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Born-approximation calculations of the ionization of aluminum L-shell electrons have been
performed using Hartree-Slater wave functions. Generalized oscillator strengths and proton
energy-loss cross sections from threshold to ionized-electron energies of 128 Ry have been
calculated. The results show a delayed maximum above threshold, and the ramifications of
this phenomenon are discussed. Comparison is made with hydrogenic results and good agree-
ment is found at intermediate and large energy loss, but the hydrogenic calculation is totally
inadequate near threshold. The implications of this for stopping-power calculations and sub-
shell corrections is discussed. The Bethe asymptotic cross section is obtained and the varia-
tion of parameters therein is investigated.

I. INTRODUCTION

The ionization of atoms by charged particles is
a process of great importance in connection with
plasma physics, space, atmospheric and astro-
physics, and radiation physics. It is also the pri-
mary mechanism for energy loss of charged par-
ticles in matter. For sufficiently energetic par-
ticles the Born approximation adequately de-
scribes the ionization process'; its accuracy is
limited by the deficiencies in the wave functions
employed for the initial and final states of the tar-
get atom. 3 Many calculations of ionization cross
sections using the Born approximation appear in
the literature, 4 but most use simple hydrogenic
initial states. While this approach is probably
valid for ionization of the E shell, it is expected
to be unrealistic for L-shell ionization and even
worse for outer shells, particularly for low ion-
ized-electron energies. For example, experi-
mental photoionization cross sections do not gen-
erally show the characteristic monotonic decrease
above threshold, for L shell and higher, which is
typical of the behavior of K-shell and hydrogenic
results. ' This indicates that more realistic wave
functions are needed for such calculations.

In this paper results are presented for the ion-
ization of the I. shell (2s and 2P) of aluminum. We
use a nonrelativistic Hartree-Slater central-f ield
model of the atom which has proved to be very
useful in predicting photoionization cross sec-
tions. These calculations are performed for
two primary aims: First, they are performed to
provide reasonably reliable energy-loss cross
sections in the ionized continuum, where very lit-
tle experimental data exists. These results will
then serve to give some insight into the total ion-
ization cross section and stopping power. Second,
they are performed to determine in which energy
ranges the very much simpler hydrogenic calcula-

tion~ provides a good approximation and where
it fails. This information could then be used to
calculate more accurate subshell corrections in

the Bethe stopping-power theory. ""
Quite recently a study using almost the same

model as ours has been made by McGuire. '6 This
work complements ours, since McGuire is chiefly
interested in total ionization cross sections for
low-Z atoms, while we are mainly concerned with
energy-loss cross sections for individual sub-
shells in higher-Z elements.

II. THEORY

The cross section for the inelastic excitation or
ionization of an atom or molecule from an initial
state 0 to a final state g by particles of charge ze
and velocity v is given in the (first) Born approxi-
mation by'

SwaPzP m~ IFp„(K) I

ap„= pi@
"

)p
d ln(Kap)

aii n

where ao is the Bohr radius, m is the electron
mass, 8, is the Rydberg energy, and h R is the mo-
mentum transfer. The inelastic scattering form
factor Fp„(K) is defined ws

F (K)=(pic,.'" io&, (2)

with r~ being the position vector of the jth electron
of the target and the wave functions for discrete
states normalized to unity; continuum functions
per unit energy in rydbergs. The limits of integra-
tion in Eg. (1) can be obtained from the relation be-
tween the momentum transfer and 8 the angle be-
tween the initial and final directions of the incident
particle

r ~ r(T
{w~o)'=—2 —— —2 —

)
——

I ms' I, (s)

where AE(=E„-Ep) is the energy loss, M is the
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4' 3&3 ~ 1 "Em~

r/(R mZ„—&O „r, fe, (K)d Ln(Ka2)

(5)
It is then clear, from E1L. (5), that the cross sec-
tion is just proportional to the area under the
f2„(K)-vs-Ln(Ka2) curve from K „to K

In our claculations, we have employed wave
functions which are products of one-electron or-
bitals. The one-eLectron functions P„,(r) for the
initial ground state of the atom are of the Har-
tree-Slater' type as tabulated by HS. " Each of
these functions, P„,(r), is a solution to the radial
Schrodinger equation with the same central poten-
tial V(r),

I d 2+ V(&)+ &.1 —
2 ~P.1(&)= o,f /I' l(l+I) i

(dx

V(r)-"Z/r as~-O, V(r)-2/~ as~ .0-(8)

Here Z is the nuclear charge, &„, is the energy of
an electron in the nlth subshell in rydbergs, and x
is in units of a2 (= 5. 29x10 cm).

If an ionization process occurs in which an elec-
tron in the nlth subshell goes to a continuum &l'

state, we take this final-state orbital P„,(1 ) to be
the solution to the radial Schrodinger equation with
the same central potential as the initial state

I'(I'+ 1)
d-2 + V(r)+ e —

2 P„.(1') = 0,A'

in which & is the ionized-electron energy in ryd-
bergs and P„.is normalized such that

(y) 1/-1/2 e-1/4 sin[el/21 4-1/2 Ln2el/24

incident particle mass, and T(= 2M1/ ) its kinetic
energy. The minimum momentum transfer occurs
when the incident particle does not change direc-
tion (8= 0) and the maximum occurs for back scat-
tering (8= 1/). Note, however, that at very high en-
ergies this relation must be modified to take ac-
count of relativistic kinematics as discussed in
Sec. 2. 3 of Ref. 2. Furthermore, while the above
definition of T remains unchanged in the relativistic
region, it can no longer be identified with the kinet-
ic energy.

Of great current interest is the generalized os-
cillator strength (GOS), which is defined as'

jo (K) = (E -Eo) («2) '
IPo (K) I' ~ (/I

In terms of the GOS, the cross section can be ex-
pressed as

energy range. The orbitals of the electrons not
involved in the transition are taken to be un-

changed from the initial state, i. e. , we consider
no core relaxation. The details of the numerical
methods used to obtain and normalize the continu-
um wave functions are given in Refs. 7 and 8.

In order to carry out the integration of the form
factor [E1L. (2)] we use the well-known expansion

e"'=Q, (i)'(2K+ 1)j (K1')P (cos8), (9)

where 8 is the angle between K and r, P„ is the
I egendre polynomial of order X, and j, is the
spherical Bessel function of order X. Then using

(9), the expression for the form factor for an nlm- &l'm' transition after integrating out the wave
functions of the nonparticipating electrons be-
comes

F„, „.„,(K)=Q (i)"(2K+1)[(2l+ L)(2l'+1)]'/

l' & l l' X lx (-1), B„,„,.(K), (10)

where

f~".
& .1 (K) = fO P.1(&)j1(K,)P,&'(&) «,

(2 22) and (', 2
'

) are Wigner 3-j symbols, and
the sum over A. goes from Il —l I to l + l in steps
of twos; the 3-j symbol (2' 22') vanishes for all other
values of X. The absolute square of the form fac-
tor for an nl- &l transition from a closed subshell,
summed over final degenerate magnetic substates
m and average over initial substates m, is then

(0 0 0 )0 0 0

~F„, „.(K)~ = (2l'+ 1) P (2K+ 1)

x [ft„', „,(K)]' 0 (18)

and the cross section becomes

I
' X l ( l V l

0 I( ~ 0 j (12)

The sum over m and m' is, owing to the properties
of the 3-j symbols, [1/(2X+ l)]5». so that the ab-
solute square of the form factor becomes

where

——2'I'1/+ o, ,(e)+ 5, ,(e)], (8) «&o&' l' Xl
&nr. a = 2'6, (2i'+ 1)~ (»+1)

mv y'8

o, , = argl (l'+1 —ie" )

and 6,. is the phase shift. This is the usual nor-
malization of continuum wave functions per unit

[a', „.(K )]
'

d Ln(Ka2)' . (I&)
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This result shows that the transition probability
for unpolarized targets can be expressed as an in-
coherent sum of contributions for alternative val-
ues of angular momentum SX transferred to the
target atom by the interaction. This is a particu-
lar example of a general feature of collision pro-
cesses involving unpolarized targets as shown by
Fanp and Dill.

In the ionized continuum, however, at each en-
ergy there is an infinite-fold degeneracy among
the states of different angular momentum. The
relevant measurable physical cross section is the
sum over all final angular momenta l',
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with the associated GOS

(15)
I"lG. 1. Generalized oscillator strengths per unit

energy in rydbergs for continuum. transitions of the 2p
shell of Al (binding energy 5.947 Ry) for various ionized-
electron energies (in rydbergs) e/(R.

f.~. .(&)= ('-'n~)(ff'&0) ' ~ I+.i. sr ~ (&) ' (15)
l'~0

and form factor

iz„,„(Z)i'= Q [F„,„,,(SC)l'. (17)

In practice, however, all but the first few terms
in the sums [Eqs. (15)-(17)]are negligible for low
enough ionized-electron energy &. These calcula-
tions consider l'= 0-8 and were performed numer-
ically on an IBM 7094. The errors produced by
the omission of higher l' terms will be discussed
in the Sec. III.

III. RESULTS AND DISCUSSION

Calculations have been performed for the ioniza-
tion of 2s and 2p electrons in Al by the methods
described in the Sec. II. We have considered
ionized electron energies from threshold (e= 0)
to &= 128 Ry. Since the cross sections are in-
tegrals over the generalized oscillator strengths
[Eq. (5)], it is of interest to study the latter quan-
tities first.

A. Generalized Oscillator Strengths (GOS)

The (M38 results for 2p ionization from threshold
to &=8 Ry is shown in Fig. 1. Here we find a
marked departure from the decreasing behavior of
the GOS, as a function of ionized-electron energy
in rydbergs e/&, which is typical of the hydro-
genic results' and of the higher energies (shown
in Fig. 2). The GOS increases from threshold to
e/(R= 2 for all (Kao), and only then does it begin to
decrease with energy. In the limit of K- 0, the
GOS approaches the oPtical oscillator strength'
which, in the ionized continuum, is proportional
to the photoionization cross section. 7 Thus it
follows from the results given in Fig. 1 that the
Al 2p-photoionization cross section will be in-
creasing from threshold to a maximum at about
e/(R = 2, i. e. , it exhibits a delayed maximum, a
phenomenon which has been observed for various

subshells in many elements. ~ 9'2~ This delayed
maximum occurs in photoionization, because the
f - f+ 1 continuum wave function (the ed in this
case) is kept very far out at threshold by the re-
pulsive centrifugal barrier causing overlap with
the discrete function and, thus, the matrix ele-
ment, to be quite small. At higher energies, the
continuum wave function can penetrate the barrier
much more readily, so that its amplitude is larger
in the inner region, where the discrete wave func-
tion has appreciable amplitude and consequently
the photoionization cross section increases. At
even higher energies the continuum function moves
in still further and the overlap begins to decrease
because of cancellation in the matrix element from
the oscillations in the continuum wave function,
thus causing the decreasing behavior of the photo-
ionization cross section with energy. A much
more detailed discussion of the delayed maxima
phenomenon in photoionization is given in Ref. 7.

The situation with regard to the GOS is much
the same except that the matrix element is of e' ',
rather than z, and there is no l + 1 selection rule
as in the optical case. In Fig. 3 the Al 2p GOS's
for e/(R= 0 and 2 are shown along with the con-
tributions of each individual final continuum angu-
lar momentum (l') state. Here we find that the
2p- &s and 2p- &p contributions to the GOS de-
crease somewhat with energy, since the l' = 0 and
l'= 1 waves are penetrating even at threshold. The
2p ef contribution, on the other hand, increases
sharply with energy for the same reason as in the
optical case. This is the same continuum wave
function and, since this channel gives the major
contribution to the GOS at these energies, the GOS
increases with energy from threshold. The high-
er partial waves have negligible contributions, be-
cause their high angular momentum makes the
centrifugal barrier insurmountable at low ener-
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FIG. 2. Generalized oscillator strengths per unit
energy in rydbergs for continuum transition of the 2p
shell of Al (binding energy 5.947 By) for various ionized-
electron energies (in rydbergs) s/(R.
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gies. The l'=8 (sf) wave, which has essentially
no effect at threshold, penetrates far enough to
have a very slight effect at s/dt= 2 as shown in
Fig. 3. Thus we see that the contributions to the
GOS of all higher partial waves will increase with
energy, until they penetrate sufficiently, and only
then start to decrease. The GOS will be decreas-
ing with energy in this region, however, since
the major contributors to the GOS are decreasing.

Another point of interest is the difference in
shapes between low-energy GOS's as shown in Fig.
1, and those of higher energy which are given in
Fig. 2. The GOS at low energy has its maximum
at K= 0, indicating that the optically allowed (di-
pole) transitions 2p- ss and 2p- ed are the domi-
nant partial waves. Physically this means that
collisions with small energy transfer take place
predominantly with small momentum transfer, i.e. ,
distant large impact parameter collisions. At the
higher energies, particularly the highest we have
considered, e/dt= 128, the maximum is out at a finite
value of K~ and moves out with increasing energy.
Examination of Fig. 2 shows that, at the maximum
point, the relationship between & and K is approach-
ing e/6t= (Kas) . This is just the relationship one
would obtain for collisions with a free electron.
Thus, we have the situation where the collisions
are close (knock-on), and the binding of the elec-
tron serves simply to smear out the collisions over
a small range of momentum transfers. Mathemati-
cally, this occurs because at high energy the con-
tinnum wave function reaches its asymptotic form
sin(a'~sr+ 5) at fairly small!R, while for large K
the spherical Bessel function quickly reaches its
asymptotic form of sin (Kr+ri), so that for Kas
= (e/dt) there is constructive interference and,
hence, a maximum. This maximum, plotted on a
three-dimensional GOS versus e/dl and (Kas)
graph, is known as the Bethe ridge.

FIG. 3. Contributions to the Al 2p GOS by the various
continuum angular momentum (P) channels for ioniza-
tion at threshold snd s/dt=2.

The GOS's for Al 2s are shown in Figs. 4 and 5
for low and high energy, respectively. Over the
entire energy range, the limiting Kao -0 value of
the GOS is decreasing with increasing &, indicating
a monotone decreasing photoionization cross sec-
tion. There is some anomolous behavior of the
GOS at the lower energies at intermediate momen-
tum transfer, where the GOS's from e/8, = 0. 5 to
c/dan=8 have their maxima. The GOS in this region
increases with s from threshold to e/8= 2, in con-
tradistinction to the decreasing behavior at small
Kao. This can be understood by considerations
similar to those previously discussed for the 2p.
The 2s- Ed is an optically forbidden transition so
it does not contribute to the GOS for small Kao,
only the 2s - &p channel does, and since the &p is
penetrating even at threshold, the GOS at the op-
tical limit is monotone decreasing with energy.

0.10

O-OS- e/II=0

0.5~ ~I

0.06 — 2+
4A

oo4 — s

0.02—

0
0.01

I

O.l 1.0
(Koo)

100

FIG. 4. Generalized oscillator strengths per unit
energy in rydbergs for continuum transitions of the 2g
shell of Al (binding energy 8.715 By) for various ionized-
electron energies (in rydbergs) e/g.
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FIG. 5. Generalized oscillator strengths per unit
energy in rydbergs for continuum transitions of the 2s
shell of Al {binding energy 8.715 Hy) for various ionized-
electron energies {in rydbergs) e/'R.

Away from this limit the 2s ed' channel is a sig-
nificant fraction of the GOS. At threshold it is
fairly small, due to the inability of the &d contin-
uum function to penetrate very much at e/61= 0, but
even here shows up as a. bump on the tail of the
threshold GOS at (Ka0) = 10. At slightly bigher-
energies (up to e/8, = 2) tbe ed penetrates more and
more, makbxg the 2s &d the dominant contribution
and, thus, steadily increasing the GOS with energy.
At still higher energies, further penetration of
the &d causes a decrease in overlap, due to its
oscillations, thus decreasing the GOS, just as in
the 2p case. At the higher energies (shown in
Fig. 5), everything is quite normal, and we see
again here the manifestation of the Bethe ridge for
t/S. = (Kao) .

The total GOS results presented herein are sums
over the partial wave channels l' = 0 to 8; those
with l'- 9 have been neglected in the sum indicated
by Eq. (14). To investigate the effect of the omit-
ted terms, consider the l' = 9 continuum wave
channel. In our calculation a continuum wave sees
an effective central potential V(r)+ l'(l'+ 1)/r
[c.f. Eq. (6)]which is V(r)+90/r for l'=9. Since
most of the amplitude of the 2s and 2P orbitals of
Al is at a distance r &1 (in units of a,) from the nu-
cleus, a continuum wave function must penetrate
appreciably at least this far in to have enough
overlap with the discrete functions to give a non-
negligible contribution to the total GOS. The ef-
fective potential of Al at x= 1 is dominated by the
centrifugal repulsion term for an l' of 9; the sum
of the two terms is about 85 Ry. Thus the omis-
sion of the l'= 9 partial wave mill have virtually no
effect at ejected electron energies much below this
energy. It will, therefore, affect somewhat our
e/51= 128 GOS results but not the lower-energy
ones. In fact the e/51= 126 GOS will not be great-
ly altered since even this high an energy continuum

Once a knowledge of the GOS is obtained, the
cross section for the inelastic scattering of any
fast (structureless) charged particle can be found

by the integration indicated by Eq. (5). It must be
emphasized, however that the GOS is an intrinsic
function of the atom itself, much like the optical
oscillator strength, and not dependent upon the in-
cident particle, and the details of the interaction
are implicitly contained in the K dependence.

We have considered I -shell ionization by pro-
tons with incoming energies of 0. 1, 1, 10, and 100
MeV. The calculated cross sections for producing
electrons with a particular energy from the 2p
subshell, i. e. , the energy-loss cross sections,
are shown in Fig. 6. The outstanding feature of
these results is the behaviorof the cross sections
at small energy loss, near the ionization thresh-
old; they increase from threshold with increasing
energy loss reaching maxima at e/(8 between O. 5
and 1, and only then do they decrease with in-
creasing E. This is in marked contradistinction

IO
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FIG. 6. Energy-loss cross sections in the continuum
for 0.1-, 1-, 10-, and 100-MeV protons incident on the
2p shell of Al vs ionized-electron energy in rydbergs.
The insert shows the threshold region in detail with the
number in parentheses for each curve being the power of
10 the scale must be multiplied by. The dashed curves
are the hydrogenic results.

wave will not penetrate in closer than the outer
edge of the discrete functions. By the above argu-
ments then, l' & 9 channels will be still less im-
portant. Therefore we conclude that the omitted
channels will not affect any of the lower energies
(e/61 & 64) and will add only & 5/o to the GQS at e/(8
= 128.

B. Cross Sections
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to the previous hydrogenic results which decrease
monotonicly from threshold. ' These delayed
maxima in the energy-loss cross sections are a
direct consequence of the same phenomena in the
GOS discussed in Sec. II. Since the cross sec-
tions are integrals over the GOS's divided by the

energy loss, they exhibit this phenomenon for pre-
cisely the same reasons the GOS's do; the centrif-
ugal barrier keeping the higher-angular-momen-
tum continuum waves far out at threshold. It is
also seen from the insert in Fig. 6 that the de-
layed maximum moves further out to greater &

and the rise in cross section from threshold to
maximum increases (percentagewise) with in-
creasing proton energy. To explain this, we first
note that the lower limit on the momentum trans-
fer in the integral performed to obtain the cross
section [EIl. (5)] can be well approximated by'8

10

10

N O
O

10

pe

IO

Io 0 IO 20 30 40 50 60 70
6/A,

if the incident energy T» hE, the energy loss; the
upper limit, under these conditions, can be taken
to be (Ka~)2 = ~ to an excellent approximation. IB

Thus, apart from an over-all factor of 1/T, the
only effect of increasing the incident energy is to
decrease (Kao) „, thereby including in the inte-
gral more of the GOS near the optical limit. Since,
in this region f2~, (K)/nE has a maximum at about
e/(R=1, a result easily obtained from Fig. 1, the
maximum of the integral, and thus the energy-loss
cross section, will move toward this energy with

increasing T. At small T, however, where the in-
tegral samples the intermediate and large (Kao)2

regions of the GOS, where it is quite regular, the
energy-loss cross section decreases from thresh-
old. Thus the maximum must move out to greater
energy loss with increasing T, as we have found.
Further, since the ratio of the GOS's for e/(8= 1

and 0 is greatest at the optical limit, as seen from
Fig. 1, the effect of increasing T and including in
the integral more of the GOS near the optical lim-
it is to increase the ratio of the cross sections at
these energies, i. e. , the rise in the cross sec-
tion from threshold to the maximum will increase
(percentagewise) with increasing T.

Rather than considering the total energy-loss
cross section as an integral over the sum of the
GOS's of each of the continuum angular momen-
tum channels, it can be thought of as a sum over
the integrals of each channel as given by EIl. (14).
In an effort to provide further insight into the be-
havior of the cross section, Fig. 7 shows the total
energy-loss cross section o'»„along with the con-
tributions of each partial wave a» „.for T = 10
MeV. The l'= 0 and 1 contributions decrease
monotonically from threshold indicating that the
centrifugal barrier is absent (i'= 0) OI' ls 'too SIIlall
to repel the continuum wave at threshold (f'= 1).

FIG. 7. Continuum energy-loss cross section for 10-
MeV protons incident on the 2p shell of Al vs ionized-elec-
tron energy sa rydbergs along with the contributions of
each final angular momentum g ') channel.

For l'- 2, the barrier gets larger and larger with

increasing l', resulting in a maximum for l'= 2

just above threshold, somewhat further out for l'
= 3 and moving out still further for higher partial
waves. Since the dominant term is the l'= 2, the
total tends to have its character, giving rise to
the curve shown in Fig. 7.

The calculated energy-loss cross sections for
ionization of 2s electrons are given in Fig. 8.
These results also show the delayed maximum,

just as the 2P did, but with bwo important differ-
ences. First, the maximum is at about &/6t= 0.75
for proton energies of 0. 1 and 1 MeV and moves
in to lower e for greater T. Second, the (percent-
age) rise in the cross section from threshold to
maximum decreases from T= 0. 1 to 100 NeV,
where it is almost flat. This behavior can be un-

derstood by considering the GOS results for the
2s subshell shown in Fig. 4. Here, as was noted

in Sec. II, the GOS results show the normal mono-
tone decrease, with increasing energy loss, for
small momentum transfer [(Kao)2- 0. 01] but anom-
alies appear at intermediate values [(Kao)2- 1].
Thus, for T= 0. 1 MeV, the important region of the
integral [EIl. (5)] is the intermediate values of
momentum transfer which gives a delayed maxi-
mum. At higher values of T, the integral in-
cludes more of the small (Kap) contribution, since
K „decreases, and this contribution is decreas-
ing with increasing &. Hence, the net effect of in-
creasing T must be to move the delayed maximum

in towards threshold and decrease its value rela-
tive to threshold value of the cross section.
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Clearly then, for T &100 MeV, the cross section
will be decreasing from threshold, based on the
above arguments. We shall discuss this point fur-
ther in the Sec. IV.

Apart from our calculations using HS wave func-
tions, we have also performed numerical hydro-
genic calculations for purposes of comparison and

checking. We have used the Slater inner screen-
ing constant 3 of 4. 15 which is appropriate to a
filled L shell, (effective Z is Z —4. 15), and outer
screening parameters to reproduce the HS 2s and

2p binding energies. Energies &/(R ~16 have been
considered; we have omitted small &/S. , because
this necessitated extrapolation into the hydrogenic
discrete range. This, however, is being studied
by Basbas. 24

The results of these hydrogenic calculations
for the 2P and 2s subshells of Al are shown as
dashed curves in Figs. 6 and 8, respectively,
where it is seen that agreement between the hydro-

genic and HS results is fairly good (no worse than
30%) for both subshells at intermediate and high-
energy loss. This is expected for intermediate
values of &, since the major contribution to the
matrix element [Eq. (11)]bere comes from inter-
mediate distances from the nucleus, where the
hydrogenic wave functions are a good approxima-
tion. At the higher energy losses one is tempted
to say that the largest contribution to the matrix
element comes from close in by the nucleus be-
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FIG. 8. Energy-loss cross sections in the continuum
for 0.1-, 1-, 10-, and 100-MeV protons incident on the
2s shell of Al vs ionized-electron energy in rydbergs.
The insert shows the threshold region in detail with the
number in parentheses for each curve being the power of
10 the scale must be multiplied by. The dashed curves
are the hydrogenic results.

cause of the oscillations of the continuum wave
functions, as in the case of photoionization. This
argument is abnegated by the fact that the spheri-
cal Bessel function j„(Kr) appears in the matrix
element. This is another oscillatory function
whose oscillations are not small compared to the
continuum functions. As discussed previously,
the maximum in the GOS for large & is at the Bethe
ridge (Kao) = e/(R, where the continuum wave func-
tions and j„(Kr) interfere constructively, so that
the major part of the matrix element is generated
at intermediate, not small, distances from the
nucleus.

To illustrate the situation in the threshold re-
gion we have computed the total L-shell energy-
loss cross section from the analytic formula for
the L-shell form factor' '" and compared with the
sum of our HS 2s and 2P results, shown in Fig. 9.
The hydrogenic result is seen to vastly overesti-
mate the cross section at threshold by about a fac-
tor of 5. Further, it is monotone decreasing from
threshold, while the HS results show the delayed
maximum. This poor agreement has several im-
portant implications. First, the hydrogenic total
ionization cross section, which is the area under
the energy-loss cross-section curve, will be much
too large compared to the HS because of its tre-
mendous maximum in the threshold region where
most of the area comes from. Second, the same
will be true for the stopping power. Finally, the
contribution to the stopping power from excitations
to discrete states, which is often obtained by ex-
trapolation of the ionization cross section, will be
grossly overestimated by the hydrogenic results,
by roughly an order of magnitude. In view of these
limitations of the hydrogenic approximation, it
seems necessary to calculate the shell correction
to the stopping power for the Al L shell using
our more realistic wave functions, which has been
done to date using only hydrogenic functions. "
This is especially desirable in view of the fact that
stopping-power measurements can be made with
an accuracy of -0. 1%.

A further comparison of interest is between
the hydrogenic and HS calculations of the contribu-
tions of each of the continuum angular-momentum
channels. While measurements of the energy-loss
cross section looks at only the total, the sum over
all channels, the relative contributions of the in-
dividual channels, are important for calculations
of the angular distribution of ionized electrons and
the angular correlation between scattered particles
and ionized electrons, experiments on which have
been done only recently. ~ In Table I, the com-
parison for Al 2p, T= 10 MeV, e/6t= 16 and 128 is
given and shows that, in both cases, while the to-
tals, the sum of the individual channels, are fair-
ly close, the individual channels are often very
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ed channel are crucial and these are neglected in
this model. Another recent calculation ' has used
this model but with analytic Hartree-Fock initial
states. In a previous paper, we have compared
our results and these for the continuum GOS of
argon and found almost an order of magnitude dif-
ference near threshold. Thus we conclude that the
above orthogonalization does not significantly im-
prove the results near threshold. 29

C. Bethe Asymptotic Cross Sections

0.0I—

0
5 IO l5 20

ENERGY LOSS (RYDBERGS)

FIG. 9. Total L-shell continuum energy-loss cross
section for 1-MeV protons. The solid curve is our pres-
ent result, the dashed curves are the contributions of the
individual subshells, and the dot-dashed curve is the hy-
drogenic result.

For large incident energy T, the energy-loss
cross section approaches a particularly simple
form. Specifically, if we define the reduced in-
cident energy of an incoming particle of mass M
to be T = (m/M) T, m being the electron mass,
the cross section approaches its asymptotic be-
havior when DE/T « I, i. e, when the energy loss
is much smaller than the reduced incident energy.
In this limit the energy-loss cross section to a
particular final angular momentum channel iss'8

different. This indicates that although the total
energy-loss cross section predicated by the hy-
drogenic model may be fairly good, the angular
distributions or correlations may be seriously in
error.

It has recently been pointed out that somewhat
more realistic results can be obtained in the hy-
drogenic formulation, by using a Coulomb z = l con-
tinuum wave function orthogonalized to the initial
(nl) state of the ionized electron. This formulation
has the advantage of still being analytic and having
the correct asymptotic charge at infinity. Further,
the orthogonalization essentially introduces a rea-
sonable phase shift into the nl —&l channel. Un-
fortunately, the 1-k+1 and I-k+2 channels, which
are dominant near threshold, are unaltered in this
formulation and although this represents a slight
improvement over ordinary hydrogenic, it is still
quite deficient since, as shown above, phase shift
and normalization variations near threshold in the

4«oz' ) o 4c.'I(&)T
v„, „.=- ( M„, (a) (n "A — +0 ~(A )

for an optically accessible final state, and

4~~oz (' if 1'""')riA) (20)

ln c„',(e) — =, —"'" ' ' din(Kao)

( f"' "' ))a) (sc )' -(2()
-w fn(, (.'l'

I ~ ~ ~

~

I
~i n ~ 0 7

~ e)0

for a transition to an optically forbidden final state.
In these relations M„',(e) is the dipole matrix ele-
ment (nl Iz l el') and the parameters c„,(&) and b„',(e)
are given by

3'~8

TABLE I. Contributions to the energy-loss cross section of each continuum angular momentum 0,'') channel for 10-
keV protons on the 2P subshell of Al and e/R =16 and 128. The result of the HS calculation, numerical hydrogenic (H)
result, , and their ratio is shown in each case. In this table read 3.21-4 as 3.21 && 10

HS
H

HS
H

Total

3.21-4
2.58-4

1.24

iI=0

7.04-6
5.80-6

l. 21

2.43-5
1.03-5

2.36

2.09-4
2.02-4

1.03

5.91-5
l.37-5

1.53-5
l.37-5

2.38 l.12

4.17-6
1.68-6

2.48

l.21-6
l.56-7

3.57-7
l.18-8

30.2

1.07-7
7.58-10

HS
128 H

HS
H

3.52-6
3.04-6

4.76-8
4. 92-8

0.97

1.91-7
6.67-8

2.86

5.35-7
4.78-7

1.12

6.85-7
2.18-7

3.14

6.42-7
6.67-7

5.25-7
5.77-7

4.01-7
4.47-7

0.90

2.91-7 2.05-7
3.21-7 2.18-7

0.91
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with f„, „,the oPtical oscillator strength for a
nl - cl' transition [ =f„,„,, (0)].

The importance of the parametrization is two-
fold. First, it offers a convenient way of charac-
terizing the cross section for t2E/T «I (which is
just the region where first Born approximation is
expected to be valid), so that these parameters
contain essentially all of the meaningful content of
the Born approximation. Second, and more im-
portant, using these parameters we can extend our
results into the relativistic region (T&m c2), even
though they were obtained from an explicitly non-
relativistic calculation. For relativistic incident
particles with velocity v = Pc, c being the velocity
of light, Eqs. (18) and (19) must be modified. "'"
The result is 3

8gapz2 2

Cnlrel' 2 r~ bnr(e)mv /'8 (24)

for optically forbidden transitions. The new pa-
rameter in Eq. (23) is related to c„',(e) by"'2

C„'I( )e=M„'r(t) [inc„'l (e)+ In(2mc /(R)],

In(2mc2/51) = 11.2268 .
The Bethe assymptotic parametrization of the

total energy-loss cross section, o„,„can be ob-
tained simply by summing over the asymptotic
cross sections to each final angular-momentum
channel, Eqs. (19) and (20) [Eqs. (23) and (24) in
the relativistic case]. If we define for optically

allocated

channels

b „',(e) = M „',

(e)'Inc�„'I(e),

we then get

4' pz ~~~ 2 47.'2 2

n„, ,=,n rrr„r (r) (n(n)T/

with

~nr

+bTroT(&)+Ol ~ ~ I, (»)iT s.

and

M ToT(e)2 M l-1(e)2+ M lnl(e)2

b.'r"(e) = ».' (e),
Q

(28)

(29)

which can be written, using Eqs. (21), (22), and

(25), as

b (&)= i '"'" ' din(Ka )
(gl

~E/(R~ 0

8rra()z r 2 (t 0 ''i
2

rr„, , r, = r,n M„, (r) in)(i i)1—() +C, (r)Imv y'S

(23)
for allowed transitions, and

fnl, s( ) fnl ~ r( ) d In(Ka2) (30a)
t),E/61

M TOT(&)2 fnl. r( r d 111(Ka )„, f.l, . (o)

~

1--""
~

din(Ka ) (30b)f.r, .(o)

with f„, ,(0) = (aE/(R)M„, (e)2, the total optical os-
cillator strength. Thus the total energy-loss
cross section and its variation with energy loss
can be characterized by M„r (e) and b„, (e). It
is thus of interest to investigate the behavior of
these quantities. It is of particular importance
because, although the detailed variation of M„, (e)
is known throughout the periodic system through
photoionization and photoexcitation work, 2 b„, (e)
has been looked at only for atomic hydrogen and
helium. %e shall therefore study this latter
quantity for continuum transitions from the alu-
minum L shell in an effort to understand the de-
tails of its behavior.

Before looking at Our numerical results, how-
ever, it is of interest to note the information that
can be obtained directly from the analytical ex-
pressions for the parameters. For optically for-
bidden transitions, b„'I(e) is the total area under
the f„, „,(K)/hE-vs-In(Ka(r)' curve, as seen from
Eq. (22); it is therefore a positive definite quan-
tity, and the contribution of each optically forbid-
den channel to b„, (e) is then positive. The brI(e)
for optically accessible final states, on the other
hand, can be positive o~ negative as seen from
Eqs. (21) and (23). The parameter e„rI(e), dis-
cussed in detail by Miller and Platzman, ' de-
pends only on the shaPe of f„, „,(K) and not upon
its magnitude.

Our results for the 2p subshell be (e) are
shown in Fig. 10 for small energy loss, along
with the individual channel bz2(e) results, whose
sum is b22 (e). From Fig. 11 it is seen that

b» T(e) is negative at threshold and decreases to
a minimum (maximum in absolute value) at e/(R

=1; then increases toward zero with increasing
e/61. The results for higher energy losses are
shown in Fig. 11, where we find that b22 (e) in-
creases through zero at e/(R= 19, and a maximum
is reached at e/R= 33 followed by monotonically
decreasing behavior with increasing e/(R. The de-
pendence of b22 (e) on e thus has two turning
points, a minimum near threshold and a maximum
at intermediate energy loss, quite markedly dif-
ferent from the hydrogenic results. '34 At the low-
er energy losses the main contribution, as seen
from Fig. 11, is from the l'= 2 final channel.
Here, the negativeness of
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FIG. 10. Dependence of the b&& (c) parameter of the

Bethe cross section on ionized-electron energy in ryd-
bergs c/g, along with the b+ (e), the contributions of the

individual final angular momentum (l') channels. Note

the differing scales above and below the axis.

b2q(&) = Ma~p(&) inc» (e)

is a consequence of the fact that lnc2~~(e) is nega-
tive due to the shape of f» „(K)for small energy
loss as previously discussed, while the minimum
(maximum in absolute value) at e/$. =1 is caused
by the delayed maximum in Ma~~(e), a phenomenon
with many other implications as we have already
seen. At the higher energy losses (Fig. 11) the
optically allowed channels are seen to become less
important. The maximum in bz~ (c) is a conse-
quence of the balance between the increasing op-
tically allowed contributions and decreasing opti-
cally forbidden. The higher-angular-momentum
final states make almost no contribution at small
energy loss because of centrifugal repulsion but
become increasingly important at the larger ener-
gy losses, as seen in the insert in Fig. 11, where
they can penetrate the atomic L shell appreciably.

The results for the 2s subshell are, shown in
Figs. 12 and 13 for small and large energy loss,
respectively. The situation here is quite a bit like
the 2P with one major difference; the minimum
value of the allowed channel contribution (and thus
the total) is at threshold. This is due to the fact
that the dipole matrix element M2~, (e) has no de-
layed maximum in this case. As seen previously,
it decreases from threshold leading to the behavior
of b2, (e) shown in Fig. 12. The maximum in

b2, (~) and the higher-energy-loss behavior isTOT

, substantially the same as the 2P case and thus re-
quire no further discussion.
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FIG. 11. Dependence of the b2& (q) parameter of the
Bethe cross section on the ionized-electron energy in
rydbergs e/8, along with the individual channel contribu-
tion b2&(~). The insert gives some detail at the higher
energies and the dashed curve is the asymptotic behavior.

It can be shown on general grounds that asymp-
toticly '

b'i"(&)=&.i 8&&/&) '],
with N„, the number of electrons in the nl sub-
shell. This asymptotic form is shown as a
dashed curve in Fig. 11 and 13 for 2P and 28, re-
spectively. These plots show that bz~ (c) effec-
tively reaches its asymptotic form at e/(R = 50 or
about 8 threshold units; bz, (e), on the other hand,

is still only about 60'%%uq of the asymptotic value at
the highest energy shown. If the onset of the
asymptotic region occurs for both the 2s and 2p

subshells at about the same number of threshold
energy units of each, the 2s would begin further out

in energy owing to its greater binding energy. The
difference in binding energies, however, is not suf-
ficient to explain the great differences in asymptot-
ic onset between 2s and 2P, although this effect is
in the right direction. %'e thus do not have a clear
understanding of the reason for the asymptotic re-
gion for b~~o (e); more experience from further
calculation and/or experiment will have to be
gained to provide a definitive answer. Once we
can predict a Pro~i, where the asymptotic region
begins, a considerable simplification in the cal-
culation results. To obtain the Bethe cross sec-
tion one need only do the full calculation up to the
point where b„, (e) becomes asymptotic. At great-
er energy loss, only the very much simpler dipole
matrix element would then have to be calculated,
as seen from Eg. (24). This saving is more than

just a calculational convenience, since the number
of channels that must be included in the full calcu-
lation increases with increasing ionized-electron
energy. As & gets very large, the number of
channels increases to such a degree that computer-
time considerations preclude carrying out calcula-
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tions. Thus, the fact that we need only do a photo-
ionization calculation at these large energies means
that we can extend the Bethe energy-loss cross
section to arbitrarily high energy loss without dif-
ficulty.

Finally, it is worthwhile to note that the parame-
trization of the Bethe asymptotic cross section is
independent of the mass of the incoming particle,
i.e. , in the high-energy limit, the cross section
is the same for all incident particles of the same
T regardless of their mass, It is only in the next
term, the coefficient of (T/(R) ', that the mass of
the incident particle shows up.
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IV. ACCURACY OF CALCULATED RESULTS

Up to this point no mention has been made of the
accuracy of our results. This is of particular im-
yortance inasmuch as there is no experimental data
on the CA38 or energy-loss cross sections of the
aluminum L she) l. Recent GOS calculations us-
ing precisely the same atomic model employed in
this paper have indicated that the GOS results of
this paper should be accurate to at least 20% at
threshold down to within 10% well above threshold.
These same maximum limits of error apply to
our energy-loss cross sections provided, of
course, that the incident energy is sufficient for
the Born approximation to be valid. Based on
these estimates of accuracy then, it is expected
that the delayed maxima in the energy-loss cross
sections are not merely an artifact of this type of
calculation, but are real and will be detectable
exyerimentally. In fact, experimental evidence of
delayed maxima in the electron energy-loss cross
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FIG. 12. Dependence of the b+ (e) parameter of the
Bethe cross section on ionized-electron energy in ryd-
bergs q/Q, along with the b~2, (q), the contributions of the
individual final angular momentum (l') channels. Note
the differing scales above and below the axis.

FIG. 13. Dependence of the b~ (q) parameter of the
Bethe cross section on the ionized-electron energy in
rydbergs q/Q, along with the individual channel contribu-
tions b& (e). The insert gives some detail at the higher
energies and the dashed curve is the asymptotic behavior.

sections of the noble gases has been found by
Afrosimov et a/. For the 2P subshell of Ar the
maximum was found to be about 6 eV above thresh-
old for incoming 4-keV electrons (which have the
same velocity of protons of about 7 MeV). Thus
we have qualitative experimental confirmation of
our present results, which tends to give one more
confidence in their accuracy.

V. CONCLUSIONS

We have presented a fairly accurate calculation
of the GOS and energy-loss cross section of the I,
shell of aluminum pointing up the phenomenon of the
delayed maxima which has, as has been discussed,
a number of important implications for total ion-
ization cross section and stopping power calcula-
tions. Another important result was that although
the hydrogenic results were quite poor near thresh-
old (almost an order of magnitude too large) by

about 50 eV above threshold, they were in very
good agreement with our HS calculations. Thus we
really needed to do our calculation for only the first
50 eV above threshold for the A1 L shell. While
it seems clear that the hydrogenic results will be
good for intermediate and large energy loss for the
L shells of other elements as well, further experi- '

ence is necessary to learn at what energy this takes
place. To study this, as well as to obtain more
information on the details of the delayed maxima,
calculations are in progress on the L shells of Ne,
Si, Ar, and Cu. Preliminary results wiD be fur-
nished, prior to publication, to anyone requesting
them.

The delayed maximum, as we have discussed,
is due to the centrifugal barrier keeping the high-
er-angular-momentum continuum waves far out at
threshold. Thus outer shells will also exhibit the
delayed-maximum phenomenon. For outer-shell
s and P electrons the delayed maxima will be pretty
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much like the L shell, but for d and f electrons it
will often be very much sharper and further out in
energy, since f and g waves, respectively, are
the important continuum channels in these latter
cases, and these may reach maxima at much high-
er energy than the d-wave channel which causes
the delayed maxima in the L shell. This has been
indicated by the calculations of differential inelas-
tic electron scattering from noble gases by Amusia,
Cherepkov, and Sheftel and the experimental work

of Afrosimov and co-workers. It is therefore
expected that delayed maxima in energy-loss
cross sections, like their counterparts in photo-
ionization, will be a very widespread phenomenon.
Further, if it occurs far out in energy, rather
than right near threshold as in the case of the L
shell, the hydrogenic calculation will be poor in
a much larger energy range than in the L-shell

case. Thus results based on the hydrogenic mod-
el for d and f shells must be approached with cau-
tion. In any case it is clear that a great deal of
work, both theoretical and experimental, needs
to be done to fully understand the situation.
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