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The theory of effective potentials is developed in a way which lends itself to variational
formulations. The positron-helium and electron-helium systems are chosen to illustrate
the method. The effective potential is defined in terms of the resolvent operator for a sys-
tem which has been modified by removal of the open-channel states. Rigorous maximum and
minimum principles are derived which should be useful in the computation of the effective
potential and which are valid, for sufficiently low energies, even when the target bound-state
wave function is not known exactly. A numerical application of this method to positron-
hydrogen scattering has been made and results are reported. The effective-potential approach
to the scattering problem leads naturally to a model for resonance calculations. This model
is reviewed here and formulated variationally. An Appendix is devoted to further elabora-
tion of this approach to resonance calculations in the context of potential scattering, with the
aid of Jost-function theoxy.

I. INTRODUCTION

The analysis of atomic and nuclear scattering
processes in terms of effective potentials has been
a standard procedure for many years. '3 It has
lately been recognized3 5 that appropriately formu-
lated variational methods for the computation of
the effective potential have the useful property that
in the low-energy domain where the effective po-
tential is Hermitian the error involved in the cal-
culation is of well-defined sign. This provides
upper and lower bounds on the eigenphase shifts
which, being variational in nature, can be sys-
tematically improved. At the same time this ap-
proach is well suited for the computation of reso-
nance parameters if the resonance is of the closed-

channel type.
Several applications of this variational approach,

to atomic and nuclear three-body problems, have
already been reported. 6 8 In the case of electron-
hydrogen scattering the definition of the effective
potential can be taken to be the original one of
Feshbach since the required projection operators
can be constructed explicitly. In most other cases
of interest, however, the projection operators are
difficult to construct. Fortunately, the function of
the projection operators, which is to remove low-
lying states of the bound subsystems which appear
in the open channels, can be performed by simple
algebraic manipulations of the appropriate integral
equation which defines the scattering amplitude.
This has been described in detail for the neutron-
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deuteron system. 7

In this paper we present a generalization of the
basic idea of Ref. 7 to systems containing more
than three particles. For definiteness we discuss,
in Sec. II, the problems of electron and positron
scattering by helium. Explicit definitions of the
effective potentials for these systems are provided.
In general the effective potential is a matrix in
channel space, so that rearrangement, Pauli ex-
change, and excitation processes are accounted for.
For energies below the ionization threshold, maxi-
mum and minimum principles can be used as (re
liable) approximation methods for the construction
of the effective potential, as shown in Sec. III.
The phase shifts associated with a given effective
potential are obtained by numerical solution of a
one-body Lippmann-Schwinger equation, a pro-
cedure which offers relatively little difficulty in
practice.

In order to generalize the method of Ref. 7 to
the case where the target system contains more
than two particles it is necessary to introduce a
different form for the separable interaction which
serves to project out the target bound state. The
new method and, for the purpose of comparison,
the original one, were applied to the positron-
hydrogen system; numerical results are reported
in Sec. III.

The close connection between effective potential
theory and resonance theory is explored in some
detail in Sec. IV. We adopt the model which asso-
ciates the resonance with an unstable state arising,
by perturbation, from a stable state whose energy
lies in the scattering continuum. This stable state
is identified as an eigenstate of the modified Ham-
iltonian used in the construction of the effective
potential. The level-shif t operator' can then be
defined explicitly. The complex resonant energy,
whose real and imaginary parts give the position
and width of the resonance, may be determined
from the knowledge of the level-shift operator in
an energy domain above the real axis by analytic
continuation to a region below the real axis on the
second Hiemann sheet. This formal prescription
may also provide the basis for practical calcula-
tions. As a first step we write down a Rayleigh-
Ritz type of variational principle for the level shift
for energies in the upper half-plane. Further dis-
cussion of this variational approach to resonance
calculations, confined to the two-body problem
where the analytic properties of the radial wave
functions are well understood, is given in an Ap-
pendix. The discussion is based on a Kohn-type
variational principle for the Jost function.

II. DEFINITION OF THE EFFECTIVE POTENTIAL

forward manipulation of the Watson-Faddeev equa-
tions. "'2 The same basic approach is applicable
to systems containing more than three particles.
We illustrate this with specific examples, the first
being the problem of elastic positron-helium scat-
tering.

Consider the four-body transition operator T
satisfying the Lippmann-Schwinger equation

T=V+VG T (2. 1)

where V is the sum of the interparticle Coulomb
potentials. Go is the free Green's function

G,=(z-z) ', (2. 2)

Vg = U(2) + U(3)+ U(23)

Vg = U(l) + U(12) + U(13)

(2. 3)

(2.4)

Here the U(i) represent the interaction of the pos-
itron (i = 1) and the electrons (i = 2, 3) with the nu-

cleus. The U(ij) represent the positron-electron
and electron-electron interactions. Now we de-
fine the subsystem scattering amplitudes T&

(i=1, 2) by

T] ——V]+ Vg Go T;

Then with 'T defined as

'T= V]+V)GoT

so that

(2. 5)

(2. 8)

. 2
T=Z 'T,

«~1

it is easily verified that the 'T satisfy the coupled
equations

(2. 7)

'T= T, +T, GOZq(1 —5,~).~T

Similarly, with

T = V&+TGo V

so that

(2. 8)

(2 9)

with K representing the total kinetic energy op-
erator (the helium nucleus is treated as a fixed
point charge) and E, the total energy, assumed to
contain the usual infinitesimal positive imaginary
part. In order to exhibit the 'ontribution of the
helium ground state, as required in the effective-
potential approach, we perform a Watson-type
transformation ~ of Eq. (2. 1). We write V= V,
+ Vz, where V, represents the potential energy
operator for the helium atom, and V&is thepositron-
helium interaction. In terms of the interparticle
potentials we have

As shown previously, 7' an effective potential for
three-body scattering can be defined by straight-

we have the coupled equations

T' = T, +&, {1- f,g) & GOT, . (2. 10)
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T& Q 9T& (2. 12)

It is convenient to introduce the further decompo-
sl tion

(a. ii)

G) ———(E -K —V() = Go+Go Tt Go (2. 22)

of H» is identical to the physical helium spectrum
with the exception that the ground-state eigenenergy
has been raised to-zero. By comparison of the
eigenfunction expansions of the Green functions

The components 'T can then be generated by the

coupled equations

'T& = T, 6„+Z, (1 —5„,)T, .G, 'T'
or

and

G(~ ——(E —K- V(~) = Go+Go Tg„Go

we conclude that

(2. 23)

'T = T( 5&~+2„(1—6„~)'T GoT& . (2. 14)

An alternative characterization of the operators
'T~ can be given in terms of the resolvent operator

G=(Z-a)-',
where H = K+ V is the full Hamiltonian of the sys-
tem. Qne readily finds that

'T = V; 6(~+ V;G V) (2. 16)

Vi= V1A+ Vi~ (2. 17)

At this stage the helium ground-state pole con-
tribution to the amplitude T, can be exhibited. (The
extension of the following analysis, in w'hich a
finite number of excited states are "subtracted out"
in addition to the ground state, is straightforward
and is omitted here to simplify the discussion. )
According to the procedure of Ref. 7 we introduce
the decomposition

~1( &Xl&o& I
'T'l Xl(o) & {a.as)

If we now introduce the decompositon, Eq. (2. 19),
into Eq. (2. 1S) and make use of a version of the
"two-potential" formula given previously, we ob-
tain the desired one-body integral equation

~0 T»G0= Ci —Q

—
l «&o» ~(E-Stl +2(0))

- (E - St &) 'l &X&(o) I
(2 24)

where 3',1=K-Ki is the kinetic energy operator of
the positron. INote that for E & 0 the term (E —X~)
is nonsingular. j

Let &» represent the one-body operator whose
matrix elements &k' IV~(Ik) in the momentum space
of the positron gives the amplitude for elastic pos-
itron-helium scattering. To derive an effective
one-body integral equation for ~» we first make

the identification [see Eq. (2. 16)]

If we define T» as the solution of

T1A V1A+ V1A~OT1A (2. 18)

and apply the "two-potential" formula, '3 we are
led to a representation

~11- +11+ 011~1 ~12

where, from Eq. (2. 24), we find that

9( El(o)/ (E 1)( ) El(o) )

(2. 26)

(2. 27)

Ti T1A + T1B

where, with an appropriate choice of separable in-
teraction V», the ground-state pole contribution
can be isolated in T». The choice of V» is not
unique; in fact the one made in Ref. 7 leads to a
form of T» which is too complicated for our pres-
ent purposes. Here we choose

The operator V» represents the effective poten-
tial for the posit:ron and is defined by

'U(s- &X&&o&l T~~ &4&o&& (2. 28)

where the operators 'TA satisfy the analogs of Eqs.
(2. 13), with the input amplitude T, replaced by
T». Alternatively, we have, in analogy with Eq.
(2. 16), the representation

V)a = Ei&o)l Xi(o)&&Xx(o)l
2 2T„=V, +V,G, V, , (a. 29)

ff)~
~

X((o& &
- 0 ~

ff(gl X((,~)&=Eg(. )~ Xa(n)& ~ &=» 2, . . .
(2. 21)

Here the I X.,&„&) represent tbe complete set of
helium eigerivectors, and the Zi~„& are the cor-
responding eigenvalues. We see that the spectrum

where I X((o)) is the helium ground-state eigen-
vector, and E,(» is the corresponding eigenvalue.
The amplitude T» which is fixed by this choice can
be found most simply by consideration of the spec-
trum of the modified helium Hamiltonian H»= Ki
+ V»„ this is revealed by the relations

with

G„=(z-If-V,„-V,) ' . (a. so)

Equation (2. 29) is a convenient starting point for
the construction of variational principles for the
effective potential, as shown in Sec. III.

It is possible to include the pickup process (pos-
itronium formation) in tbe set of open channels,
leading to a multichannel generalization of Eq.
(2. 26). Thus, let the potential energy be decom-
posed as

V=2 v,. (2. 81)
&=1

with
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V)= U(2)+ U(3)+ U(23), Vo= U(3)+ U(12)

Vo = U(2)+ U(13)
(2.32)

V4
——U(l) —U(2) —U(3)

3
Y'. 'U g q.

kg+
A"-1

(2. 84)

The operators U&& can be expressed in resolvent
form with the aid of the representation (we define
V~= V4)

A V/A lk+ VlACA V@A (2. 86)

where now, with V. =g( & V(z and H&-—II+V~, we
have

(2. 36)

%'e then find the operators U&& to be given by

~(~ = &x«o) I( -If)(l —«~)+~) (1 —6)()(1—«g) V)A

The helium ground state is generated by V1 while
V~ and V3 each provide for the simultaneous binding
of the positronium and He' systems. Except for
the extended range of indices (i,j= 1, 2, 3, 4) the
algebra leading to Eqs. (2 ~ 13) is unchanged. The
bound-state pole contributions to T~ and T3 can be
separated off in a manner analogous to that shown
for T, inEqs. (2. 18), (2. 19), and(2. 24). We
need only change the subscripts in these equations,
with the understanding that the wave function X~«,
is a product of the positronium ground-state func-
tion (involving the positron and electron 2) and the
He' ground-state function (involving electron 3);
E2~» is the sum of the corresponding eigenenergies.
The operator x& represents the kinetic energy of
the center of mass of particles 1 and 2 (recall that
the nucleus has been taken as fixed). A similar
decomposition holds for T3, the two electrons in-
terchanging their roles.

It is now a simple matter to obtain the three-
channel generalization of Eq. (2. 26). We define
the operators

~(g =
& ~((o) I(E -If)

l Xg(o) & (I —«g)
4 4

+~ ~ (I-6(()(I-6ag) &&«o)l'T" l~s(o)& (2 83)
/=1 0-"1

for i,j = 1, 2, 3, from which the physical elastic and
rearrangement scattering amplitudes are obtained
by taking matrix elements with respect to the plane-
wave states (eigenstates of the kinetic energy op-
erators 3',

&
which describe the force-free relative

motion of the aggregates) for the appropriate chan-
nels. The effective potential operators U&& are
defined analogously in terms of the operators 'T„"

solutions of the Watson-type equations with the
T&A as input. Finally, with propagators Q&, i
= 1, 2, 3, defined as in Eq. (2 ~ 27) we find, by corn
parison of the integral equations for the 'T' and
'TA, the coupled equations

( '
2 'U

(2. 38)

The properly symmetrized transition matrix1 con-
necting these two channels is obtained from a (ma-
trix) Lippmann-Schwinger equation with the above
potential as input.

An equivalent method of imposing the symmetry
is to compute diagonal expectation values of the
original 3&& 3 & matrix, of the form a f'a, where
the normalized column vector a has a~= -a3. The

advantage of working explicitly with diagonal ma-
trix elements is that the error in the variational
calculation can then be shown to have a well-defined
sign for energies below the continuum threshold of
8~ (see Sec. III).

A quite similar procedure can be used to define
an effective potential for the electron-helium sys-
tem. Let the interelectronic potentials be repre-
sentedby U(ij) (i,j =1, 2, 3), and let U(i) (i=1, 2, 3)
represent the interactions of the electrons with
the nucleus. The total potential

V= Ui + Uij
j-"1 5&j

can be represented as V=ga, V, with

Vi= U(2)+ U(3)+ U(23)

V, = U(3)+ U(1)+ U(18)

Vo= U(1)+ U(2)+ U(12)

V4 ———[U(l)+ U(2)+ U(3)]

(2. 39)

(2. 40)

A Watson transformation on the Lippmann-Sch-
winger equation for the scattering operator can
now be performed which is formally identical to
the one leading to Eq. (2. 13). The helium ground-
state pole contribution to T((i=1,2, 3) can be
separated off as shown above. Prior to symmetri-
zation we deal with a 3&& 3 f matrix describing di-
rect and exchange scattering which can be repre-
sented as the solution of an effective one-body
equation of the form shown in Eq. (2. 34) with the
effective potential givenby Eq. (2. 37). Of course,
the symbols must be reinterpreted; each of the

V, ~ is given by the separable form shown in Eq.
(2. 20) for i= 1, and each of the wave functions

g& &» represents a helium ground-state function for
a particular pair of electrons.

The symmetrized amplitude can be obtained
from a single-channel version of Eq. (2. 84), with

+ (V„-V,.)G„(V& Vwkl &~(o)& ~ (2 87)

Of course when the identity of the electrons is
taken into account we are left with only two physical-
ly distinguishable channels. Correspondingly, the
effective potential is reduced to the 2&& 2 matrix
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fjv+ +fg (3.1)

where the variational estimate is given in momen-
tum space by

&k(IUo. l~~&=&x((o)' "(l(E-@lx,(o)' k~&(1 —6(()

+~& (1 —6(&)(1- ~~&) &x«»' I« I v»
I x~&o)' iy)

+ & x& (o),
'

&& I (vg —v(g) I +«)
+& +«l(v„- v„)

I x~&o&'k~)+&+«l(ff~-E) I+«&
(3.2)

The vector I X~&,&, k, ) represents the bound clusters
in a state of relative momentum k&. The trial
vector i &I&, ) is thought of as arising from a trial
resolvent G„, according to

I+y&&=G~&(V~ —V»)I Xg(o)'~g& (3.3)

The error is given in terms of

(3.4)

& "&
I
~0v Iky& = —

&x&(o&' ~(I (v~ —v&~)~G~(B~ —B)

xaG„(v& v»)l xs(o)i I(:z&

the effective potential »m='~» —2'U» taken as in-
put. This construction is equivalent to the deter-
mination of the diagonal matrix element a~9'a,
where

(2. 41)

We note that a definition of the effective poten-
tial based on four-body Faddeev equations, rather
than equations of the Watson type, is also possible,
although the derivation would be slightly more
complicated. The mathematical virtues of the
generalized Faddeev equations, related to the con-
nectivity properties of the kernel, play no role in
the present considerations since our objective is
to work not with the integral equations but with the
resolvent form, Eq. (2. SV), using variational
methods of the Rayleigh-Ritz type. This is the
subject of Sec. III.

III. MAXIMUM AND MINIMUM PRINCIPLES

A. Target Bound-State Functions Known Exactly

It was assumed in the foregoing discussion that
the target bound-state wave functions which enter
into the definition of the effective potential are
known exactly. If this is actually the case, as it
is for electron and positron scattering by hydrogen,
then variational bounds on the effective potential,
leading to rigorous upper and lower bounds on the
eigenphase shifts, can be obtained using methods
already described. 7' For convenience we record
here the basic identity for momentum-space ele-
ments of the effective potential operators Q&z de-
fined by Eq. (2. 3'7). We have

or, after inserting a factor (H„-E)G~= —1, as

(S.6)

where

I&~&) = «. &—») I x~(o&' k~)+(ff. E-)
I +~(& .

(3 '7)

We assume that E lies below the continuum thresh-
old E~ of H&. - In this case upper and lower bounds
on G~ in Eq. (S. 6) lead to variational upper and

lower bounds on diagonal matrix elements of the
error in the effective potential. We have, in par-
ticular, '~

0&G &(E —E ) (S. 6)

provided H& has no discrete eigenvalues below E~.
If such discrete states exist they mus t be "sub-
tracted off" in a manner previously described
(and reviewed in Sec. IV of this paper).

The above formalism has been applied to the

problem of s-wave positron scattering by hydrogen.
The incident kinetic energy was taken to be 0. 04

Ry which lies below the threshold for positronium
formation. The particular value was chosen to
facilitate comparison with previous calculations.
The trial function was taken to be of the rather
simple form

n)e
" +B(k)e ""-'"-~, (3.9)

where x and y are the positron and electron co-
ordinates, respectively. The linear parameters
A. and J3 were determined variationally in the
usual way. ~~ For a given set of (momentum-inde-
pendent) nonlinear parameters the variational es-
timate of the effective potential thus obtained was
used as input to a linear integral equation of the

type shown in Eq. (2. 26) with the principal-value
prescription used to define the singularity in the
propagator g. Since the phase shift thus obtained
is known to lie below the true value we were able
to improve the result systematically by searching
for the set of nonlinearparameterswhichmaximizes
the phase shift. This powerful validity criterion
is the essential feature of the variational approach
described here.

A lower bound on the phase shift was also ob-
tained using the alternate method, described in
Ref. V, for subtracting out the target bound state.
Comparable accuracy was achieved, although the

calculation was more time consuming. Details
can be found in Ref. 18.

An upper bound on the phase shift was computed
using the lower bound on the modified resolvent
G„given in Eq. (3. 6). To limit the already con-
siderable numerical complexity of the computation
the trial function was taken to be the same as that
used in the calculation of the lower bound on the
phase shift [with V~o given by Eq. (2. 20)]. In view
of the relative simplicity of the trial function and
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the existence of a strongly attractive polarization
force the results, shown in Table I, and compared
there with the very accurate variational result of
Schwartz, 9 seem encouraging. A more elaborate
calculation leading to converged upper and lower
bounds now seems to us to be quite feasible with
the present method.

The validity of the phase-shift bounds depends on
the absence of discrete states of the modified Ham-
iltonian II& with energies below the scattering en-
ergy E. While a rigorous proof of the absence of
such states is lacking, we are reasonably sure
that none exist below the pickup threshold E~; a
Rayleigh-Ritz calculation with a trial function of
the form

e, (x, y) = (c,+c,x+c,y)e (3.10)

failed to produce an expectation value of 0& below
E~. In fact, when the Hamiltonian is further mod-
ified, by subtraction of the appropriate potential,
to remove the positronium ground state in addition
to the hydrogen ground state we find no evidence
for discrete states below the first excitation level
of hydrogen. Our calculation therefore supports
the view that there exist no additional closed-
channel resonances of the positron-hydrogen sys-
tem below the n = 2 level of hydrogen, other than
those which are known to exist within an electron
volt or so of this level. Thyrse latter are associated
with the degeneracy of the n= 2 level which leads
to dipole interactions not accounted for in our trial
function.

TABLE I. Upper and lower bounds on the s-wave
e'-H phase shift (in radians) with the initial kinetic energy
of the positron taken as 0.04 By. The accurate variational
result of Schwartz is included for comparison.

Lower bound

0.166

Upper bound

0.226

Result of
Schwartz

0.188

~See Ref. 19.

B.Target Bound-State Functions Not Known Exactly

The method described in Sec. IIIA fails to pro-
vide rigorous bounds on the eigenphase shifts when

the wave functions for the bound subsystems which
appear in the entrance and exit channels are not
known exactly. Nevertheless, we shall show in
the following that the characteristic feature of the
above variational method, namely, that trial func-
tions can be systematically improved with the aid
of rigorous maximum and mimimum principles,
is preserved.

Consider the scattering of an electron or posi-
tron by a light atom for which a fairly accurate

(and improvable) trial bound-state function can be
obtained by application of the Rayleigh-Ritz mini-
mum principle. To be specific, and to simplify
the discussion, we look at elastic positron-helium
scattering. Suppose that we are given a target
ground-state function X&&0&, the bar indicating that
it differs from the exact eigenfunction X)(0). A
scattering problem associated with such a trial
target function can be defined in precise mathe-
matical terms if we adopt the effective potential
formalism described in Sec. II, with the following
modifications. The energy conservation condition
E =Q&+E«0&, where Q& is the kinetic energy of the
positron in the initial state, is now understood to
define E for a given value of Q„with E&«& re-
placed by the best available approximation to it.
(For the very light atoms E~&0& is known essentially
exactly to the accuracy sought for in the scattering
calculation. ) The scattering operator v&& is de-
fined as the solution of a Lippmann-Schwinger
equation of the form shown in Eq. (2. 26). The ef-
fective potential is now defined as

&»- «&&0& III's+ I'3(E-lf- I'~- I"a+ I'is) &ajl ~i&0&&

(3. 11)
where, with II& representing the helium atom Ham-

iltonian, we choose

I1&& H& I &i&0»(x, &0& I &&~(&&i&0& I&i I ~~&0& )

We shall see that for the purpose of obtaining a
minimum principle it is necessary to use this
form for V» rather than to simply replace X~(0)

with y«0& in Eq. (2. 20). The scattering problem
thus defined clearly reduces to the exact problem
as x~~0& becomes exact.

The problem of determining U~~ for a given choice
of pg(o) can be formulated variationally using the
method described in Sec. IIIA. The arguments
leading to the establishment of error bounds on
the variational approximation to the effective po-
tential can be taken over provided that the total
energy E lies below the threshold of the continuous
spectrum of the modified Hamiltonian

II~ ——X~+ V2+IIj —V~~ (3.13)

(If there are discrete eigenstates of H„ithwen-
ergies below E they can be subtracted off. ) There
will be a branch of the continuous spectrum of

JI& associated with positronium formation. Such
states can be removed by subtraction of the ap-
propriate separable potentials. Since the bound-
state functions in this channel are known exactly
the subtraction procedure is identical to that de-
scribed in Sec. II, and we do not indicate it ex-
plicitly here. It is only the branch of the spectrum
associated with a positron free at infinity whose
threshold is not precisely known. This threshold
is ri»»~ &» r i»~um energy of the modified
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helium Hamiltonian

H1g —H1 —V1~ (3.14)

We therefore look for a lower bound on the ex-
pectation value of H».

Let us consider the matrix

X1(0) 1 ~1(0) ~1(0) 1 3
H1 y1 (0) H1 )

where g and X«o& are orthonormal functions. Let
z(» and & «) denote the eigenvalues of M, with

According to the Hylleraas-Undheim
theorem the inequal. ities

E1(0) ~ (0) E1(0) (s. 18)

E1«) 6 (1)

are satisfied. We have defined

z&(. = &xi(o) lail x, (o&)

(3. 17)

(s. 18)

Since the determinant of M is the product of its
eigenvalues we have

&~l [ff il x&(o&)&&a(o&l &

)I ~&
(o& (»

&x)(o&l»I »&»& &»(o) lail x1(0))

(3. 19)
The above inequalities, and the definitions, Eqs.
(3. 12), (3. 14), and (3. 18), allow us to write

&&Iff,.l
&&' «&(o&/zg&o&) z~(g& (s. 20)

To show that this inequality is preserved when the
orthogonality requirement on the test function )))

is dropped we express an arbitrary normalized
vector I(t)& as

I && =col xi(o»+col && (s. as)

with le1I + l&pj~=1. We observe that

&Olff~. l+&= lcol'&@l&x. l&& . (3. 22)

The desired inequality,

&pie,„ly& (z„„/z„„)z„„, (s. 23)

then follows from Eqs. (3. 20) and (3. 22) since
Ico I is less than unity, and the right-hand side of
Eq. (3. 20) is negative. Furthermore, the inequal-
ity is preserved if E1(0) and E«1) are replaced by
lower bounds. In the case of helium, lower bounds
are known which are sufficiently close to the
exact eigenvalues that we may ignore the distinc-
tion.

Since we have subtracted out only the ground

state the variational bounds can be valid only for
scattering energies below the first excitation
threshold E~&». From Eq. (3. 23) we conclude that
the continuum threshold of H„ lies above fz&&x&

where f=z~&o& /E, &o, differs from unity by about 2'
for the simplest one-parameter trial function. A
three-parameter Hylleraas trial function gives a
value for fwhich differs from unity by about 0. 04%.

Having established a lower boundfZ«» on the
continuum threshold of H& we can write down up-
per and lower bounds on the resolvent which ap-
pears in the error term in the variational expres-
sion for g11. We have

0~ (E —&~) (E fz&&s&) (3.24)

valid for E &fz&&». These inequalities can be used
to generate variational upper and lower bounds on

diagonal matrix elements of the error inU11. The
derivation is identical to the one given in Sec. IIIA
for the case of the true effective potential ~11.
These maximum and minimum principles should
appreciably augment the power of the variational
approach.

IV. VARIATIONAL METHODS FOR RESONANCE
CALCULATIONS

It is well knowna that bound-state poles in the
effective potential lead to Breit-Wigner distribu-
tions for cross sections for energies near the pole.
Thus, given a calculational scheme for construct-
ing the effective potential, such as the one de-
scribed in Sec. III, one also has a method for com-
puting resonance parameters. The computational
procedure can be formulated variationally as shown

in the following. (Numerical applications to the
electron-helium system will be reported on in the

future. )
We adopt Eq. (2. 37) as the definition of the ef-

fective potential and assume that G& has a pole cor-
responding to a discrete eigenstate of H&,

a„la&=z. la (4. 1)

,z=&ale„la&,

with E, & E~. Then the variational approximation
to the effective potential given in Eq. (3. 2) can be
modified, by the addition of a second-order term,
to the form

(4 2)

with E, lying below the continuum thr eshold E~ of

H„. Generally Ia) will not be known exactly. How-

ever, the pole contribution to G& can be accounted
for variationally. v'oo Thus, let la) be a normalized
trial bound-state function leading to the variational
upper bound

(ffA z)Ia&&a I(ffA-z) &-
& "& IU'&~.

l
"~&= &it&I&&y. Ikey&

—
&X&(o&' it&

I
(~~ —l'&~) G~ &-I H Z I- I G~(~~ —l'y~)l X~&o&' &g &

(4.3)
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While the right-hand side involves &G„ it is nevertheless known since, by virtue of Eqs. (3.3) and (3.4),
we have

(IfA E) ~GA(VA V/A) I }(&(o&' k& &
= (4.4)

with
I
I,) given by Eq. (3 ~ 7). Correspondingly, the error is given not by Eq. (3 ~ 5) but by the modified

form

&k I& Ik ) —&k(I'U'(~. lk &

(=-&}(„„;k, I(v„- v,„)~G„
I
e„-E- ( ~ -E)

I ~& &~ I (If~ —E) 'I gG„(V„V,„)I }(„„;k, ) .
&(( (If„-E)ln)

(4. 5)

Now it follows from the HyQeraas-Undheim theo-
rem 3 that the operator in large parens is positive
for E & E~ provided H& has no more than one bound
state with energy below E. (The subtraction pro-
cedure can be generalized if there is more than
one bound state with energy below E. ') Thus, the
minimum property is retained even in the presence
of bound states of II&. It is clear that the method
for "subtracting out" these bound states is es-
sentially the same as the one described in Sec.
IIIB for subtracting out the target bound states.

It can now be observed that the second term on
the right-hand side of Eq. (4. 3), which was in-
troduced in order to preserve the minimum prin-
ciple, is to be interpreted as a variational approx-
imation to the bound-state pole contribution which
accounts for the resonance. To show this ex-
plicitly one applies the "two-potential" formula~s
to Eq. (2. 34) with the two terms on the right-hand
side of Eq. (4. 3) taken as the two components of
the effective potential. The demonstration that
this procedure leads to the Breit-Wigner formula
is similar to that given in Ref. 2, and becomes
identical to it if the trial functions are taken to be
exact. "

It is useful to have a method for direct calcula-
tion of the position and width of a resonance as
opposed to one, such as that just described, which
requires a computation of the scattering amplitude
in the neighborhood of the resonance peak. The
"direct" method described below is based on the
resolvent-operator approach of Watson' and Zu-
mino which is here cast in variational form.

We retain the model which relates the resonance
to the existence of a discrete state ~a) in the mod-
ified Hamiltonian H&. Now, however, we investi-
gate the effect of this state on the scattering am-
plitude directly, rather than indirectly through the
effective potential. The on-shell scattering ampli-
tude can be expressed as

&k(1~v l~& &= &}(((o&i k(l &V ~s)
I X&(o&' kq&

+ &X(((»' k(
I
(V- V, )G(E)(V- V~) I x)(o&' k) & (4 6)

a form which follows, e.g. , from Eqs. (2. 16) and
(2. 33) and the relation

(ff E)
I }(s(o&' kg ) = (V —Vs) I

X, (o&' ky), (4. 7)

valid on the energy shell. The resolvent G(z)
= (z —H) ' can be analyzed in terms of G~(z}
= (z —H„) ~. Thus, with

V~=H-Hg

the equation

G(z) = G„(z)+ G„(z)V,G(z)

(4. 6)

(4. 9)

follows directly. To isolate the bound-state con-
tribution to G& we write

Gg(z) = la) &a I/(z —E,)+G„(z)

We now define G(z) as the solution of

(4. 10)

G(z)=G (z)+G (z) V G(z), (4. 11)

and observe that the relation between G and G can
be expressed in a simple algebraic form since G&

and 6& A'ffer by a separable operator. One easily
finds that~~

where, with the level shift defined as

ft, (z) = &al [V, + V, G(z)V, ]l~&,

the denominator function D(z) takes the form

(4.13)

(4. 14)D(z) =z-E.-ft. (z).

A similar decomposition of W&& follows from Eqs.
(4. 6) and (4. 12), with z-E+iO' We hav. e

(k(I9'gg Ik)) = &k( Il'q~ Ik()

(4. 15)

where &(~ is defined as in Eq. (4. 6) with G re-
placed by t", and

G(z)=G(z)+[1+G(z) V ]I a) D &al [1+V G(z)],

(4. 12)
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l
Ag") =

l yy&0&,
' ky)+G(E+io')(v —vy)l yy&o&y ky)

(4. 18)
In writing Eq. (4. 15) in the form shown we have
used Eq. (4. 7) along with the fact that since
C la& =0 [see Eqs. (4. 10) and (4. 11)]we can write

G Vz
l
a &

= G (H —E)
l
a & (4. 17)

Similarly D(z) can be rewritten as

D (z) =
& a

l
[z —H - (z -H) G (z) (z —H) ]

l
a ). (4. 18)

Note that with the introduction of the projection op-
erator

(4. 19)

the equation defining G&(z) can be taken as

L(z-H„)LG„(z)=L,
so that Eq. (4. 11), which defines G(z), can be
replaced by

L(z —H) I G(z) =L

(4. 2o)

(4. 21)

At this stage everything has been expressed in
terms of the state la) and the original Hamiitonian
H. It follows that while the decomposition H= H„
+ Vz will generally be helpful in choosing la), par-
ticularly if one has a minimum principle as a
guide, this decomposition need not actually be
specified. The essential requirement on the choice
of (a& which will make the identity, Eq. (4. 15),
a useful relation is that it shall lead to a resolvent
G(z) which has a smooth energy dependence in the
neighborhood of the resonance. This allows one to
associate the rapid energy variation in the scat-
tering amplitude with the behavior of D(z). We
expect~0 that the analytic continuation of D(z) on to
the second Riemann sheet vanishes for a value of
z justbelow the real axis; this gives rise to a pole
in G(z) and in the scattering amplitude as well. The
position of the pole in the complex plane gives us
the resonance energy and width. Note that Eq.
(4. 15) not only describes the Breit-Wigner energy
variation near a resonance but also takes into ac-
count the background effects contained in G.

The remaining computational problem of con-
structing ~a&, and then G, can be handled varia-
tionally. Firstly, improvable approximations to
la) can be obtained by minimization of the' ex-

pectation value of H&. If the target bound state
which is subtracted off in the definition of H& is
not known exactly the modified procedure described
in Sec. III8 can be used. One now searches for
a discrete state of H„[see, e. g. , Eq. (3.13)]with
energy E, lying below the continuum threshold E~.
Since E~ may be displaced downward relative to
the true continuum threshold E~ of H& one has a
requirement on the accuracy of the trial target
wave functions; they must be accurate enough so

that E~ lies above the resonance energy. Ac-
cording to the discussion of the preceding para-
graph the fact that Xz &0& is inexact does not imply
that the calculated resonance parameters will re-
flect this error since a change in the value of 8,
is compensated for by a change in the level shift.
We emphasize that the decomposition H=H„+ V~
retains the virtue, from the standpoint of compu-
tations, associated with the decomposition H= H&

+ V~, namely, that the Rayleigh-Ritz minimum
principle can be used to find the discrete state.

Now assuming that the state la& has been chosen,
Eq. (4. 21) for G can be solved var iationally7 lead-
ing to a variational principle for D(z). Equivalent-

ly, we define

[D(z)]= &a l(z —H)la)+(a l(z -H)lb(z))

+ &c(z)
I
(z -H)

I

a &+ &c(.)
I
(z -»lb(z) &, (4 22)

with

&c(z)la) =&'lb(z)&=0 . (4. 23)

This functional reduces to the correct expression
for D(z), Eq. (4. 18), for

I.(z-H) lb(z))+L(z-H) la&=o (4. 24)

or~ f01

& a
l
(z —H)L+ &c (z)

l
(z —H)L = 0

These two expressions are equivalent to

lb(z)) =-G(z)(z-H)la)

&«z)
I

= - &a
I
(z -H) G( )

(4. aS)

(4. 24')

(4. 25')

respectively. Furthermore, the stationary prop-
erty of [D(z)] for independent variations of Ib(z)&
and &c(z) I about their exact values given in Eqs.
(4. 24') and (4. 25'), subject to the orthogonality
constraint, Eq. (4. 23), is easily verified.

With z taken to lie in the upper half-plane the
trial functions will decay asymptotically, guarantee-
ing convergent integrals. To locate the zero of
D(z), and hence the resonance parameters, D(z)
must be continued on to the second sheet. This
is a trivial procedure if the integrals in the varia-
tional expression can be evaluated analytically.
Otherwise, a numerical procedure mustbe adopted,
in which values computed at a number of points
are matched to a simple analytic function. This
procedure has been tested a number of times now
for scattering calculations (involving continua-
tion to the real axis) and seems to be quite ade-
quate. The validity of this program rests, of
course, on the assumed analytic properties of the
level shift. In the Appendix the program is dis-
cussed in greater detail in the context of potential
scattering in a given partial wave. Here we can
take advantage of the well-established analytic
properties of the Jost function to provide a firm
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mathematical basis for the analysis. 6:,(k) = S„(k)—
fp f,L P, dr (A1S)

S(k) = 6' (k)/6'. (k) . (Al)

The Jost functions can be defined in terms of the
regular solution of the Schrodinger equation

p "(r)+kp p(r)+u(r) p(r) =-Lp= 0, (A2)

where u(r) = —(2m)/I v(r). The boundary condi-
tions at r = 0 are

y(0) =o,
P '(0)= 1

and at infinity P satisfies

y(r) - . [S (k)e""—6:,(k)e-'"] .1

(A4)

(As)

An alternate definition of the Jost functions is ob-
tained from the irregular solutions of Eq. (A2),
which have the asymptotic form

esther

while at the origin

f.(0) = 6'. .
By virtue of Eq. (A1) and the relation

6' (k) =S+(k+)

(A6)

(A7)

(A8)

we see that the scattering problem is reduced to
a computation of F,(k). In particular, the zeros
of P, (k) give the bound-state energies if k is on the
positive imaginary axis and give the resonance
positions if k is just below the positive real axis.

Consider now a variational approach to the com-
putational problem. We introduce a trial regular
function P, (r) which satisfies Eqs. 'AS) and (A4)
and has the asymptotic form

p, (r) 2.k [P-,(k)e"" F„(k)e '""-]

where P„are trial Jost functions. Now

J=- fp f,L P, dr —fp Q, Lf, dr

is given, on the one hand, by

J'= f f,L P, dr

(AQ)

(A10)

(A11)

APPENDIX

In the case of scattering of a particle by a static
potential v(r), the S matrix (for simplicity we con-
fine our attention here to s-wave scattering) can
be represented as a ratio of Jost functions

follows immediately. The replacement of the un-
known function f, by a trial function f„which has
the correct outgoing wave form at infinity intro-
duces only a second-order error since Lp, is
itself a first-order quantity. Note that f,(0)—= 6'„
is a trial Jost function which need not be equal to
F„. Similar arguments lead to the identity

6:,(k)=S:.,(k) —f, QLf„dr, (A14)

but the variational expression obtained from it
gives nothing new since

6'~ =-6'., —
fp f„LP,dr=%., f—Q, Lf„dr

(A1s)

V,(k)=S.,(k) f,"f,u, y, d-r, (A16)

from which we derive the first-order perturbation
formula

as can be seen by integration by parts.
For a wide class of short-ranged potentials the

Jost function 6',(k) can be continued into a domain
below the real k axis. ~ In many cases this do-
main will extend well below the values of Imk for
which the integral in Eq. (A1S) begins to diverge.
Let us assume that 6:,(k) vanishes for some k with-
in the domain of analyticity below the real positive
axis. Then the position of this zero, and hence
the resonance parameters, can be determined vari-
ationally from an examination of 6 (k). If the
zero is located in a region where the integral in
Eq. (Al5) converges then no analytic continuation
is necessary. Otherwise, 6'~(k) must be evaluated
for Imk sufficiently large and continued downward
in the complex k plane. Numerical methods are
available to achieve this continuation. 9' A pos-
sible advantage of the variational approach, as
opposed to direct numerical computation of the
Jost function at selected points in the upper half-
plane, is that in many cases the trial function can
be chosen such that the integrals can be performed
exactly; the process of analytic continuation is
then trivial.

A perturbation theory for the Jost function is
easily obtained from the variational formulation.
Thus, suppose we can write u(r) as the sum of
two potentials up(r) and u&(r), where up(r) is solv-
able. If u, (r) is effectively small the exact solu-
tions associated with up(r) are reasonable trial
functions. We have the identity (analogous to the
"two-potential" formula of scattering theory)

since Lf, =o. On the other hand, integrationby
parts gives (k) = 6' p(k) fp f p ug Ppdr (A17)

~= (f 4't'-f'4~)l
p

(A12)

which can be evaluated with the aid of the boundary
conditions. The identity 6. (k) =6.„(k)-~y„(a)y,(a) (A18)

For the particular case u~(r) = &6(r —a) we have the
amusing result that the perturbation formula
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F (Ka) =F,„(K)+(Ka —K) F~(Ka) + ~ ~ ~ (A19)

is exact; the value of the irregular solution at
s=a depends only on the potential for r&a, i.e. ,
f,o(a) =f,(a).

Recently, a perturbation formula for the shift
in a resonance position was derived by More.
To verify that More's result is contained in the
above perturbation formula for the Jost function
we set k =Ka in Eq. (A17), where V,a(Ka) = 0. We
expand the left-hand side as

K —Ko ——[P,'a(KO)] i f f,ay~ Jody (A20)

This can be put in the form given by More. Ac-
tually, we now see that More's assumption that the
potential vanishes beyond some finite point can be
relaxed somewhat. It is required only that the in-
tegral in Eq. (A20) be convergent.

and observe that the zero of P,(K) is given, to first
order in the perturbation, by
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