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This paper deals with the equations of motion of the density matrix of a two-level atom in
the presence of an intense multimode radiation field characterizing a multimode laser. Using
a simplified treatment of line broadening which does not include correlations between momen-
tum-changing collisions and pressure-broadening collisions, we obtain expressions which show

the effect of pressure, laser-pulse length, and intensity on the excitation. We obtain analytic
expressions in limiting cases of the pressure which allow prediction of the degree of excita-
tion from a given laser pulse. In our treatment the phase relaxation time of the atoms is as-
sumed to be fast enough so that coherence effects among the atoms can be ignored. Treating
the velocity of the atoms statistically, we solve for three cases: constant velocity, velocity
changes that are fast compared to the excitation time but slow compared to the dephasing time,
and velocity changes that are fast compared to all other processes. The three cases yield the
same formal equation for the two-body process of absorption of photons by incoherent atoms;
however, the cross sections differ and are calculated explicitly for each case. Also discussed
are the range of laboratory conditions and the relationship between these laboratory conditions
and the various cases considered to demonstrate that under most circumstances this simple
photon-absorption picture is applicable, provided the cross section is calculated correctly.

I. INTRODUCTION

The development of truly tunable lasers that
span the entire visible and near-infrared spectrum
as well as the near ultraviolet' has opened a new

range of atomic physics experiments. The fea-
ture that distinguishes many of these experiments
is the ability to populate selectively and efficiently
a single excited state.

This paper clarifies the conditions under which
traditional expressions for the absorption of in-
coherent light can be applied to laser excitation.
Vfe treat the interaction of a multimode output of
a laser with an atomic gas, subject to the restric-
tion that there are no cooperative effects such as
superradiance arising from coherence of the atoms.
In particular, we assume a high dephasing rate for
the atomic energy levels so that the atoms can be
considered incoherent. Such dephasing can be

produced most easily by collisions. The range of
dephasing rates for various experimental conditions
and the applicability of our treatment to each range
are discussed.

The aim of this paper is to give an insight into
the influence of various experimental parameters
on the interaction of high-intensity light kith ab-
sorbing atoms. We adopt the customa+ approach
of treating pressure broadening and Doppler
broadening independently by assuming that the two

collisional processes are uncorre lated. Recently
treatments of line broadening have increased in

sophistication, and various authors have included
the correlations between these two processes.
This paper is not designed to deal with line broaden-
ing in such a way as to give highly accurate and

detailed absorption profiles. Rather we are con-
tent with simpler theories giving a good approxima-
tion to the actual line shape. In this way we will
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try to gain an insight into the effect of collisions
and velocities on the absorption of light in the case
where the radiation field is intense enough to
strongly change the populations of the states. In
particular we want to justify the use of absorption.
coefficients obtained from low-intensity absorp-
tion experiments or perturbation theory and also to
see when hole burning can be ignored. Therefore
in order to obtain usable expressions for the cross
section for excitation in limiting cases and to gain
a feeling for the effect of changes in pressure,
laser power, and laser-pulse length, we restrict
ourselves to this more easily visualized treatment
of separating pressure broadening and Doppler
broadening. The cross sections derived in this
paper hold in the limiting cases for which they are
obtained and should be useful in predicting the de-
gree of excitation in optical-pumping experiments
using laser excitation.

The three cases for which we derive analytic
expressions are case 1, where no momentum-
changing collisions occur, case 2 where momen-
tum-changing collisions are much more frequent
than the dephasing collisions which give rise to
pressure broadening, and case 3 where dephasing
collisions are much more frequent than momen-
tum-changing collisions. Vfe do not derive ex-
plicit expressions where both collision processes
are of comparable frequency, which is the case
where the correlation between the types of colli-
sions is most likely to be important. Correlations
are obviously unimportant in case 1 (no momen-
tum-changing collisions). ln addition, Smith,
Cooper, Chappell, and Dillon' have shown that, if
the average momentum transfer during the phase-
shifting collisions is small, then the term involving
the correlations can be ignored. This is our case
3, where the rate of dephasing is much faster than
rate of momentum change. Experimentally either
the no momentum-changing collision case or the
case where dephasing collisions are most frequent
is often achieved in optical spectroscopy, the high
dephasing rate with low-momentum transfer often
being achieved by using a light buffer gas such as
helium to broaden the absorption spectra of heavy
atoms. Case 2, where momentum transfer is much
more frequent than dephasing, occurs most com-
monly in the microwave region when magnetic di-
pole transitions are involved or in infrared molecu-
lar transitions. This case is included here mainly
for completeness.

In case 1 we treat each velocity subset separately,
and the absorption cross section obtained has a
Lorentzian profile. The excitation of the atomic
system shows the effects of hole burning as would
be expected. For cases 2 and 3 we assume a re-
distribution of velocities which is sufficiently fast
to prevent hole burning and the absorption cross

section is the same for all atoms. The absorption
cross section has a narrowed profile with the
limiting form of a Lorentzian in case 2 and has the
familiar Voigt profile for case 3. The results are
summarized at the end of Sec. III.

The approach of the paper is to solve the equation
of motion for the atom in the presence of an
electromagnetic radiation field with a phenomeno-
logical damping constant to represent dephasing due

to collisions. The equation of motion is general
with the effect of momentum-changing collisions
being included by making the resonant frequency
of the atom time dependent in the laboratory frame.
A general solution of the equations would show hole
burning which depended on the explicit variation,
of the resonance frequency with time. %e solve
the equations of motion in the limiting cases where
there are no collisions and where momentum-
changing collisions are frequent compared to the
excitation time, and we obtain the conditions for
which these limiting cases hold. The Doppler
broadening with high collision rates is introduced
by using a Brownian-motion treatment of colli-
sions. This approach is strictly applicable for
the case of a large number of collisions with a
small-momentum transfer on each collision and
obviously most consistent with our case 3, where
the dephasing rate is much faster than the momen-
tum-transfer rate.

In all three of our limiting cases we show that
the condition of a high dephasing rate is sufficient
to reduce the equation of motion to the form

where A(t) is a measure of the excitation of the
atoms, s), (t) is the photon flux at frequency &u, , a&

is the cross section, and T& is the decay time of
the excited state. This is the rate equation for
two-body collisions. The fact that the rate equa-
tion takes this form shows that the coherence prop-
erties of the exciting light have no effect. %e de-
termine the form of o', for several cases in terms
of conventional atomic parameters such as oscilla-
tor strengths, velocity distributions, and collision
rates.

The solutions to the equations of motion are
summarized 'in Eq. (50) and the ensuing discussion.
In Sec. IV we then discuss the typical value of the
physical parameters affecting the absorption. For
convenience, a glossary of the principal terms
used in this paper are included in the Appendix.

II. BASIC TREATMENT OF ATOM-I. IGHT INTERACTIONS

Physical Picture

The effect of a multimode laser output on the
density matrix of an ensemble of two-level atoms
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is calculated to obtain the change in population for
the ensemble. Our approach is semiclassical with
a classical electromagnetic field interacting with
quantum-mechanical atoms. Both Doppler and
collisional broadening are considered.

We consider separately two effects of collisional
broadening. First, we treat broadening due to
dephasing collisions. We assume that the phase
of the atoms as givenby the off-diagonal elements
of the density matrix has a damping time T2 as a
result of these collisions. Throughout this paper
T2 is assumed short compared to the laser pumping
time 7.~. In particular, we require T~ to be suffi-
ciently short to assure that the atoms are inco-
herent with respect to each other and to the radia-
tion field. In this way we can neglect such cohe-
rent phenomena as superradiance' and self-in-
duced transparency. Second, we consider the
effect on absorption of momentum-transfer colli-
sions that shift the resonant frequency & of the
atoms in the laboratory frame. We assume these
momentum-changing collisions are not correlated
with the dephasing collisions in order to treat the
two types of broadening independently. In addition,
we assume that the velocity distribution of the
atoms, which give rise to Doppler broadening,
has a Gaussian shape.

Three ranges for the rate at which these momen-
tum-transfer collisions occur are considered. The
first is the case of no collisions occurring during
the entire interaction. The other two cases in-
clude both the low rate of momentum transfer,
which results in the absorption cross section having
a Voigt profile, and the high rate of momentum
transfer, where the velocity shifts may give rise
to a Lorentzian shape. In both the second and third
cases, however, the rate of momentum transfer
is assumed faster than the laser-pumping rate 1/~~,
where the laser-pumping time 7~ is the charac-
teristic time required for the laser to equalize the
populations of the excited and the ground' states.
Note that this time should not be confused with the
actual laser-pulse length 70. In all three ranges
the rate of the dephasing collisions is assumed to
be high.

Equations of Motion

We write the exciting laser pulse as the sum of
an arbitrary number of longitudinal modes at fre-
qnencies ~&, where i = 1, 2, 3, . . . , with real am-
plitudes E, (t) and polarizations &, . The modes
have a uniform spacing 60 and the laser has a
total linewidth Q. The electric field,

K(z, t) = —,'Q, E,(t) c, [exp[i (- k, z + &u, t) ]+ c. c.]
(1)

is assumed uniform in the transverse directions
across the gas being excited. ' The laser is

turned on at I;= 0. The term c.c. stands for the
complex conjugate of the preceding term.

We now write the equation of motion for the 2x2
density matrix for an atom with resonant frequency
& in the laboratory frame as

jjgaa ab p«p, (

ba bb *
pea pub

(2)

where a and b stand for the time-dependent ampli-
tudes of the two states I@,) and l+,), respectively,
in the total wave function

The equation of motion is

p(t)= ( ih) [X, p(t)],

st P (t)=i~(t)p b(t)+ (i~) V(t) t) P(t)

(Ga)
(6b)

9 9
p(), ( t) =

st p(((, (t),

t) P(t) = 2(il) ' [V (t)p,((t) —V(t)p(s(t)]

t) p(t)+1 (6 )
T1

where in (6a) we have added the phenomenological
damping term for the off-diagonal elements to
account for the broadening due to dephasing colli-
sions, "and in (6c) we have added a term charac-
terized by time T1 to account for the decay of the
excited-state population due to collisions or radia-
tive decay. Note that in (Ga) the resonant frequen-
cy & is considered a function of time as a result
of the velocity-changing collisions. In the case
of no collisions, &u(t) is a constant and is simply
equal to the Doppler-shifted frequency of the atoms
in the particular velocity subset under considera-
tion.

The solution to E(l. (Ga) is

p,o(t) = [i &p, (t)] J dt' y. (t')V(t')a p(t'), ('7)

where
~ t'

p, (t') = exp —,—iu&(t") dt" .
~0 2

Equation (Gc) becomes

where

K = ', v(t)= (O',
I
—er K(z, t)I+ ),E, V(t)

(6)
with E, and E~ the respective energies of the states

I @,) and I 4(,), and E, E,= k(d—. Writing E(l. (4)
out, and letting [p»(t) - p„(t)]= t).p(t), we obtain
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&(f)I (f)W(f)+c c.
I

Now recall that

b, p(t)+ 1
~1

~(f)= zGP(E (f)(exp[i(—&(z+ ~(~)]+c c ]
(1o)

—i 6(d((t")dt"

where

p(= —z(+sIr ' z( I@()) i

so that for z = 0 we get
».t—ap(f)= —Q (2K )

' P(P»E((t)' dt'E((t') n p(t')

»tx-p-' -p '

t-t' ~
xexp —, exp z ~; t" dt" +c.c

Tz ) J»
n p(f)+ i

T f~

III. EFFECT OF MOMENTUM-TRANSFER COLLISIONS

In Eq. (14)

&&((8 )=(d(f ) —(((=&&0(+z(t'')c

where &p~= wp- && is the resonance term for an
atom at rest, and

z(i")c '~, = 2»(& 'z(t")

is the Doppler shift for an atom moving with veloc-
ity z(t' ') and }(, is the resonant wavelength in the
atom's rest frame. To evaluate the term

»(t')exp[if» &~((t")dt" ],~\

i nw, (t")d( +c.c.I" we restrict ourselves to the three previously men-
tioned cases. In the first we have no velocity-
changing collisions during the entire interaction so
that d (d((t") is a constant for atoms moving with a
given velocity; in the second and third we require
the rate of change of velocities be sufficiently fast
to assure that the population distribution is essen-
tially the same for all velocity subsets of the gas.
Within this latter restriction, the second and third
cases will be shown to distinguish between the fast
and slow rates of change of velocities compared to
the rate at which atoms change relative phase,
which is given by I/Tz+(zo/c)&o, where zo is the
root mean square of the velocity distribution in the
gas. The term 1/Tz gives the rate of randomiza-
tion of phase due to collisions, while (zo/c)&()0 gives
the shift of phase between atoms due to Doppler-
shiftedresonancefrequencies. For (zo/c)(do» 1/T'z,
we will see that the second case corresponds to a
mean free path between velocity-changing collisions,
that is short compared to the wavelength for the
transition while case three has a long mean free
path compared to the wavelength.

x exp
p

n p(t)+ 1
(12)

1

where L&u((f") = e(t")—e(. Note that terms like

exp[f, 'i [(d(t")+(u(] dt")

have been dropped since they average to zero on
the time scale we are interested in.

To evaluate the effect of the cross terms i j we
write Eq. (12) as

—»(f) = Z(2@z)-' P-, P*,E((f) df' E,(e)»(f')

xezp —, exp j 4~~ t" dt"

x exp(i('(»t) +c.c. —,=—, (13)
»(t)+1

where (d(&= &( —~&. The cross term exp(itu(&t) will
contribute only for times on the order of (&(»)
that can at most be (&0) ~, the inverse of the mode
spacing. It can be seen from (13) that it » and
E(t) can be considered constant over times - (n, A) '
and if T2 is short compared to the laser-pulse
length, then the contribution of the cross terms
will average to zero. Ignoring the cross terms
means tha. t we only consider the photon flux aver-
aged over times - (&0) ~, and not the distribution
over shorter times. These considerations hold
for both mode-locked and random-phase systems.
We wiQ only consider cases where-cross terms
can be dropped.

Dropping the cross terms, we can rewrite Eq.
(13) as

Case ): No Velocity-Changing Collisions

In this case all atoms maintain their velocity
throughout the entire interaction so that the reso-
nant frequency is a constant for atoms in a par ticular
velocity subset. Equation (14) becomes

pt
»(f) =-~&-'I ~ I'E«f) ~" «E,«)"(~)8t ) gp

&& exp —,— cos [(t —t') h(() (]-t- t' »(f)+1
2

(i5}
At this point we assume that both E((f) and»(f) are
essentially constant over times - T2, so that the
damping term exp[ —(f —f')/Tz] dominates the inte-
gral, and we can wite Eq. (15) as

(t)=-Z(plf')'~» ('2Zf(t)'( di& E(r)&p(&)'
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—~p(t)at

(Tm)s4(u, sin[(t —t')4 ru]
II

I + (t &u, T',)' i

~p(t)+1x expI —:—, —, ~ (I&)
2 t'~0

Now let us assume that e '~ +2= 0 for all but a,

negligible portion of the time that the laser is on,
which is to say that the phase relaxation time Tz
is short compared to the laser-pulse length 70.
Then we have

Tf
—,~p(t) = -&@ 'IP& I'& '(t)~p(t)

1

t p(t)+ I . (18)

We can write Eq. (18) in the form

—&p(t) = -+2rtf(t)rr (4)~p(t) —, , (19)&p(t)+ 1
et T1

by making the following observations. The flux of
photons of energy h~&=h~0 in the ith mode is given
by

ri, (t) =c(8rrhruo) 'E, (t) photons cm msec ', (20)

where 0 is the resonant frequency of an atom at
rest. For the absorption of a photon of frequency
& by the gas, we can associate an atomic cross
section

o, ((u) = 2rre f(mc) [( ),]s
-1 T2

where IP~ I is related to the absorption oscillator
strength f by f=2m&uo IP, ls(gem) ~. ~s The factor of
2 is included in (19) to retain the cross section for
photon absorption. Noting that &p = (Nr, —N, )/
(N, + &,), where ti, is the population of the upper
state and N, is the population of the lower state,
and that

eq eN, ex,
et et et '

we see that

Ne4p 8g
et

— '
et

so that

K slpr IsE&s(t)np(t)' dt' cos[(t —t')&rur]
'+ 0

(18)(x exp—
2 1

Evaluating the time integral, we get

„—=~@ (t)&a (~)t p(t)
1

where N=N, +N, .
For the case of no momentum-changing collisions,

note that the absorption cross section, for atoms
with a given velocity, is Lorentzian in character.
Thus, our final general solution for the case of no
momentum-changing collisions is

&p(t) = fr(ru, t)] &p(0) -T, t x(&, t') dt'
I

ig 0

where

y(ru, t) = exp —, [Zr&r(t')err((g)T', +1]dt' I,1y. 0

(28)
and &p(0) is the population difference at t=0. If
the atoms are in the ground state at t=O then
hp(0) = —1. Recall that g, (t) is the number of pho-
ons cm sec 1in the ith mode of the light given by
(20), and cr&(&) is the absorption cross section given
by (21). T', is the relaxation time of the ex-
cited-state population, which in the absence of col-
lisional depopulation is the spontaneous lifetime.
Notice that because the excitation (22) is a non-
linear function of the cross section, the average
excitation is obtained by averaging Eq. (22) over
velocities with a given laser intensity and not by
averaging the cross section given by Eq. (21).

There are two limits for which the solution to
Eq. (22) can easily be evaluated: (a) constant
laser intensity and (b) no excited-state decay. In
limit (a) we assume the laser is constant in time.
This limit is applicable when the risetime of the
laser pulse is much shorter than both the laser
pulse length v'0 and the laser pumping time 7~. We
have Z&(t) = ri, and the solution [Eq. (22)] reduces to

&p(t) = f~p(0)+ K2r) p&(~)T', +I] ']

)(exp — 2$]o'] T1+ I
T1

—EW&c&(~)T&+I] ', (24)

so that for long light pulses ~p goes exponentially
to

—[+,2rhcri((u) T,'+ 1]-' .
We can see that here the laser pumping time v~ is
on the order of

T(/[Z)2', cr, ((u) T~ +1] .
Equation (24) shows that the excited-state decay
time T1 prevents the population from becoming
totally equalized unless T1' is very large, as in
limit (b).

In limit (b) we assume T~ -~ or, effectively,
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that T& is much longer than the laser-pulse length
ro, in which case the solution given by Eq. (22)
reduces to

hp(t) = hp(0) exp[-Z, 2o,(~)f,'dt' q, (t'.)], (25)

and the solution goes exponentially to &p= 0, which
is the case of equal populations in the ground and
excited states. The integral f()g;(t')dt'is just the
total number of photons in the ith mode to have
passed through the unit area of the sample in a
time t since the laser pulse was initiated.

Cases 2 and 3: Redistribution of Velocities

In order to proceed to the second and third cases
we require that the rate of change of velocities be
high enough to keep the populations of all the veloc-
ity subsets equal. (This restriction will be ex-
plained below. ) First, it would be useful to sum-
marize some of the properties of the velocity dis-
tribution in a gas. Vfe assume that the velocity
changes are determined by a Markoff process, that
the velocity distribution is invariant with time,
and that if t and s are two times, then z(t) and z(s)
have a bivariate Gaussian distribution. %e are
letting the mean (z(t)) equal zero and the variance
([z(t)]) eq«z(), where the symbol ( ) represents
the average over the probability distribution or
the ensemble average. Let X(7) be the correlation
function

x(7) = (z(t+ ~) z(t))/zo .
Under these very general assumptions Doob has
shown that the following properties of z(t) and z(t)
hold. The conditional probability density for z (t+7)
given z(t) is

/[z(t+ y)~ z(t))= (22) ~ z (I —X2)

1 ['(t+ ~) —x'(t)]'
2 [1 — 2] 2

where X=X(v)=e ", with p&0. It is also true that

([z(t+7) —z(t)]') = 2zo(1 —e 2(') (27)

and z(t+ r) —z(t) has a Gaussian distribution with
a variance o (v) given by

—„«p(t)&=-Z(2tt') '~ p, ~'E, (t)

x dd (P) de(xp-, -

)
P

exp [t(t —t' )h&u2, ]

x hpt' exp i - - dp~ +c

(hp(t)) + 1
Tg

We now would like to assume that hp(t') is un-
correlated with

. (29)

f'. "'2vz(t")

so that the average of their products may be sep-
arated into the product of their averages. The re-
quirement for this assumption can be seen by
noting that 1/P is the characteristic time for the
velocities to randomize as given by (26). If I/P
is much less than the time needed to pump the
atoms, then the diffusion time through the various
velocity subsets will be negligible compared to the
time for the light to change hp(t). Therefore hp(t)
will be the same for all velocity subsets and hence
uncorrelated with the exponential term, so that

~p t' exp i — — — dt"

= (ep(d)) (exp i " dt"
) . (Xe)

effect of collisions on the moments of the velocity
distribution, the reader is referred to treatments
of Brownian motion by Doob' and others. The
effect of the detailed collision process on the spec-
tral line shape has also been studied recently,
with special reference to gas lasers. "'6

Let us now return to Eq. (14) and consider the
equation of motion for the ensemble average of
hp(t):

o'(~) = &[z(t+ ~) —z(t)l'&

(2S)

The time for pumping the atoms, which we have
referred to as the laser-pumping time v~, is on the
order of hp(shp/St) '. Thus, for (30) to hold, the
requirement is

The gas is characterized by two physical param-
eters, z2 which determines the velocity distribu-
tion and P which determines the correlation time
or the time it ~es an atom to randomize its veloc-
ity. The twoleast certainof our physical assump-
tions are that the scattering is a Markovian process
and that z(t) and z(s) have a bivariate Gaussian
distribution; both assumptions must be defended
for any particular case. For a discussion of the

e~p -'
P~ =Php»1.

Bg

We discuss typical values of this quantity in Sec.
IV.

For now, we assume (31) is satisfied. Note that

exp i — — — dt" = exp i—z t' —z t
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and recall that [2w/&][z(t') —z(t)] has a Gaussian
distribution with a variance

[2w& 'a(t —t')]'= 2(«u )'p (e p ' ' '- 1+pI t —t'I ),

where ~+& = 2m& ~0. By using the Gaussian dis-
tribution one can easily show that

~

~

exp i —[z(t') —z(t)] = exp{--,' [2w& ~o(t- t')] P) .
(32)

We can now consider (32) for the second and third
cases.

High rate of velocity-changing collisions (case
2). Using (32) we find that in (29) the integrand is
significant as long as

exp[- (t —t')/T'
]p

exp (- -,' [2wz 'v(t —t') ]'~j

are significant. Using the expression for the vari-
ance given above we see that if pp» 2(t),c p)p and
PTz'» 1, then for most of the range over which
the integrand in (29) contributes, (t —t')p» 1. We
can neglect e ' ' 'p —1 compared to (t —t')p and
obtain

(+(uD
o, =2we'f(rnc) ', +

+CO Of.

( / ',+( )'/(3) (37)

The two limits (a) constant laser intensity and
(b) no excited state de-cay evaluated for the case of
no momentum-changing collisions can be extended
to the present case by using the two solutions given
by E(ls. (24) and (25), and by replacing t)p(t) by
&dp(t) ) and g, ((u) by o; of (3V).

I om rate of velocity changing -collisions (case 3).
We now consider the case where P[t -t '] is always
small but P is still large enough to satisfy (31).
The former will be true if 2(t](uL))'/p'» 1, so that

of no momentum-changing collisions replacing
I/T 2 by I/~ 'a+ I(&.(uD)'/p], &(u; by n'(u„, and r(p(t)
by &&p(t) ). Therefore our solution is

()a(t)) («=(«)I '((~((o)) —-'= ' «(«')d«')(I, )~1 ~0

where

«(«)=~xp —, [Z 2««(~')«, «', +(]d«'), (M)
1

1~0
and q;(t') is given by (20). The absorption cross
section is now given by

so that (29) becomes
(33) exp [ —(t —t ')—', a'(2w/x)']

] t—&t],p(t)) = Zh
I pg-I &g(t) dt'E (t') &&p(t'))

et

I (a(up)Px exp — —,+ — (t —t')
Tp p

x cos[(t —t') t](u]p— — —,——— . (34)&~p(t)) + 1

In this case of a very high collision rate, the Dop-
pler broadening leads to a Lorentzian line shape
with a width (&(up) /P««un. This is the collision-
al narrowing of Doppler -broadened lines predicted
by Dicke'~ and observed with microwaves by Wittke
and Dicke1 and in the infrared by Rank and jig-
gins. ' The requirement for collisional narrowing
is seen to be P» «un+ I/T p. This condition cannot
usually be satisfied for electric dipole transitions
as discussed in Sec. IV. The term &~D gives the
deyhasing rate of atoms due to the difference in
their Doppler-shifted resonance frequency, while
I/T z gives the dephasing rate due to collisions.
The requirement for collisional narrowing is that
the collision rate be much faster than the total de-
phasing rate of the atoms. %Ye might also note that
&(un = (zp /c)(up = 2w( sp/]]) and that sp /p is the mean
free path of an atom. For 4(up» 1/Tp the re(luire-
ment for collisional narrowing is sp/8"-'& X/2w.

To solve (34) we proceed from (15) for the case

is negligible for large (t —t')p. It will also ].e true
if pT'z «1, since in (29) the integral over t '

(.)riy,
contributes for (t - t ') ~ T z, making (t —t ')P .- 1.
Physically this latter condition means that "J,;hough
the velocity-changing collision rate may be 1'i...~h

compared to the Doppler width, it is still col';.»ider-
ably less than the dephasing rate; in other words,
the mean free path for loss of momentum is much
longer than that for dephasing of the atom. In the
case that (t t')p is alw-ays small we can let
e " ' )P —1+ (t - t ')P= p (t - t ')'P, and from (32) ob-
tain

and (29) becomes

—&&p(t) &8t

=-~ (2h') 'I&;I'&;(t)
]

dt'~; (t')&~p(t')).
~ 0

& exp i&~Of ——, t -t'
~2

x exp [ -
w (t - t ')'(t) ~a)']
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«p(f) &+1+C. c. —
g ~ 39
1

x cos[(~&„+~)(t —t')]- &~p(t)& 1
T1

(41)

Following steps very similar to those in going
from Eqs. (16) to (18), we obtain

—„«p(t)&= -&g 'I p, I'E, '(t)(») "'&&p(t)&

In the above equation, evaluation of the time inte-
gral is possibl, if we write

exp[ —(t t') (g(gp )2 —(27f)-&&&f d~g(~) e&&t

(40)
so that (39) becomes

—«p(t))Bt

t goo

Zh I&, I z, (t)(2 v)
'~~ dt' drug(&u)E;(t')

i 40 J-~

«(&p(&')) Bxu(- ~,
t-t' 't

Tg )

x=6(do(T3, y= (6(00)+&d)T3, $= &26(dgTp

(4'7)
Using Eq. (20) we can write (45) as

—„«p(f)& = -& 2n, (t)~,&~p(t)&-
(4p(t)& + 1

1
(48)

where q~(t) is the number of photons cm ~sec ~ as
before, but now

o; = 2ve f(mc) 'T24 &(x, $) (49)

We have written the dipole matrix element in
terms of the absorption oscillator strength as in
Eq. (21). The solution to (48) is given by (35) and
(36) with the above value of o, replacing that given
in Eq. (3V). The limits (a) constant laser intensity
and (b) no excited state d-ecay can be obtained from
(24) and (25) by substituting &b p(t)& for 4p(t) and
v; [Eq. (49)] for o;(cu).

Summary of Cases 1-3

We can summarize the equation of motion by
noting that in all three of our cases the differential
equation reduces to the form

T2x d(ug((u) 1+ [(d4PO)+ (u)T3]
—A(f) = -+ q2, ( )fc, A(t)—
8 A(t)+1

Bg ~ T1
(50)

&~p(t)&+1
Tl

1

Using (40) we can evaluate g(&),

g((u) =(2w) ~~~, dq. exp[- —,'(&~g) v ]e '"'

(d
= (&&D) IIKp( 2(~~ )1 .

~

so that (42) becomes

(43)

—&hp(t)&=-ZK 'Ip I'E (t)(2 ) "'&~p(t)& T'

exp[ — /2(& ) ]

&b p(t)) + 1

Ti
. (44)

&~p(t)& =-~& 'Ip I'E '(t)&~p(t)».'4,(, &)Bt

where

«p(t))+1 (45)TI
1

C, ( -) ((a ) imam t
"d exp[-(x-y)'/5']

(46)
+g

We can rewrite (44) in terms of the Voigt integral
4,(x, $) for which numerical values are readily
available20:

This is the rate equation for two-body interactions
between atoms and photons with a flux g, (t) of pho-
tons, a cross section o&, a relaxation time T1, and
when p, (t) = 0, an equilibrium value A = —l. Equa-
tion (50) is a direct consequence of the fact that we .

have assumed that the phase relaxation time Ta
is short, so that &p(t) and E,(t) can be pulled out of
the time integral, and the effects of phase coher-
ence in the exciting light can be neglected-the
coherent nature of the light becomes irrelevant.

For case 1 (no momentum-changing collisions)
A denotes the excitation of atoms having a given
velocity, and o ~ is the cross section between the
atoms and laser photons of frequency w&. The ab-
sorption cross section has a Lorentzian profile
which is to be expected for atoms in a particular
velocity subset. ' The excitation is different for
each subset and results in hole burning. To get
the total number of excited atoms it is necessary
to sum over all the velocity subsets after solving
for the excitation.

For cases 2 and 3 the redistribution of velocities
is sufficiently fast that there is no hole burning and
A. is the excitation averaged over the -entire en-
semble. For case 2, where the rate of momentum-
changing collisions is hip'her than the rate of de-
phasing collisions, the effect of collisions is to
constrain the movement of the atom and results in
a narrowing of the absorption'profile as has been
discussed, for example, by Bautian and Sobel'man. '

' In this limit the profile is seen to be a Lorentzian.
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The absorption profile in case 3 is the familiar
Voigt profile obtained by the convolution of a
Lorentzian profile with a Gaussian profile.

For a general solution of the cross section 0,
we must know the time history of the velocity.
For cases with intermediate collision rates be-
tween our limiting cases one would, in general,
need to know the explicate behavior of the velocity
of the atoms in the gas.

Let us consider our equations with the aim of
finding the conditions of maximum efficiency in
producing excited states. Comparing (18) and (44)
we see that case 3 differs from the no-collision
case in that the cross section in case 3 is an aver-
age over the various velocity subsets. In consid-
ering the total number of excited states for case
1, one has to average (22) over all velocity sub-
sets. If the laser intensity is weak, then the ex-
ponential in (23) can be expanded and the average
over velocities will yield the same value for o, as
the value for case 8 given by (49). The average of
ap(t) will go over to the value of (ap(f) ) obtained
from (44). In the low-intensity case the excitation
rate is insensitive to the collision rates in the gas.
As soon as the laser intensity becomes large
enough that 2q, (t)o, (~)T,' =1, the exponential can
no longer be expanded and the average of ~p in the
no-collision case is less than the average of hp in
case 3. Physically this means that at high laser
intensity hole burning takes place and saturation
begins to occur for some velocity subsets. As a
result the incident photons are used less efficiently.
In case 3 the pumping is spread over all atoms,
and saturation does not occur until all the atoms
are heavily pumped and, consequently, the pump-
ing process is more efficient. It is also clear that
if the width given by 1/Ta is much greater than the
mode spacing with equal intensity modes, there
will be no hole burning.

Finally, we should make an extremely important
point about the atomic state after excitation. If
one waits a time t+& T2 after the laser is off, the
density matrixwill be diagonal and the atomic state
entirely defined by the populations. There will be
no peculiarities of the atomic state due to coherent
excitation, and any of the traditional experiments
of spectroscopy or atomic physics can be per-
formed with confidence that the nature of excitation
will not affect the results.

IV. LABORATORY VALUES OF P AND Tg

In this section we briefly indicate the typical
range of parameters used in our calculations. For
any given experiment the value s of these param-
eters must of course be estimated for the particu-
lar case; here we attempt to convey only a feeling
for their magnitudes.

The important parameters in our calculations are

the excited-state lifetime T&, the dephasing time
Ta, the velocity coherence time I/P, the laser-
pulse length To and the laser-pumping time ~~.
In general, little is gained in having the laser-
pulse length much greater than T&. This is dem-
onstrated by Eq. (24) in which one can see that the
atomic system responds to a laser pulse with a
time constant Tj or shorter. Laser pulses have
been reported with widths from -10 ' sec to con-
tinuous operation with phase coherence times for
tunable lasers -10 sec. The typical range of T,'
in atomic systems is from -10 to -1 sec.

The most important parameter in our treatment
is T&, since it establishes the conditions for de-
scribing the absorption process by phase insensitive
photon-atom collisions; T& must be smaller than
r& the laser-pumping time. The value of T& can
be estimated using the typical values for pressure
broadening of absorption spectra by assuming
that van der Waals broadening is essentially a
measure of T', .

A useful approximation has been given for van
der Waals broadening of electric dipole transitions
by hydrogen

1/T' = h(u= 20C v N,
where

C= l. Gx10 n /2

(51)

(52)

1/T', = 6&v = 4v'CN,

C = e &f(8v mc)

Recalling that the spontaneous lifetime of an
atom is given by

I/T( = (8v e /mc ) (g, /g&) (I/X )f,

(58)

(55)

where g, and g„are the respective degeneracies of
the lower and upper states of the transitions, we

with v the velocity of the perturbers, N the num-
ber density of the perturbers, n the principal
quantum number of the upper level of the transition,
and Z —1 the charge of the ion undergoing the
transition. For Z=1, n= 5, v=2. 5&&10 cm sec
and N = 5 x 10"cm, we obtain T2 = 10 "sec. Measured
values of C for several perturbers and atoms show
that this approximation is the typical range for
T2. ' ' It is clear that with buffer gas pressures
ranging between 100-500 Torr and temperatures
in the 500-1000'C range, for example, T2 is much
smaller than any atomic lifetime for optical transi-
tions. Thus, we can satisfy the conditions of our
theoretical treatment by using laser pulses 10
sec.

At lower buffer-gas pressures resonance
broadening may be important; in this case we make
the following estimate assuming 1/T2 is dominated
by resonance broadening
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see that

TV Tf = I«(a./Z~) I/»' (56)

so that if NX»1 then T2 «T,'. For X= 5600 A
this requires N» 10 cm . At 300 C this cor-
responds to a pressure of approximately 10 Torr.

If one is dealing with an ionized gas, the main
dephasing process may be Stark broadening. The
broadening for this process is difficult to estimate
as it depends in detail on the transition involved
and on the temperature and pressure. For hydro-
genic levels the Stark broadening can be very large
and could easily dominate other types of broaden-
ing.

The second parameter of interest in our treat-
ment is the velocity redistribution time as charac-
terized by the parameter P. This value can be
estimated by considering the typical atomic di-
ameters to be d = 3 ~10 ' cm. ~7 For a velocity v
=2. 5&&10' cm sec ' and N= 5&&16"em, the colli-
sion frequency is v 2vNvd'=5xIO sec . One
must further consider the persistance of velocities
after a collision. '~' Even if individual masses
of the colliding atoms are the same, the velocity
of an atom in a given direction after a collisionwill,
on the average, have a component in the original
direction that is - 0. 4 times the original velocity;
in other words there is a persistence of velocity
in the original direction. If a helium buffer gas
is used with much heavier calcium atoms, for
example, the calcium atoms will average 6. 88 of
their original velocity after the collision. It is
clear that P, the rate at which the velocities ran. —

domize, will in general be much slower than the
collision rate. By comparing the collision fre-
quency with the value for Ta due to van der Waals
broadening, we see that, in general, PTz«I, so
that case 3 rather than case 2 is applicable. To
obtain collisional narrowing as in case 2, one
must usually use quadrupole transitions or magnetic
transitions for which T~ may be very long.

It is also clear that for I/P to be much shorter
than the laser-pumping time 7 ~, in order to make
either case 2 or case 3 applicable, one should use
an adequate pressure of a heavy buffer gas to re-
duce the persistence of velocities in the atoms un-
der study. From Eq. (24) we see that if there
is to be significant pumping, then v~~ T&. For
allowed transitions with T& = 10 ' sec we need a
buffer-gas pressure on the order of an atmosphere
to obtain I/P «T', . If ~~&T( due to high laser
power, then the pressure will have to be even
higher to ensure that the velocity-changing rate P
is sufficient to satisfy (31). If one is pumping weak
transitions with long Tj using a flashlamp-pumped
laser, then the typical times of the experiment
may be -10 sec, in which case it is feasible to
use buffer-gas pressures of 16-100 Torr.

To go to the opposite limit and operate with no
velocity-changing collisions so that case 1 is ap-
plicable, it is necessary that 1/P be much longer
than the time scale of the experiment. For a Q-
spoiled ruby or Nds': glass laser, typical pumping
times are on the order of 10 ' sec. These times
also characterize dye lasers pumped by Q-spoiled
s systems. For velocities - 10' cm sec ' and den-
sities of 10 cm, we find a collision frequency
of 10 sec ', so that if a light buffer gas is used to
yield a high persistence of velocities, t;hen ease 1
should be applicable for a laser pulse of - 10
see. For these parameters, van der &aals broaden-
ing gives Ta = 5~10 ' sec, and the requirement
for short T2 is still reasonably well satisfied.

V. SUMMARY

In considering the interaction between a multi-
mode laser and an atomic gas, we have found that
as long as the dephasing time of the atomic sys-
tem is sufficiently short, the interaction reduces
to a two-body collision between the atoms and
photons, where coherency effects do not occur.
We have also shown that if after the excitation one
waits for a time longer than the dephasing time,
all memory of the method of excitation is lost,
and experiments can be performed on the excited
state without regard to the details of the excitation
process.

Pumping is seen to be most efficient when the
laser-pulse length is shorter than the lifetime of
the excited state but long enough to allow redistri-
bution of the excited atoms within the velocity space,
which prevents hole burning. Expressions are
derived for the degree of pumping under several
conditions.

Finally, various laboratory values for the param-
eters introduced in the theory are discussed and
their magnitudes estimated to demonstrate that
the various cases calculated in this paper are valid
for a wide range of typical laboratory conditions.
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APPENDIX: GLOSSARY OF PRINCIPAL TERMS

a(t), b(t); amplitudes of wave functions: ground
state, excited state.

P; rate of decay of correlation of velocities.
c; speed of light.
y(7); correlation function of velocities.
e; absolute value of the charge on the electron.
E„E„energy of state i@,), [4,).
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E(s, f); electric field of laser pulse.
E,(t); electric field amplitude of ith mode of

laser.
&&, polarization of ith mode of laser.
ii~(t); flux of photons in the ith mode of laser.
f; absorption oscillator strength.
g„g„degeneracies of state I@,), I+~).
'C; Hamiltonian.
k&, wave number of ith mode of laser.
~; resonant wavelength of an atom at rest in the

laboratory frame.
m; mass of the electron.
N„N~; population of state I@,), I+&).
¹ number density of atoms or perturbers.
n; principal quantum number.
&u [or v(t)]; resonant frequency of the atoms in

the laboratory frame.
&, frequency of the ith mode of laser.
&(u;(t); (u(t) —(u, .

0) ) —(a)g ~

p' resonant frequency of atom at rest in the
laboratory frame.

ECO pgq COp —0) ]~

+~o' ~so/c.
~~; linewidth due to collisional broadening.
AA; frequency spacing between adjacent modes

of laser.

0; frequency linewidth of laser pulse.
p&, electric dipole moment of atom.
4,(x, (); Voigt integral.
x, y, $; variables in definition of Voigt integral.

I @,), I @,); energy eigenfunction for two-level
atom.

14')„ total wave function of two-level atom.
p(&); 2&& 2 density matrix.
I(if~~ ~55 a d %a~ pap~ elements of density matrix.
&p(f); pyy —p„~
o,((u); atomic cross section for absorption of

photon of frequency & by atoms at fre-
quency w.

0;; atomic cross section for absorption of photon
of frequency & by an atom.

o (7); variance of the distribution of diffusion
distance of atoms.

T~; decay time of excited-state population.
T~; damping time of off-diagonal elements of

density matrix.
7&, laser-pumping time.
zp, laser-pulse length.
V(t); interaction operator of Hamiltonian.
v; velocity of perturbers.
ss; root mean square of velocity distribution of

atoms.
Z —1; charge on ion.
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We report systematic measurements of the nuclear-spin-lattice relaxation times T& in the
ordered phase of solid hydrogen. The dependence of T& on temperature T and on the ortho
content X is found to be described by T&=AX T 'e, where A=1.0+0.3 min, B —[0.4(1.8X-1)
+0.24j'K for X &0.56 and B =0.24 K for X&0.56. This functional dependence is in qualitative
agreement with that calculated from the rotational correlation times of the quantum crystal lat-
tice. The applied field was 75 kG and the temperature range investigated was 0.075 to 1.5'K.

I. INTRODUCTION

The quantum properties of solid mixtures of
ortho-para hydrogen have received considerable
attention in recent years both experimentally and
theoretically. For ortho concentrations greater
than 6Y/p these properties lead to a singularity in
the specific heat and a change in the prof Qe of
the NMR absorption line. 7 It is now generally
accepted that these are associated with the co-
operative ordering of the rotational degrees of
freedom arising from their collective molecular
quadrupolar interactions.

NMR affords a direct means of investigating the
rotational excitations arising from these inter-
actions. First, as a consequence of the quenching
of the rotational molecular motion the intramo-
lecular magnetic dipole-dipole interaction does
not average to zero, and this results in a fine
structure which is a direct measure nf the orienta-
tional order parameter. ' Second, thermal equi-
librium between the nuclear spins and the quan-
tum-crystal lattice is established by the modula-
tion of the intramolecular magnetic dipolar cou-
plings. The correlation times of these thermal
fluctuations, given by the rapid transitions be-
tween the orientational states, determine the nu-
clear-spin-lattice relaxation times.

Following a brief theoretical survey in Sec. II,

the experimental method is outlined in Sec. ID
and the results are discussed in Sec. IV. Section
V summarizes the conclusions that can be drawn
from the results.

II. THEORETICAL SURVEY

A. Molecular Orientational Ordering

X-ray diffraction '~0 has shown that a crystal
lattice change occurs at a temperature close to
that of the order-disorder transition. Studies of
neutron diffraction and ir absorption spectra'
have shown that the low-temperature face-centered
cubic (fcc) phase is represented by the space group
I'a3 in agreement with the classical calculations of
Felsteiner. ' This space group is a fcc lattice
with four distinct simple cubic sublattices such
that in each sublattice the equilibrium direction
of the molecules is aligned along a threefold axis,
one of the body diagonals of the fcc lattice. The
electric field at a given molecular site, due to the
quadrupoles of its neighbors, has axial symmetry,
thereby lifting the degeneracy of the 8 = 1 state.
The states J~=a 1 are separated from the ground
state J~ = 0 by an energy gap &. One of the four
body diagonals forms the qua, ntization axis for each
of the four sublattices for the intermolecular in-
terac tions.

The orientational ordering of solid hydrogen on


