8 0.0003 0.0005 0.0007 0.0008 0.0008 0.0008 0.0009 0.0012 0.0015
10.2 0.0002 0.0004 0.0005 0.0006 0.0007 0.0006 0.0008 0.0015 0.0017
10.6 0.0000 0.0002 0.0004 0.0006 0.0006 0.0005 0.001i 0.0015 0.0015
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TABLE IV. (Continued)
Q (&)
AE
(meV) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
0.0 0.1350 0.1790 0.2250 0. 2700 0.2730 0.2230 0.1730 0.1330 0.1050
(0.1250)  (0.1550)  (0.2100)  (0.2550)  (0.2600)  (0.2200)  (0.1700)  (0.1280)  (0.0950)
0.2 0.1200 0.1700 0.2150 0.2570 0.2630 0.2220 0.1720 0.1240 0.0990
(0.1100)  (0.1550)  (0.2150)  (0.2500)  (0.2500)  (0.2100)  (0.1700)  (0.1200)  (0.0950)
0.4 0.1000 0.1550 0.2000 0.2350 0.2450 0.2150 0.1700 0.1150 0.0930
(0.1000)  (0.1450)  (0.1900)  (0.2300)  (0.2420)  (0.2100) (0.1550)  (0.1220)  (0.0950)
0.6 0.0950 0.1320 0.1700 0.2060 0.2220 0.1980 0.1560 0.1140 0.0900
(0.0950)  (0.1270)  (0.1700)  (0.2050)  (0.2200)  (0.1950)  (0.1550)  (0.1150)  (0.0900)
0.8 0.0920 0.1080 0.1440 0.1810 0.2020 0.1840 0.1440 0.1110 0.0840
(0.0900)  (0.1120)  (0.1500) (0.1880)  (0.2060)  (0.1840)  (0.1440)  (0.1100)  (0.0860)
1.0 0.0840 0.0910 0.1200 0.1620 0.1860 0.1680 0.1330 0.1040 0.0820
(0.0790)  (0.0930)  (0.1230)  (0.1640)  (0.1850)  (0.1650)  (0.1330)  (0.1030)  (0.0830)
1.2 0.0760 0.0770 0.1050 0.1440 0.1630 0.1530 0.1220 0.0960 0.0800
(0.0730)  (0.0820)  (0.1070)  (0.1460)  (0.1670)  (0.1520)  (0.1200)  (0.0980)  (0.0790)
1.4 0.0660 0.0690 0.0930 0.1300 0.1470 0.1420 0.1120 0.0900 0.0770
(0.0630)  (0.0710)  (0.0960)  (0.1280)  (0.1480)  (0.1390)  (0.1150)  (0.0930)  (0.0780)
1.6 0.0585 0.0635 0.0865 0.1125 0.1325 0.1305 0.1040 0.0900 0.0735
(0.0590)  (0.0665)  (0.0860)  (0.1140)  (0.1370)  (0.1300)  (0.1060)  (0.0880)  (0.0740)
1.8 0.0525 0.0585 0.0785 0.1000 0.1185 0.1195 0.0985 0.0815 0.0700
(0.0530)  (0.0590)  (0.0780)  (0.1030)  (0.1225)  (0.1170)  (0.0975)  (0.0800)  (0.0680)
2.2 0.0465 0.0490 0.0620 0.0805 0.0985 0.0995 0.0845 0.0745 0.0630
2.6 0.0395 0.0410 0.0510 0.0650 0.0790 0.0855 0.0740 0.0645 0.0575
3.0 0.0325 0.0350 0.0440 0.0540 0.0650 0.0700 0.0645 0.0585 0.0530
3.4 0.0280 0.0310 0.0370 0.0450 0.0540 0.0585 0.0570 0.0540 0.0485
3.8 0.0242 0.0270 0.0315 0.0371 0.0438 0.0494 0.0484 0.0452 0.0435
4.2 0.0214 0.0233 0.0269 0.0314 0.0365 0.0404 0.0416 0.0411 0.0396
4.6 0.0186 0.0199 0.0230 0.0266 0.0306 0.0338 0.0357 0.0362 0.0350
5.0 0.0160 0.0170 0.0196 0.0224 0.0253 0.0281 0.0306 0.0322 0.0316
5.4 0.0147 0.0156 0.0166 0.0180 0.0205 0.0234 0.0270 0.0286 0.0282
5.8 0.0126 0.0137 0.0145 0.0152 0.0168 0.0196 0.0226 0.0248 0.0251
6.2 0.0108 0.0117 0.0123 0.0128 0.0140 0.0167 0.0193 0.0213 0.0222
6.6 0.0092 0.0103 0.0107 0.0105 0.0113 0.0143 0.0171 0.0186 0.0193
7.0 0.0077 0.0087 0.0090 0.0088 0.0098 0.0118 0.0143 0.0159 0.0168
7.4 0.0063 0.0074 0.0078 0.0077 0.0078 0.0084 0.0109 0.0137 0.0146
7.8 0.0054 0.0063 0.0065 0.0063 0.0068 0.0084 0.0102 0.0115 0.0126
8.2 0.0041 0.0050 0.0056 0.0057 0.0060 0.0072 0.0087 0.0099 0.0112
8.6 0.0032 0.0041 0.0046 0.0048 0.0050 0.0056 0.0071 0.0084 0.0097
9.0 0.0025 0.0032 0.0038 0.0041 0.0043 0.0045 0.0056 0.0070 0.0085
9.4 0.0018 0.0022 0.0029 0.0032 0.0032 0.0033 0.0040 0.0054 0.0068
9.8 0.0017 0.0016 0.0021 0.0027 0.0028 0.0030 0.0033 0.0042 0.0058
10.2 0.0015 0.0011 0.0015 0.0023 0.0025 0.0025 0.0025 0.0034 0.0049
10.6 0.0012 0.0007 0.0013 0.0020 0.0021 0.0019 0.0020 0.0030 0.0042

the 18 values of @ for which the scattering func-
tion is determined. The “best” values of p(f) and
a,(¢) were then obtained by least-squares fitting
of the theoretical F¢(Q, ) [Eq. (6)] to the “experi-
mental” Fg(Q,?) at the 18 data points, The re-
sults obtained for p(f) and a,(¢) are shown in Fig.
14 together with the functions that describe the
limiting behavior of p(f) at small and large times,
respectively. The crosses in Fig. 14 show the
experimental values for a,(f). The main contri-
bution of @,(f) comes at times in the region around
1072 sec. For times much larger and much
smaller than 10-'2 sec the fit is rather insensitive

to the value of @,(¢) and the error is therefore
large.

From the analysis of molecular-dynamics data
Levesque and Verlet?” found that the result for
a,(#) is rather insensitive to the density and that

TABLE V. Root-mean-square deviation of energy

moments.
Incoherent Coherent
Zeroth First Second Zeroth First Second
0.02 0.12 0.19 0.05 0.10 0.11
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a good over-all fit to the high-density data could
be obtained with the function

a,(f) = (Ct /1) e=¥ D1, (14)

where C and ¢,, which are both temperature de-
pendent, are equal to 0.1186 and 1. 835x 10~*2 sec,
respectively, at 85.2 K. The solid line drawn
through the present result for &,(f) in Fig. 14
shows the result predicted by Eq. (14). The circle
in the a,(f) plot shows the value obtained for a,(f)
at £=2.5x10"!2 sec by Rahman’ from molecular-
dynamics data for 7'=94.4 K. The neutron and
the molecular-dynamics data are again in good
agreement as far as the qualitative features are
concerned, but the value of {,, which is the time
for which a,(¢) obtains the maximum value accord-
ing to Eq. (14), appears to be slightly higher for
the molecular-dynamics results.

The present results for p(¢) at small ¢ are slight-
ly lower than the values predicted by the free-gas
model. The uncertainties in the experimental re-
sults in this region of { are rather large due to ter-
mination errors in the Fourier transform and we
are therefore unable to assess the significance of
this difference.

The most striking feature of p(f) is the very
smooth transition from the small ¢ behavior to the
simple diffusion behavior which is already attained
after ~2x 10-!% sec. The behavier of p(f) suggests

that the motion of the atoms in liquid argon is dom-
inated by the diffusive motion and that, con-
sequently, the vibrational modes are heavily
damped.

X. COHERENT-SCATTERING FUNCTION

The general behavior of the coherent-scattering
function is displayed in the constant-angle data shown
in Fig. 3. The narrowing of the function at angles
for which the wave vector is close to a peak in the
structure factor, as well as the smooth energy de-
pendence at each angle, is easily appreciated.
Within the statistics and the resolution of the pres-
ent experiment the curves do not show any struc-
ture, but the scattering function is at all values of
@ represented by a smooth peak centered at E=0.
This feature seems different from the results ob-
tained for the coherent-scattering function for lig-
uid metals. As reported by Cocking® the spectra
for liquid lead are dominated by a broad peak in
the inelastic region, while the quasielastic scatter-
ing has an appreciable intensity only for values of
@ close to the first peak in the structure factor.
Qualitatively similar results are obtained by Dahl-
borg and Larsson® for liquid aluminum although
the experimental results are in this case less ex-
tensive. Both of these experiments were, however,
made with neutrons of low incident energy and the
results are in both cases presented as double-dif-
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FIG. 11. (a) Full width at half-maximum of the inco-
herent-scattering function before and after the resolution
correction. Also shown is the simple diffusion result
with D=1.94% 10"° cm?/sec (Ref. 48). (b) Intensity at
zero-energy transfer for the incoherent-scattering func-
tion before and after the'resolution correction. The solid
line shows the simple diffusion result.

ferential scattering cross sections at constant
angle of scattering rather than as scattering func-
tions at constant value of the wave-vector transfer,
In this form the data contain the kinematic factor
[(E+ Ey)/E,]"/? [compare Eq. (1)] which, if the val-
ue of E; is small, changes rapidly over the spec-
trum, as does also the value of the wave-vector
transfer. In fact, if the present results for

Scon (@, E) are used to construct d20/d dE at con-
stant angles of scattering and for the incident en-
ergy used in the lead experiment, curves similar
to the ones observed by Cocking®® are obtained.
The apparent differences in the qualitative features
of the experimental results for liquid lead and
liquid argon are thus artificial and due only to the
different ways in which the results are presented.
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FIG. 12. (a) and (b) FWHM and Sinc(Q, 0) divided by
the simple diffusion results are shown together with the
molecular-dynamics results by Levesque and Verlet (Ref.
27).

The constant-E curves shown in Fig. 8 demon-
strate very clearly the strong concentration of
small-energy-transfer scattering to values of @
in the neighborhood of peaks in the structure fac-
tor. As the energy transfer increases the inten-
sity becomes more evenly distributed over the
wave-vector transfer and, for energies larger
than 4 meV, a dip develops at each value of @
for which S(Q) is peaked. The same effect has
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FIG. 13. (a) Incoherent-scattering function divided by
a Lorentzian of the same width is shown for selected
values of @. (b) Coherent-scattering function divided by
a Lorentzian of the same width is shown for selected
values of Q.
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t (sec)

FIG. 14. p(t) and a,¢) (scale to the right) from the
present experiment. The limiting behavior of p(t) at
small and large times as obtained for a free gas and for
simple diffusion, respectively, are also shown. The
solid line in the a,() plot shows the result obtained by
Levesque and Verlet (Ref. 27). The circle shows the re-
sult obtained by Rahman (Ref. 7) for ay(t) at ¢=2.5x 10712
sec for argon at 94.4 K.

been observed in the data obtained for liquid lead
by Randolph and Singwi®® and also in the data by
Skdld and Larsson® for liquid argon. Inboth cases
the structure is well accounted for by models in
which the existence of a reciprocal lattice is as-
sumed.*® More specifically, the structure origi-
nates from the polarization factor which, if a recip-
rocal lattice is postulated, shows a @ dependence
with dips at the peaks in the structure factor. In
order to explore the implications of this agree-
ment we compare the present results with the re-
sults by Pathak and Singwi'® in Fig. 15. The theory
by Pathak and Singwi, in which the structure is
accounted for only by the pair correlation func-
tion, is in good agreement with the experimental
results and does indeed show the observed struc-
ture at the @ values corresponding to the peaks

in the structure factor. It is thus not necessary
to introduce explicitly the concept of a reciprocal
lattice in order to explain the structure in the
constant-E curves,

The over-all shape of ~§con (@, E) is demonstrated
in Fig. 13(b) which shows. the coherent function
divided by a Lorentzian of equal width for selected
values.of Q. A comparison with the corresponding
function for the incoherent case shows that the
shape of the coherent-scattering function is much
more @ dependent, The excess intensity in the
“inelastic” region is very large in the coherent
case for values of @ for which S(Q) is smalil and
the narrowing of ECOB (@, E) at the peaks in the
structure factor is very pronounced. The narrow-
ing is, in fact, much stronger than is suggested if

only the width at half-maximum is considered. The
differences in shape of S;yc(Q, E) and Sgon (@, E)
show that convolution-type approximations, e.g.,
the effective-mass approximation,® are unlikely

to be very successful in explaining the coherent
scattering,

Figure 16 shows the present results for Sgoy (@, 0)
together with the result predicted by various theo-
ries.!-*18:1% The error bar on the experimental
point for @=1.0 A* shows the error expected in
Scon (@, 0) from the uncertainty in the incoherent
cross section for the nearly coherent A% sample
(see discussion in Sec. III). For other values of
@ this error is smaller than the size of the dot.
The circles in Fig. 16 show the result obtained if
the additional correction for incoherent scatter-
ing described below is performed.

A discussion of the physical content of the theo-
retical models which are shown in Fig. 16 is given
by Pathak and Singwi.!® In the computation of the
theoretical curves the results obtained by Yarnell
et al.*® for S(Q) and g(») were used together with
a L-J potential. In cases where S;yc(Q,0) is
needed as input to the computation the result cb-
tained in the present experiment was used. While
all models shown in Fig. 16 satisfy the zeroth and
second frequency moments, the results by Pathak-
Singwi, '® by Kurkij¥rvi,® and by Ortoleva-Nelkin*
also satisfy the fourth moment. It is seen that,
on the whole, these three models give the best
agreement with the data. In the convolution ap-
proximation by Vineyard®® the peak height is given
by

Scon (Q: 0)=5(Q) anc(Q, 0). (15)

In the theory of Singwi ef al.! and in the theory
of Kerr, 2 the result is

Scon(®,0) =S(Q)2Syc (@, 0), (16)

i.e., the only difference between the convolution
approximation and the two later theories is in the
exponent of S(Q). From a least-squares fit to

the experimental result we find that the best agree-
ment is obtained if the exponent is close to 1.6

but that, even using this value, the results of the
models described above®'*18 are closerto the ex-
perimental result.

The full width at half-maximum of S, (@, E) is
shown in Fig. 17 with and without the resolution
correction applied. Also shown in Fig. 17 is the
result by Pathak and Singwi.'® The agreement be-
tween theory and experiment is not very satisfactory
in this case. The disagreement is especially pro-
nounced at small values of @ where, on the other
hand, the experimental results are subject to se-
vere systematic uncertainties. The agreement is,
however, also very poor intheregionaround 3 A,
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FIG. 15.~ Comparison of present
result for Sqox(Q, E) at constant

E and the result obtained by Pathak
and Singwi (Ref. 18).
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The error bars on the experimental points for @
=1.0-1.4 A-! show the errors expected from the
uncertainties in the incoherent-scattering cross
section for the A% sample (see discussion in Sec.
III). The FWHM is very sensitive to the incoher-
ent-scattering contribution at these values of @
and it is possible that the errors involved in this
correction are underestimated. In fact, after
subtracting off the incoherent scattering from the
A% data at the smallest scattering angles, a
sharp peak with a shape very similar to the in-
coherent-scattering function remains on top of
the broad distribution which constitutes the ma-
jor part of the intensity. If we assume that this
narrow component is indeed remaining incoherent
scattering we obtain the peak heights and the
widths shown as circles in Figs. 16 and 17, re-
spectively. It should be noted that, although the

effect on the width and on the peak height is very
large, this extra incoherent-scattering is obtained
for oyyc/0cor=0.0035. It is therefore essential
that very pure samples are used if accurate re-
sults for Sgoy (@, E) should be obtained at small
values of @.

The result for FWHM obtained from the Pathak-
Singwi model at 76 K is also shown in Fig, 17. In
this case the structure factor and pair correlation
function obtained by Rahman®® at 76 K are used.

A comparison of the theoretical results at the two
temperatures shows that the region around @

=1.0 A is very sensitive to the input data. Small
errors in g(») and S(Q) could therefore cause large
effects in the theoretical width in this region of @.
Both the experimental and theoretical results are
thus subject to large uncertainties at small values
of @ and the poor agreement should therefore not
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be assigned undue importance. The poor agree-
ment between theory and experiment around @=3
A is, on the other hand, definitely significant
and indicates a shortcoming of the Pathak-Singwi
model.

It has been proposed by Rahman®® that it may be
advantageous to study the function E? S.o4(Q, E),
which is the frequency spectrum of the current-
current correlation function, instead of the scatter-
ing function. In particular, Rahman suggested
that the value of E for which this curve has a maxi-
mum should be studied as a function of @. In Fig.
18, we show the function E? ., 4(Q, E) as function
of E for representative values of Q. The esti-
mated position of the maximum (E,,,) of the ex-
perimental curve is indicated by a vertical line
in each case. The results predicted by Pathak
and Singwi'® are shown by the solid lines in Fig.

18. The agreement between theory and experi-
ment is reasonable as far as the over-all shape of
the curves is concerned, but the theoretical curves
are consistently somewhat broader and lower than
the experimental curves. The values obtained

for E ,, from the experiment and from the theory
are shown versus @ in Fig. 19(a) together with

the molecular-dynamics result by Rahman.% The
theoretical results show the proper qualitative be-
havior and, except for regions around 1 and 3 A‘l,
are also in good quantitative agreement with the
experimental results. The molecular-dynamics
results, which are for 76 K, are consistently lower
than the experimental points. As can be seen

from a comparison of the theoretical results for
85.2and 76 K, whichare alsoshownin Fig.19(a), this
discrepancy is largely explained by the difference in
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FIG. 17. Full width at half~-maximum of Sqox(Q, E)
before and after applying the resolution correction. The
error bars on the data at Q=1.0, 1.2, and 1.4 &-! show
the uncertainties in FWHM due to the uncertainties in
omc for the “A%” sample. The circles at the same values
of @ show the result for FWHM if the additional correc-
tion for the incoherent contribution described in the text
is performed. The theoretical results are for S(Q) and
g () from molecular dynamics (Ref. 35) (76 K) and from
neutron diffraction (Ref. 45) (85.2 K), respectively. In
both cases a Lennard-Jones (L-J) potential is assumed.
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temperature. If the theoretical resultsare usedto
“correct”the molecular-dynamics results for the dif-
ference intemperature, the molecular-dynamics re-
sults and the present neutron-scattering results are
found to be in excellent agreement.

If the height of the E25.4 (@, E) curves is used
as a measure of the inverse of the energy spread,
the maximum value of E2S.,5(Q, E) is a measure
of the lifetime of the current-current correlation, 3%
This quantity is shown in Fig. 19(b) together with
the result by Rahman®® and by Pathak and Singwi. !®
The neutron-scattering results and the computer
results are again in excellent agreement if the dif-
ference in temperature is accounted for inthe same
way as above. The theory is, in this case, in rea-
sonable qualitative agreement with the neutron re-
sults but, as observed above, is consistently lower.

XI. SUMMARY

The results reported in fhe present paper are
the first examples of experimentally obtained in-
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coherent- and coherent-scattering functions for a
simple monatomic liquid. It is important that both
scattering functions are obtained, as the two func-
tions illuminate different aspects of the liquid
dynamics. Also, as both functions are obtained
from the experiment it is now possible to test un-
ambiguously severalcurrent models for the coher-
ent-scattering function in which the incoherent-
scattering function is used as input. Although not
carried out in the present paper, we believe the
present results to be accurate enough for a de-
tailed quantitative comparison with theory.

In the present paper the emphasis is on the pres-

‘entation of the experimental results and the vari-

ous corrections'that must be applied to the data be-
fore final smooth scattering functions are obtained.
It is concluded that multiple-scattering contamina-
tion and resolution broadening give rise to sub-
stantial distortion of the results even if great care
is taken in the experiment to limit these effects.
To improve the present results we suggest that an
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FIG. 19. (a) The present results for E,, and those

obtained from the molecular-dynamics computations by
Rahman (Ref. 35) at 76 K are compared to the theoretical
results by Pathak and Singwi (Ref. 18). The theoretical
results are for S(Q) and g(») from molecular dynamics
(Ref. 35) (76 K) and from neutron diffraction (Ref. 45)
(85.2 K), respectively. Inboth cases a L-J potential is
assumed. (b) Maximum value of E%¢on(Q, E) divided by
(E?) from the present experiment and from the molecular-
dynamics computations by Rahman (Ref. 35) at 76 K are
compared to the theoretical results by Pathak and Singwi
(Ref. 18). The theoretical results are for S(Q) and g(»)
from molecular dynamics (Ref. 35) (76 K) and from neu-
tron diffraction (Ref. 45) (85.2 K), respectively. In both
cases a L-J potential is assumed.

experiment should be designed such that each one
of these difficulties is minimized at a time. This
should be done by combining two or more series
of experiments., In energy regions where the res-
‘olution effects are important the intensity is in
general high. In this case it would be possible to
obtain reliable data if the experiment was de-
signed such that the resolution is substantially
improved. In regions of the energy transfer for
which the intensity is low and the multiple-scatter-
ing contamination is severe, the resolution con-
sideration is, in general, less important, In this
case, data should be obtained from an experiment
in which the resolution requirements are relaxed
and, instead, very thin samples are used. The
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complete scattering function should then be ob-
tained from a combination of the results from
these experiments, in which corrections would
still be necessary but would be more reliable in
each case.

The present results are in good agreement with
the molecular-dynamics results for both scatter-
ing functions. The mean-square displacement of
an atom as a function of time is derived from the
incoherent-scattering data. The result shows a
very smooth transition from the free-particle be-
havior at small times to the simple diffusion be-
havior which is already attained after ~2x 10-12
sec. The present result for the non-Gaussian con-
tribution to the incoherent-scattering function is
in good agreement with the result obtained from
molecular-dynamics data by Levesque and Ver-
let?” and by Rahman.”

A recent model of Pathak and Singwi'® for the
coherent function is in good qualitative, and in
some casés quantitative, agreement with the ex-
perimental results. It is observed that the struc-
ture in the constant-energy curves for momentum
transfers corresponding to peaks in the structure
factor is well accounted for by this model in which
the concept of reciprocal lattice is not explicitly
introduced. The present results for the coherent-
scattering function will be compared to several
recent theoretical models in a forthcoming paper. 3¢
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