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Simple scheme for state measurement
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~Received 11 September 1998!

We present a simple and fast scheme to measure the state of a trapped atom. Our method directly yields the
characteristic function of the Wigner function avoiding a demanding data analysis. We show that our method
can be readily applied to an actual experiment.@S1050-2947~99!50702-6#

PACS number~s!: 42.50.Dv, 03.65.Bz
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In recent years the experimental progress in the prep
tion and reconstruction of quantum states has been enorm
in the case of high-Q cavities and trapped atoms. It is no
possible to create and measure a variety of nonclass
quantum states@1–3# and to perform simple quantum logi
operations@4#. Particularly worth mentioning is the comple
reconstruction of a nonclassical quantum state@5#. Another
topic of interest is the study of the decoherence of state
the Schro¨dinger-cat type@6#, where the loss of coherenc
increases the more classically distinguishable the two c
stituent states are@7#. This imposes a limit on the size of
Schrödinger cat that can be reconstructed. In order to p
this limit, it is important to have methods to measure t
quantum state in a time that is much shorter than the de
herence time. This can only be done by a method that c
sists of a few fast steps.

There has also been a large number of theoretical id
for state reconstruction@8,9#. But only a few of the proposals
have a strikingly simple data analysis. The scheme for
rectly measuring the characteristic function of the Wign
function was made by Wilkens and Meystre@10#. Recently, a
similar suggestion was made by Kimet al. @11#. A scheme
that directly yields the Wigner function was suggested
Lutterbach and Davidovich@12#. What these schemes a
have in common is that the data analysis is very simple.
function representing the quantum state is directly given
measuring the population of an auxiliary two-level system

We present a method to directly measure the charact
tic function of the Wigner function of the motional state of
trapped particle. The method consists of only three sim
steps. All the steps of our state measurement scheme clo
follow the scheme to prepare a Schro¨dinger cat in the Pau
trap as presented by Monroeet al. @2#. Before we discuss the
relation of our findings to their work, we will describe ou
scheme in detail. Finally, we show its experimental feasi
ity.

Because the dynamics of a mode of a cavity field an
trapped atom are mathematically closely related, meas
ment schemes are, in general, suitable for both syste
Therefore, we have discussed the achievements in both c
together. However, in order to describe our method, we w
focus on a trapped atom because of the strong relation
tween our scheme and the experimental realization o
Schrödinger-cat state mentioned above. The case of a ca
mode that is experimentally more complicated is discus
briefly at the end.
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The system considered is the one-dimensional center
mass motion of a particle in an effective harmonic trap p
tential with frequencyv and two internal levels separated b
a transition frequencyV. For all the steps, the coupling o
the internal levels and the oscillator levels can be seen in
1. In the experiment@1,2,5#, the internal states are long
living hyperfine spin states with a forbidden direct transitio
Hence it is possible to select the various required coupli
between the levels by using appropriate frequencies and
larizations of the Raman laser pulses, and by exploiting
selection rules for transitions. The successive transforma
of the state can be followed in Table I.

The starting point for the state measurement is the sta

r̂05ug&^gur̂, ~1!

with the unknown quantum stater̂ of one dimension of the
center-of-mass motion and the lower internal stateug&. First,
we transform the initial internal stateug& into the superposi-
tion (ug&1eiw1ue&)/A2 via a Raman laser-pulse resona
with V, using the linearly polarized lasersa andb in Fig. 1.
Then we have the total state

r̂15
1

2
~ ug&1eiw1ue&)r̂~^gu1e2 iw1^eu!. ~2!

The relative phasew1 betweenug& andue& is adjusted by the
phase difference of the two lasers.

FIG. 1. Schematic level structure and couplings. The transit
frequency between the vibrational levelsun50&,un51&, . . . , is v
and between the two internal states,ug& andue&, is V. The linearly
polarized Raman laser beamsa and b resonantly couple levels
ug&un& and ue&un&, whereas the circularly polarized Raman las
beamsb andc couple levelsue&un& and ue&un11&.
R950 ©1999 The American Physical Society
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TABLE I. We summarize the transformation of the total system for each step of the measurement s
The density operator to be measured isr̂, whereasug& and ue& denote two auxiliary internal states. Th
parameters of the transformation—the phasesw1, w3, w5w12w3, and the amplitudea of the shift—are
determined by the applied laser pulses.

Step Function State of system

0 initial ug&^gur̂
1 p/2-pulse 1

2 (ug&1eiw1ue&)r̂(^gu1e2 iw1^eu)
2 shift by a 1

2 „ug&1eiw1ue&D̂(a)…r̂„^gu1e2 iw1D̂†(a)^eu…
3 p/2-pulse 1

4 @ ug&„12eiwD̂(a)…1eiw3ue&„11eiwD̂(a)…] r̂

3@„12e2 iwD̂†(a)…^gu1e2 iw3
„11e2 iwD̂†(a)…^eu#

4 projection onug&^gu 1
4 ug&^gu„12eiwD̂(a)…r̂„12e2 iwD̂†(a)…/Pg
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The next step is a Raman laser pulse tuned resonant t
frequencyv of the trapping potential using the circular
polarized lasersc and b. The density operator of the com
bined system is then given by

r̂25
1

2
„ug&1eiw1ue&D̂~a!…r̂„^gu1e2 iw1D̂†~a!^eu…. ~3!

This is a shiftD̂(a)5eaâ†2a* â in phase space just for tha
part of the motional state that is correlated with the inter
stateue&. Here â and â† are the usual annihilation and cre
ation operators of the harmonic trap oscillator. The modu
of a is controlled by the duration and strength of the pul
and the phase is again controlled by the phase differenc
the lasers.

So far, the shift operatorD̂(a) is still entangled with the
internal stateue&. We can now remove this entanglement
projecting on a superposition of the two statesug& and ue&.
This is achieved by applying another resonant Raman l
pulse, such as the first pulse, yielding the transforma
ug&→(ug&1eiw3ue&)/A2 and ue&→(2e2 iw3ug&1ue&)/A2,
wherew3 is the phase difference of the two lasersa andb.
This gives the new total state

r̂35
1

4
@ ug&„12ei ~w12w3!D̂~a!…1ue&„eiw31eiw1D̂~a!…] r̂

3@„12e2 i ~w12w3!D̂†~a!…^gu

1„e2 iw31e2 iw1D̂†~a!…^eu#. ~4!

Finally measuring the population of the lower internal st
ug&, we find the probability

Pg~a,w!5
1

4
Tr$„12eiwD̂~a!…r̂„12e2 iwD̂†~a!…%

5
1

2
2

1

2
Re@eiwTr$D̂~a!r̂%#, ~5!

where w5w12w3. We now see thatPg(a,w) is directly
related to the real part of the characteristic function of
Wigner function

x~a!5Tr$r̂D̂~a!%, ~6!

through
the
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Pg~a,w!5
1

2
2

1

2
Re@eiwx~a!#. ~7!

Therefore, we obtain the whole complex function at the po
a,

x~a!5122Pg~a,0!1 i F2PgS a,
p

2 D21G , ~8!

by a measurement ofPg(a,w) for two phasesw50,p/2.
Due to the propertyx* (a)5x(2a) the number of neces
sary measurements effectively reduces to the number of
sired different values ofa.

Since the characteristic function contains the full inform
tion about the state, we can easily calculate any expecta
value from it @13#, e.g., the density operator is given by

r̂5E d2a

p
x~a!D̂†~a!. ~9!

The characteristic function is the Fourier transform of t
Wigner function

W~b!5E d2a

p2
x~a!eba* 2b* a ~10!

and, therefore, behaves in a complementary way: Displa
ments in phase space lead to phase factors in the chara
istic function, whereas oscillations of the Wigner functio
are represented by shifts in the characteristic function.
the information about the state is as easily accessible a
the Wigner function. A detailed discussion about a dire
interpretation of the characteristic function, which is al
known as the Shirley or ambiguity function, can be found
Ref. @14#.

The characteristic function of the Wigner function h
a feature of particular use for state reconstruction. In
vicinity arounda50, x(a) already contains enough infor
mation to get theQ function. The reason for this is that th
characteristic function of the Q function xQ(a)
5x(a)exp(2uau2/2) is approximately given by the charac
teristic function of the Wigner function in the neighborhoo
of a50, and is negligible elsewhere. Therefore, it is ve
easy to get a rough picture of the stater̂. This helps to make
the experiment efficient since the regions of phase sp
where it is relevant to measurex(a), are known from the
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knowledge of theQ function. We show in Fig. 2 the charac
teristic functions of an incoherent and a cohere
Schrödinger-cat state with the same amplitudes. Both ch
acteristic functions show the same oscillations around
origin that encode the complex amplitudes. The coherenc
the Schro¨dinger-cat state is reflected in the two addition
bumps, away from the origin. The position of these bum
can already be predicted from the knowledge ofx(a) around
a50.

The main ingredient of our approach is a superposition
the quantum state and the quantum state shifted in p
space by an amplitudea. From the interference term, we ca
then extract the characteristic function of the Wigner fun
tion. In principle, our approach has similarities with schem
to prepare a Schro¨dinger-cat state@2#. The main difference is
that the two constituent coherent states of the Schro¨dinger
cat are replaced by the shifted unknown state, which is
constructed.

Actually all the experimentally required techniques f
our scheme have already been successfully realized by M
roe et al. in Ref. @2#. But it has not been pointed out earlie
that the data shown in their Figs. 4 and 5 can be interpre
as characteristic functions for various coherent states.
difference is that, in addition, they correlate the internal st
ug& in Eq. ~3! with another shiftD̂(2ã), where ã5aeif.
With their starting stater̂5u0&^0u, this leads to

FIG. 2. Characteristic functionx(a5a r1 ia i) of an incoherent
and a coherent Schro¨dinger-cat state. In~a! we showx(a) for an
incoherent superpositionr̂51/2ub&^bu11/2u2b&^2bu. The am-
plitude b51.521.5i is encoded in the oscillations. In~b! we show
x(a) for an even Schro¨dinger-cat state with the same amplitudeb
as above. The coherence is represented by the two additional b
at 62b in comparison with~a!. Note that in both casesx(a) is
real.
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1

2
2

1

2
Re@eiwTr$D̂~a!D̂~ ã !ua&^au%#. ~11!

The two shift operators can be combined to a single o
except for a phase factorei Im(aã* ). By comparing Eqs.~11!
and~5! we realize that their results are related to the char
teristic function of a coherent stateua& at the positiona

1ã. Their theoretical curves show very good agreem
with the experiment, directly demonstrating the feasibility
our approach.

An advantage of our scheme is that the time required
perform all the steps is very short, because we only use r
nant interactions. This plays an essential role concerning
loss of coherence during the measurement procedure.
time scale of decoherence is about 84ms @1#. The interac-
tions of the first and third steps require 0.5ms each, and the
second step takes about 10ms. The procedure for directly
measuring the Wigner function proposed by Lutterbach a
Davidovich @12# requires an additional 50ms. That is be-
cause their scheme requires an accessory slow dispersiv
teraction to achieve a correlation of the type of Eq.~3!,
where the shift is replaced by a rotation. Likewise, t
method by Leibfriedet al. @5#, which was used to measur
the Wigner function, requires another step. It is based on
additional monitoring of the time evolution of the syste
according to a Jaynes-Cummings-type interaction. This co
plicates the data analysis further. The method by Kimet al.
@11# requires an additional time evolution according to t
Jaynes-Cummings model as well.

Despite the fact that we have only discussed the use
our scheme to measure the state of a trapped atom, it i
principle, possible to apply it to measure the quantum s
of a cavity field as well. The problem is to realize a displac
ment operator for the cavity field state correlated to the
ternal state of a passing atom. Such a displacement oper
has been suggested by Davidovichet al. @15# in the context
of quantum switches using a dispersive atom-field inter
tion. Unfortunately, it is necessary to compensate additio
rotations of the field state in phase space, depending on
amplitude of the phase shift. Even though this can be don
for instance, by a more complicated data analysis—the
perimental realization is more difficult. Also, the control
parameters, such as interaction strength and time, is less
cise since the atoms can take different paths through
cavity due to imperfect collimation.

To summarize, we have introduced a method to direc
measure the characteristic function of the Wigner function
the center-of-mass motion of a trapped atom. We h
shown that our method can be readily used in an actual
periment. It is simple and fast with respect to both expe
ment and data analysis.

One of us~P.J.B.! thanks the Alexander von Humbold
Foundation for supporting his work at the Royal Institute
Technology.
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