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The hyperfine structure (hfs) of the 3d 4st SF& metastable atomic state of 8~Ni has been mea-
sured by the atomic-beam magnetic-resonance technique. Isotopic enrichment of the normal-
ly 1% abundant 'Ni was necessary to achieve adequate intensity. The results, when com-
bined with earlier hfs measurements of the 3E4 3 states of ~'¹i, allow a comparison with pre-
dictions of Bauche-Arnoult's recent theoretical treatment of the effects of configuration inter-
action on hfs. Good agreement is found. Similar experimental results for the Hund-rule
terms of other 3d 4s atoms are tabulated. The electron spin density at the nucleus, as de-
termined from the experimental hfs results, is compared with recent unrestricted-Hartree-
Fock calculations.

I. INTRODUCTION

Hyperfine-structure (hfs) measurements in sev-
eral members of one or more multiplets within a
single atomic configuration make possible the study
of the relative strengths of the orbital, spin-di-
pole, contact, and other contributions to the hfs
Hamiltonian. Such measurements have been made
for several atoms in the 3d shell. '- Investiga-
tions have also been made of the variation of some
of these contributions from one atom to another
within an electronic shell. Examples of this type
of comparison may be found in the papers of Wink-
ler and of Childs, ' who considered trends in the
contribution of core polarization in 3d atoms, as
inferred from experimental data, and in Bauche-
Arnoult's comparison" between her theoretical
predictions and the experimental results for some
ratios of the parameters characterizing these
strengths in the Hamiltonian.

We have measured the hyperfine-interaction con-
stants in the 3d 4s SF& state of 'Ni. Combining
our results with earlier messurementse of the 3E4

and 3E3 states enables us to determine the three
parameters in the dipole hfs Hamil. tonian of Sandars
and Beck ~ and to compare the parameters for nick-
el with several theoretical and empirical results in
other 3d-shell atoms.

II. EXPERIMENTAL APPARATUS AND OBSERVATIONS

fraction of the atomic beam in the 3d84s ~ 3' state
of st¹,we enriched the oven loads to 10% Ni
by combining a piece of the natural metal with some
separated 6'Ni in the form of the powdered metal,
purchased from Oak Ridge National Laboratory.
An over load, which consisted of 100 mg of metal,
usually produced a steady beam of workable inten-
sity for the better part of a day. Whenever an oven
that was producing a good beam was turned off
overnight, the beam obtained the next day was not
of as good quality. The mass spectrum observed
for such an enriched beam is shown in Fig. 1; in
the corresponding spectrum for a beam of natural
(unenriched) nickel, the number of atoms of mass
61 is about an order of magnitude smaller. The
mass-55 contaminant was not investigated, but
probably arises from a trace of "Mn, which is much
more volatile than nickel.

The ovens were closed 0. 25-in. -diam cylinders
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The measurements were made by the conven-
tional atomic-beam magnetic-resonance method, "
using virtually the same technique as for the pre-
vious nickel experiments. e Previous articles have
described both the atomic-beam apparatus'4 and
the digital electronic system used to integrate the
weak signal for a long time, in order to separate
it from the background.

The only stable nickel isotope that exhibits a hfs
is stNi (I= —,'); the natural abundance of this isotope
is only 1%. In order to have a sufficiently large

ION ACCELERATION VOLTAGE
{arbitrary units)

FIG. 1. Mass spectrum observed for the nickel beam
enriched to ].p% in Ni. The nonbeam background has
been subtracted. The component of mass 55 in the beam
probably arises from trace impurities of the much more
volatile Mn and was not investigated. The mass-spec-
trometer slit was set on A= 61 for the experiment.
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Electron
configuration

Excitation
energy AE

State (cm ')
exp(- hE/k T)
(r =1700 C)

3d 4s
3d'4s
3d'4s
3d'4s'
3d'4s
3d 4s

3Q
3D
3D
O'Q

3Di
Sy

0. 0
204. 8
879. 8

1332.2
1713.1
2216.5

1.000
0.861
0.527
0.379
0.287
0.199

aExcitation energies are taken from Atomic Energy
I evels, edited by C. E. Moore, Natl. Bur. Std. (U. S.)
Circ. No. 467 (U. S. GPO, Washington, D. C. , 1952),
Vol. II, p. 98.

of stabilized zirconia, with an 0. 01 & 0. 25-in.
vertical slit in the wall. The ovens were enclosed
in a tantalum jacket, which was heated by electron
bombardment to about 1700 'C. At this tempera-
ture nickel has a vapor pressure of about 0. 1
Torr and forms a satisfactory beam. The excita-
tion energies and Boltzmann factors for the two
lowest multiplets in Ni r are shown in Table I.

Nine resonances were observed in the SF3 state
of 'Ni. Resonances for which &F=0 were ob-
served in the F=+&, » and —,

' states at fields up
to 200 G. (Throughout this report the levels in-

TABLE I. Excitation energies and Boltzmann factors
for members of the two lowest multiplets in Nir. The
Boltzmann factors are calculated for T =1700'C, at which
the vapor pressure is about 0.1 Torr.

where J is the electronic angular momentum (as-
sumed to be a good quantum number), I is the
nuclear spin, -g~ and -gr are the ratios of mag-
netic moment (in Bohr magnetons) to spin for the
electrons and the nucleus, respectively, and the
quadrupole operator is

p I J (2I ~ J+ 1) —I(I+ 1)J(J+ 1)
2I(2I-1)Z(2J'- 1)

(2)

The preliminary values of A and B were used
to define a reasonable search range for SF=1
transitions, and two of these were observed.
The value of the homogeneous magnetic field H
for each nickel resonance was measured by ob-
serving a resonance in 39K before, during, and
after each data run. Figure 2 shows the appear-
ance of the (—'„-,' ——',, ——,') resonance at II =1 G.
All of the nickel resonances were used to make a
final computer fit to A, B, and g~; in this fit the
value of the nuclear moment was held fixed at
—0.7487 p&, as measured by nuclear magnetic
resonance. ' Table II summarizes all our ob-
servations and lists the residual for each run as
found from the final least-squares fit, after the
corrections outlined below have been applied.

volved in transiti. ons are identified by the zero-
field quantum number F, which characterizes the
total angular momentum F=I+J, and by its z pro-
jection M). These observations were used in a
computer optimization program to find preliminary
values for the hfs dipole- and quadrupole-inter-
action constants A and B. The program used the
usual Hamiltonian" for an atom in an external
magnetic field H, namely,

K = pe(gzJ+gzI) ~ H+R„„(M1)+Ã„„(E2)
= p, (g J+g 1) ~ 0+xi ~ J+aq„, (1)

I-
M
K
LLI

hj

LLj

TABLE II. Summary of the observed transition frequen-
cies in the 3d 4s I'2 state of 6 Ni. The last column shows
the differences between the observed resonance frequen-
cies and the frequencies calculated from Eq. {1)by use of
the final values of A, 8, C, and gz listed in the last col-
umn of Table III.

l
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FIG. 2. Appearance of the (2, 2,~ 2, —~) transition in the
E2 state of Ni near H = 1 G. Excessive rf power was in-
advertently applied for this run. In subsequent runs at
reduced-power levels, the full width at half-maximum was
about 100 kHz and there wa. s no evidence of frequency
"pulling".
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Table III shows the results of the computer fit
for the interaction constants of the E~ state, as
obtained by use of the Hamiltonian of Eg. (1);
this table also includes the 3d 4s 3&, and SE4 re-
sults of the previous experiment.

III. CALCULATION OF hfs INTERACTION PARAMETERS

The physical states to which the Hamiltonian in
Eq. (1) is applied are linear combinations of the
pure I.-S basis states arising from the 3d 4s
configuration and possibly from other configura-
tions as wel. l. The earlier work of Childs, Fred,
and Goodman reports a fit to the observed ener-
gies of 41 levels in NI r in five configurations.
They used 19 parameters and report an average
error of 21 cm ' in the energies, which ranged up
to 55 000 cm '. Their eigenvectors gave excel.lent
agreement with their high-precision measurements
of the gJ values of seven low-lying states. It is
impractical to use such complex eigenvectors for
calculation of hfs effects in low-lying levels, how-
ever, because the amount of experimental infor-
mation available is not sufficient to specify all of
the relevant parameters.

As a first approximation, a given physical state
in an atom with only one partially filled electron
shell can reasonably be thought of as being com-
posed only of admixtures of other states within
the same configuration. Sandars and Beck, '
Wybourne, " and others have shown that configura-
tion interaction and relativistic effects in the hfs
can be accounted for by using effective operators
in the hfs Hamiltonian. They introduce the quan-
tities a (l), a(sC2), and a(s) and allow them to be
treated as parameters in the dipole hfs Hamilto-
nian

X„,.(~1)= Q [a(f)T, —(10)'"s(sC')

x(sc 2)(1&+ ( ) ] ~ 1. {3)

In the case of 3d"4s~ atoms, it should be noted
that the major configuration-interaction effect in
the dipole part of the Hamiltonian is through the
core polarization" of the inner s electrons. This
interaction appears in the a(s) term of Eq. (3).
For NI r, the low-l. ying 3d94s configuration may
also make important contributions to the hfs of
the 3d84s ~ SJ levels. While configuration inter-
action with other configurations is probably small,
the cumulative contribution of such interactions
with many configurations could be substantial and
may distort the values observed for the dipole
parameters. Relativistic effects, though capable
of distorting the radial, parameters in the hfs
Hamiltonians, should play only a very minor role
for the light atoms considered in this paper.

The corresponding Hamiltonian for the quadru-
pole hfs can be written in several equivalent forms,
one of which'9 is

X „,.(Z2)

x„e &3& ~ f& (2l(l+ 1)(21+1) &oa&a

rs, "
) & f&„, ((2/ —1)(2l+3)

ala &~3 3 isa &~&

U ( 18&2 + U (&1&2

(10 b„&
~ 10 b„,

in which b~, b'3, and b" are adjustable param-
eters. The U ~8' &) are doub]. e-tensor operators
associated with the electrons. They have rank
4, in spin space, k, in orbital space, and 2 in the
combined space. The tensor operator associated

TABLE III. Summary of the experimental values of the hyperfine-interaction constants A, 8, C, and the electron g
factor gJ for the 3d 4g23E multiplet in 6 Ni. The results for the SE3 and E4 states are based on the data of Ref. 6. Values
in column 3 result from a least-squares fit to the observed resonances; those in column 5 are for a similar fit that in-
cludes corrections for hyperfine and Zeeman interactions between 3E states of different J. The final values (column 5)
for E3 and E4 differ slightly from those in Ref. 6, as explained in the text.

State Parameter

Observed
value
(MHE)

Off-diagonal
hfs correction

(MHz)

Final
value
(MHz)

3E

A
B
C

gJ

—45v. 1s5(e) -0.001
—38.011(22) +0, 003

(Assumed to be 0; only two intervals measured)
0.66957(3) —0, 00001

-299.312(2) -0.001
—42. OV1(13) -0.008

(Assumed to be 0; only two intervals measured)
1.os28o(3) 0.00000

-csv. 1se(e)
-38.008(22)

o.6695e(3)

—299.313(2)
—42. 079(13)

1.Gs2so(3)

A
B
C

—215.040(2)
—56. sv2(1s)

G. Goo{1}
l. 24964(4)

0.000
—G. 004

0.000
0.00001

—215.O4O(2)
—56. sve(1s)

0.000(l)
1.249e5(4)
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with the nucleus is
2 C (8) T (8)~+n n

=
n t (5)

= —0.214286' g, (lib)

B(Is&p)) = —0. 190S14b + 0.064174b + 0.OS0845b

which is related to the nuclear el.ectric-quadru-
pole moment Q by the relation

&I,~, =i~ T"'~II& = ,'sq— (6)

In Eq. (4), the second and third terms are en-
tirely relativistic in origin, and in the nonrela-
tivistic limit only the first term remains. In this
limit, b'~ and b" approach zero and bo approaches
the nonrelativistic quadrupole parameter

b., = "e&~'&.„
where

&~&„,= f ~~„',~~'d .
The one-term nonrelativistic Hamiltonian may be
expected to be consistent with the quadrupole hfs
of the light nickel atom to a high order.

We have formed eigenvectors for the ~F multi-
plet of Ni T. by fitting the observed energies of the
nine states in the 3d848~ configuration, using as
variables the three Slater parameters Eo, E~,
and F4 and the spin-orbit coupling constant g, ~.
Our eigenvectors are

)'z,'& = o. 996175~'z, &- o. osvo95('Dg

(8)

—O. OOVIOV i'P, &, (ea)

sy'& =
(

~y'
& (eb)

i'Z,'& = O. 999467''Z, &+ O. 032635i'G, &. (ec)

A(~ E4&) =0.750266a(l) —0. 042666a(scs)

+ 0. 249V34a(s), (1oa)

A(~ E~ &) = 0.916667a(l)+ 0.035714a(sC )

+ 0.083333a(s),

&(~ '&q &) = 1.330764a(l) + 0.063600a(s Cs)

(lob)

—0.330V63a(s), (10c)

B(~ &4 &) = —0. 286627 b —0.030390b' —0. 195438b

=- 0. 286627b~q,

B(~ Eg &) = —0. 214286b + 0.043741b'~ —0.083333b '

In E|ls. (9), the states on the left-hand side are the
physical states; those on the right-hand side are
the pure 1.-8 basis states. It can be seen thai the
physical states are fairly close to the I.-S limit.
For this one-configuration model. , the impurities
in the ~Fs physical state total only 0. 8%; they in-
crease to 4. 6% in the multiconfiguration model. of
Ref. 6.

Using the eigenvectors of Egs. (9), we find that
the A- and B-interaction constants of Eq. (1) are
related to the parameters through the expressions

=—0. 190814 '~. (11c)

b = 200. 9,

by~= 198.0.

b~= 11.8, b"=-5 4

(12}

The uncertainties in the numbers in Eqs. (12) arise
almost entirely from uncertainties in the coef-
ficients in Eqs. (10) and (11); the experimental
uncertainties of Table III play only a minor role.
Since the set of coefficients depends on the model,
assumed, it is hard to estimate the uncertainties
in them. We would be reluctant to trust the num-
bers in Eqs. (12) to better than a few percent.

IV. DISCUSSION

In this section, the hfs parameters (Tabl. e IV)
for the Hund-rul. e multiplet of Ni, and similar sets
of parameters from experiments with other 3d-
shel) atoms, will be examined from bvo points
of view. The first approach is to examine certain
ratios of the orbital, spin-dipole, and quadrupole
parameters-which is equivalent to comparing the
effective values for the radial operators for the
three parts of the Hamil. tonian. Then we will
compare the contact parameter with that for other
atoms in the 3d shell and with some theoretical
calculations of 8-electron densities at the nucleus.

Even though the hfs Hamiltonians (3) and (4) have
nonzero off-diagonal matrix elements between
states of different J in the same configuration, ~

the computer-fitting routine is based on Eq. (1),
which assumes that J is a good quantum number
for the physical. states. The corrections to the
A, B, C, and g~ values for all three states in the
3d848~ ~E multiplet were calculated and are listed
in the next to the last column of Table III. The
last column of Table IQ gives the corrected values
for the constants of the three states. The correc-
tions listed for the ~F~ and 'F, states differ in sign
from those in Ref. 6 as a result of an error in the
previous work; the method of calculation is the
same as in Ref. 6. It should be noted, however,
that in this multiplet the corrections are some-
what .smaller than the experimental uncertainties
of the quantities to which the corrections are ap-
plied. We also note that the g~ values in Tabl. e
III are in good agreement with those of Ref. 6.

The corrected values of the hyperf inc-inter-
action constants may now be substituted into Eqs.
(10) and (ll) to determine the various parameters
in Ha, miltonians (3) and (4). Their values (all in
MHE) are found to be

a(l)=-318.3, a(sCs)=-310. 1, a(s)=42. 1;



HYPEBFINE STRUCTURE OF THE 3d 4s Fz. . . 109

TABLE IV. Values of hfs parameters for the Hund-rule multiplet of each 34 4s2 atom. Also shown are several other
tluantities useful in comparing the predictions of Ref. 11 with experiment. Reference 11 predicts that the ratio n =a(f)/
g(sC ) should be the same for both members in each pair shown in the table. It also predicts that pp/QI will have one
value for atoms with 0&N& 5, and a different value for those with 5&N &10, where yis the ratio bM /a(sC ). However,
since the Sternheimer correction is not available for all elements, the uncorrected Q' = Q(l —. R) is used in place of Q, as
explained in the text. The nonrelativistic limit b3& = b has been used where necessary to avoid gaps in the table.

4'Scb

47T-c

5 1Vd

"Cr

168

—56. 5

353.7

No. of 3d a(r)
Isotope electrons (MHz)

148

-54. 8 l. 032

322. 9 —60. 5 1.10

a(s)
(MHE)

-72 ~~(s) «-27 1.13

bshe

(MHz)

—65.5 —0.44

131.4 —2.40

(b)

—0.22 4. 756

0.29 —0.7883

5. 149—29.2 —0. 090 —0. 052

Pr7
I Q'I

T 272
2.61

2. 55

"Mn'

57F f

59Cos

"Nih

"Cu'

76

692.3

-318
1210

—72. 5

80. 8 —10.8

749.2 —86. 0

42. 1

1179 —221

0. 94(3)

0. 924

1.026

488(6)

198

0. 651

—0. 639

1.026 —350(50) —0.30

0.36

3.444

0. 090

4. 62

—0. 19 2. 382

0.126 —0. 7487

2.39

2 2. 53

2. 51

~Reference 16.
"Reference 1.
'Reference 2.
Reference 3.

'Reference 8.

References 4 and 10.
~References 2 and 5.
"This work.
'Calculated from Ref. 7 on the assumption that o.'c„=o.'N&.

A. Effective Value of &r-~&

In the Hamiltonian of Etl. (3), the parameters
a(f) and a(sCs) have the form' a=(2PsP, &@~/f)(~ &,

where p.„is the nuclear magneton and pl is the
nuclear moment in units of p,~. The theory of Ref.
12 accommodates configuration interaction by al-
lowing a different correction to (r~& in each term
of both the dipole Hamiltonian and the quadrupole
Hamiltonian [Eels. (3), (4), and (7)]. If the results
of Table IV are substituted into the ratio

a=a(l)/a(sC ) =(x &,/(r ),cs,
the value for the E multiplet of Ni I is found to be
&= 1.026. The departure from unity reflects the
differences between the corrections to (r~&, and
(r'& s.

Bauche-Arnoult" has incorporated earlier theo-
retical work ' and considered in detail the correc-
tions to (r~& in each of the parameters a(l), a(sCs),
and 5„, in the Hund-rule multiplet. Having arrived
at expressions for each of the corrections in terms
of various combinations of radial integrals, she
then forms the ratio a and notes that in the 3d shell
the same combinations of integrals enter into the
expressions for e for several pairs of elements.
Unfortunately, numerical values for the radial in-
tegrals were not available, so she was not able to
calculate values of & or the corrections. However,
Bauche-Arnoult notes that the experimental values
of & in Fe r and Co x are equal, as prechcted, and

further predicts equality between the values for the
pairs Sc and Ti, V and Cr, and Ni and Cu. The
recent Sc results obtained by Childs' do in fact
agree well with Bauche-Arnoult's predictions based
on the older Ti results. Table IV lists all values
of n measured to date.

For the nickel-copper pair, Bauche-Arnoult
had insufficient data to form an experimental value
of n, since only two levels of the Ni multiplet
had been measured and the relevant copper multi-
plet is a doublet. However, using a chain of
several ratios, she predicts that the value of a
for nickel should be "very close to unity. " Our
experimental value &„,= 1.026 is in good agree-
ment with this prediction.

Using our value of + in conjunction with the
hyperfine-interaction constants A and B obtained
by Fischer~ for the 3d 4s D3+,&~ states of
copper, we find the parameters for 6'Cu r to be

a(l) = 1210 MHz, a(sCs) = 1179 MHz,

a(s) = —221 MHz, bs~ =- 350 MHz.

Unfortunately, the excitation energy of the ~D

multiplet of copper is more than 11000 cm ', so
it is at present impractical to measure the off-
diagonal hfs as was done' for scandium.

Bauche-Arnoult also considers the ratio

s' qr I'(~ &,
a(sC' ') 2psgs luz ((& &~s j
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Atom N ~exyt ~calc/ Xexpt

Sc

Tl
V
Cr
Mn
Fe
Co
Ni
CG

1 -0.301

—0.423
—0.487
—0. 537
—0. 598
—0.648
—0.682
—0. 726
—0.794

—0. 83 —yc —0.31
—0. 508
—0. 646

—0. 826
—0.941
—1..02

1g 32
—2. 19

0.36
to 0.97

0. 83
0. 75

0. 72
0.69
0.67
0. 55
0.36

TABLE V. Compaison between calculated and experi-
mental electron spin densities for 3d 4s atoms. All quan-
tities are in atomic units. Entries in column 3 are from
the work of Pagus, Liu, and Schaefer (Ref. 23, Table I),
and those in column 4 are calculated from entries in Ta-
ble IV of the present work.

tive value of the electron spin density at the nu-
cleus. This term in the effective Hamiltonian
accounts for most of the configuration interaction. '
The excitations entering into this term are the
ones in which s electrons are excited to higher s
orbitals ("core-polarization " effects).

Recently the strength of the contact interaction
(i. e. , the electron spin density at the nucleus)
has been calculated 3 by the unrestricted-Hartree-
Fock method. The calculation was unrestricted
in the sense that different radial wave functions
were allowed for electrons in states of the same n
and l but different nz, . In these calculations, the
spin densities at the nucleus are characterized by
a parameter

(i4)

Thus, the quantity (p, l/QI) y may be expected to be
close to 2.46. She finds that the ratio (a~),/(r ~)~a
of the radial factors has the same value for all
atoms with up to five electrons in the sd shell,
and a different value for all atoms with between
six and ten 3d electrons. Therefore, within each
of these two groupings the ratio

IJ" Q I ('Y, 'l~

12 (2)Vali Pz &a i.

should be a constant. However, the value of the
quadrupole moment Q usually contains a large un-

certainty due to the lack of a calculated value of
the Sternheimer correction22 for most of the Sd
atoms.

B. Contact Interaction and s-Electron Spin Densities

The parameter a(s) in the hyperfine-interaction
Hamiltonian (3) expresses the strength of the in-
teraction between the electron spins and the nuclear
magnetic moment; its magnitude reflects the effec-

Table V compares some measured and calculated
values of the contact interaction strength for
3d"4s atoms. The calculated strengths are gen-
erally smaller than the experimental ones.

V. CONCLUSIONS

We find that our measurement of the hyperfine
constants of the F2 state of "Ni, in combination
with earlier experiments, allows us to make sev-
eral of the comparisons between different atoms
for which Bauche-Arnoult" makes predictions.
The predictions are in general borne out well by
our data. We also find that the calculations of
Bagus et aE. predict a smaller strength for the
effective contact interaction than is called for by
our experiments.
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Use of Multiple Basis Sets in the Brueckner-Goldstone
Many-Body Perturbation Theory for Atomic Problems
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In the Brueckner-Goldstone many-body perturbation theory as applied to atomic calculations,
the origin of important higher-order diagrams is associated with the inflexibility of the single
basis set upon which the perturbation expansion is normally based. We show that in calculating
each diagram one may employ more than one basis set simultaneously. The use of multiple
basis sets is identical to the exact inclusion of a large class of important higher-order terms.
We give illustrated examples to show where this technique will be of practical importance.
This possibility is expected to improve the accuracy and to extend the range of applicability
of the Brueckner-Goldstone many-body perturbation-theory approach.

I. INTRODUCTION

Since its first application by Kelly in a calcula-
tion of correlation energy for beryllium, the
Brueckner-Goldstone (BG) many-body perturbation-
theory approach has been extended to a diverse
number of atomic calculations, following essentially
the same techniques as developed by Kelly. These
include hyperfine interaction and other bound.
atomic properties, electron-atom scatterings,
photoionization problems, and time-dependent per-
turbations. ~

These applications showed that the BG approach
enjoys certain distinct advantages such as in the
physical interpretations of contributing processes
involved. The applications also lead one to con-
clude that the applicability of the method, as in any
perturbation method, rests severely on the choice
of the basis set upon which the perturbation series
is built. Since the BG theory has been formulated
in one (single-particle) basis set, it is not surpris-
ing that this single basis set cannot be the optimum
one for all types of applications. For example, in
electron-atom scattering it is clear that one basis
set simply cannot be simultaneously compatible

with both the asymptotic conditions for the distorted
atomic electrons and the scattered electron.

For a particular calculation, a less-than-opti»
mum choice of the basis set will reflect itself by
the presence of important higher-order terms.
These important higher-order terms are usually
difficult to evaluate —some are simply impossible
to evaluate. In the past one must resort to some
kind of estimation (e. g. , geometric-series ap-
proximation) for these higher-order terms. The
uncertainty incurred is often hard to assess.

In this paper we show that it is possible to use
simultaneously more than one basis set in evaluat-
ing each term in the expansion of a physical quantity
of interest. The ordinary simple rule for calcula-
tion remains unchanged. The freedom of using
more than one basis set enables one to eliminate
a diverse number of important-but-troublesome
higher-order terms. Thus the possibility of this
usage of a multiple basis set is expected to greatly
extend the accuracy and the range of applicability
of the BG method.

In Sec. II we review the Brueckner-Goldstone
perturbation expansions. In Sec. III we formally
develop the multiple-basis-set idea. In Sec. IV


