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Simple scheme for state measurement
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We present a simple and fast scheme to measure the state of a trapped atom. Our method directly yields the
characteristic function of the Wigner function avoiding a demanding data analysis. We show that our method
can be readily applied to an actual experim¢8t.050-294{@9)50702-9

PACS numbd(s): 42.50.Dv, 03.65.Bz

In recent years the experimental progress in the prepara- The system considered is the one-dimensional center-of-
tion and reconstruction of quantum states has been enormousass motion of a particle in an effective harmonic trap po-
in the case of higl cavities and trapped atoms. It is now tential with frequencyw and two internal levels separated by
possible to create and measure a variety of nonclassical transition frequency). For all the steps, the coupling of
quantum statefl—3] and to perform simple quantum logic the internal levels and the oscillator levels can be seen in Fig.
operationg4]. Particularly worth mentioning is the complete 1. In the experimenf1,2,5, the internal states are long-
reconstruction of a nonclassical quantum sfae Another  living hyperfine spin states with a forbidden direct transition.
topic of interest is the study of the decoherence of states di€énce it is possible to select the various required couplings
the Schidinger-cat type[6], where the loss of coherence P€tween the levels by using appropriate frequencies and po-
increases the more classically distinguishable the two COH@I‘IZ&I’[‘IOHS of the Rama'nl laser pulses, and_ by exploiting t.he
stituent states arg7]. This imposes a limit on the size of a selection rules for transitions. The successive transformation

Schralinger cat that can be reconstructed. In order to pusl‘?f the state can b_e followed in Table 1. :

R The starting point for the state measurement is the state
this limit, it is important to have methods to measure the
guantum state in a time that is much shorter than the deco- . .
herence time. This can only be done by a method that con- po=19)(alp, D
sists of a few fast steps.

There has also been a large number of theoretical ideggith the unknown quantum stafeof one dimension of the
for state reconstructiof8,9]. But only a few of the proposals center-of-mass motion and the lower internal stgpe First,
have a strikingly simple data analysis. The scheme for diwe transform the initial internal statg) into the superposi-
rectly measuring the characteristic function of the Wignerijon (|g)+e'¢1|e))/\2 via a Raman laser-pulse resonant
function was made by Wilkens and Meysltd]. Recently, a  with (), using the linearly polarized laseasandb in Fig. 1.
similar suggestion was made by Kigt al. [11]. A scheme Then we have the total state
that directly yields the Wigner function was suggested by
Lutterbach and Davidovichi12]. What these schemes all 1
have in common is that the data analysis is very simple. The i)1=§(|g)+e“"1|e))i)(<g|+e“<°1<e|). 2)
function representing the quantum state is directly given by
measuring the population of an auxiliary two-level system.

We present a method to directly measure the characteri§-he relative phase; betweeng) and|e) is adjusted by the
tic function of the Wigner function of the motional state of a phase difference of the two lasers.
trapped particle. The method consists of only three simple

steps. All the steps of our state measurement scheme closely 4
follow the scheme to prepare a Sctimger cat in the Paul \ i b \i
trap as presented by Monre¢ al.[2]. Before we discuss the e bl \
relation of our findings to their work, we will describe our =
scheme in detail. Finally, we show its experimental feasibil- —t e | a
ity. € a
Because the dynamics of a mode of a cavity field and a Q R I
trapped atom are mathematically closely related, measure- Y ol -
ment schemes are, in general, suitable for both systems. AT
Therefore, we have discussed the achievements in both cases lohiey
together. However, in order to describe our method, we will g1 1. schematic level structure and couplings. The transition
focus on a trapped atom because of the strong relation be@equency between the vibrational levéts= 0),In=1), ..., is @

tween our scheme and the experimental realization of @nd between the two internal statfg) and|e), is Q. The linearly
Schralinger-cat state mentioned above. The case of a cavityolarized Raman laser beanasand b resonantly couple levels

mode that is experimentally more complicated is discussefh)|n) and |e)|n), whereas the circularly polarized Raman laser
briefly at the end. beamsb andc couple levelge)|n) and|e)|n+1).
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TABLE I. We summarize the transformation of the total system for each step of the measurement scheme.
The density operator to be measuredpiswhereas/g) and |e) denote two auxiliary internal states. The
parameters of the transformation—the phages ¢35, ¢=¢;— ¢35, and the amplituder of the shift—are
determined by the applied laser pulses.

Step Function State of system

0 initial lg){(g|p

1 ml2-pulse 3(lg)+e'*11e))p((gl +e '*x(el)

2 shift by 1(|g)+€'“1/e)D(a))p((g| +e 1D (a)(e|)

3 w/2-pulse |g)(1—€“D(a))+e'#3|e) (1 +eD(a))] p

X[(1—e Di(a))(g|+e '¢3(1+e *D'(a))(e|]
4 projection onlg){g| %|g>(g|(1—ei‘Pf)(a))i;(l—e"‘PﬁT(a))/Pg
The next step is a Raman laser pulse tuned resonant to the 1 1 _
frequencyw of the trapping potential using the circularly Py(a,¢)=7— sReex(a)]. )
polarized laserg and b. The density operator of the com-
bined system is then given by Therefore, we obtain the whole complex function at the point
@,

o L o
=5 (|g)+e*1e)D(a))p((g| +e 1D (a)(el). (3)
x(a)=1-2Py(a,0)+i

v

ZPQ((X,E) —l}, (8)
This is a shiftD(a)=e®' ~**2 in phase space just for that
part of the motional state that is correlated with the internaby a measurement Ry(a,p) for two phasesp=0,7/2.
state|e). Herea and a' are the usual annihilation and cre- Due to the property* (a) = x(— ) the number of neces-
ation operators of the harmonic trap oscillator. The modulugsary measurements effectively reduces to the number of de-
of a is controlled by the duration and strength of the pulsesired different values oé.
and the phase is again controlled by the phase difference of Since the characteristic function contains the full informa-
the lasers. tion about the state, we can easily calculate any expectation

So far, the shift operatdd(«) is still entangled with the value from it[13], e.g., the density operator is given by
internal statde). We can now remove this entanglement by )
projecting on a superposition of the two statgs and|e). ~ f d_a ( )I5T( ) )
This is achieved by applying another resonant Raman laser p= a X\ «-
pulse, such as the first pulse, yielding the transformation o o _
lg)—(Jg)+€'*3|e))/y2 and |e)—(—e 3g)+|e))/ 2, Th_e characte_rlstlc function is the Fourier transform of the
where ¢ is the phase difference of the two laserandb. ~ Wigner function

This gives the new total state ,

d°a * *
L1 o o W(B)= J — x(@)efe —Fre (10
ps=7119)(1 (¥~ 9D(a)) +|e) (€ ¥3-+ &'1D ()] p m

T and, therefore, behaves in a complementary way: Displace-
X[(1—e "*17#ID(a))g| ments in phase space lead to phase factors in the character-
i oAt istic function, whereas oscillations of the Wigner function

*(e7¥se D (a))el]. “ are represented by shifts in the characteristic function. All
othe information about the state is as easily accessible as in
the Wigner function. A detailed discussion about a direct
interpretation of the characteristic function, which is also
1 . A . known as the Shirley or ambiguity function, can be found in
Py(a, @)= ZTr{(l— e'¢D(a))p(l—e '¢*D'(a))} Ref.[14].
The characteristic function of the Wigner function has

Finally measuring the population of the lower internal stat
|g), we find the probability

1 1 ) R R a feature of particular use for state reconstruction. In the
=5~ 5Ree¥Tr{D(a)p}], (5 vicinity arounda=0, x(a) already contains enough infor-
mation to get the& function. The reason for this is that the
where ¢=¢;— p3. We now see thaPy(a,¢) is directly characteristic  function of the Q function xq(a)

related to the real part of the characteristic function of the=X(@)exp(~|f’/2) is approximately given by the charac-
Wigner function teristic function of the Wigner function in the neighborhood

of =0, and is negligible elsewhere. Therefore, it is very
X(a)z-rr{,“,f)(a)}, (6) easy to get a rough picture of the stateThis helps to make
the experiment efficient since the regions of phase space,
through where it is relevant to measupg «), are known from the



RAPID COMMUNICATIONS

R952 P. J. BARDROFF, M. T. FONTENELLE, AND S. STENHOLM PRA 59
1 1 ) ~ “
Pg=§— ERQG"PTr{D(a)D(aHa><a|}]. (11

The two shift operators can be combined to a single one,
except for a phase factef'™@*"). By comparing Eqs(11)
and(5) we realize that their results are related to the charac-
teristic function of a coherent stater) at the positiona

+a. Their theoretical curves show very good agreement
with the experiment, directly demonstrating the feasibility of
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(b) -.,::-Z:%' ::’Z:’:::::.:#.. our approach. _ . _
%W)&%%% An advantage of our scheme is that the time required to
Of:f’:':':':':':’:':’?."// "(’f’\;}:'::::'::::’.:'ffi:::'f’: perfqrm all the steps_ls very short, beca}use we only use reso-
.,{"z{.:‘f.:,::.::::{/ﬁil j N{,,AE,:.:,:':::::#;.:.:...# nant interactions. This plays an essential role concerning the
i@@%’%ﬁl/ﬂ/@w loss of coherence during the measurement procedure. The
.ﬁgﬁmﬁﬁﬁw time scale of decoherence is about 84[1]. The interac-
7

Vs tions of the first and third steps require QS each, and the

v second step takes about L&. The procedure for directly
measuring the Wigner function proposed by Lutterbach and
Davidovich [12] requires an additional 5@s. That is be-
cause their scheme requires an accessory slow dispersive in-
teraction to achieve a correlation of the type of E8),
where the shift is replaced by a rotation. Likewise, the
method by Leibfriedet al. [5], which was used to measure
the Wigner function, requires another step. It is based on an
as above. The coherence is represented by the two additional bum gdmonal monitoring of the time evolution of the system

at =2 in comparison with(a). Note that in both caseg(«) is qcording toa Jaynes-C.ummings—type interaction. T,his com-
real. plicates the data analysis further. The method by I€inal.

[11] requires an additional time evolution according to the
knowledge of theQ function. We show in Fig. 2 the charac- Jaynes-Cummings model as well. _
teristic functions of an incoherent and a coherent Despite the fact that we have only discussed the use of
Schrainger-cat state with the same amplitudes. Both char@U" Scheme to measure the state of a trapped atom, it is, in
acteristic functions show the same oscillations around th@'inciple, possible to apply it to measure the quantum state
origin that encode the complex amplitudes. The coherence &if @ cavity field as well. The problem is to realize a displace-
the Schidinger-cat state is reflected in the two additionalment operator for the cavity field state correlated to the in-
bumps, away from the origin. The position of these bumpstemal state of a passing atom. Such a displacement operation

can already be predicted from the knowledge/6#) around ~ has been suggested by Davidoviehal. [15] in the context
a=0. of quantum switches using a dispersive atom-field interac-

The main ingredient of our approach is a superposition 0fion._Unfortunate.Iy, it is necessary to compensate qdditional
the quantum state and the quantum state shifted in phaggtations of the field state in phase space, depending on the
space by an amplitude. From the interference term, we can amPplitude of the phase shift. Even though this can be done—
then extract the characteristic function of the Wigner func-0r instance, by a more complicated data analysis—the ex-
tion. In principle, our approach has similarities with schemed?€fimental realization is more difficult. Also, the control of
to prepare a Schringer-cat statf2]. The main difference is pgram_eters, such as interaction st(ength and time, is less pre-
that the two constituent coherent states of the Gtihger ~ CiS€ Since the atoms can take different paths through the

cat are replaced by the shifted unknown state, which is re€avity due to imperfect collimation. _
constructed. To summarize, we have introduced a method to directly

Actually all the experimentally required techniques for Méasure the characterist.ic function of the Wigner function of
our scheme have already been successfully realized by Mofl€ Cénter-of-mass motion of a trapped atom. We have
roe et al. in Ref. [2]. But it has not been pointed out earlier ShoWn that our method can be readily used in an actual ex-
that the data shown in their Figs. 4 and 5 can be interpreteB€riment. It is simple and fast with respect to both experi-
as characteristic functions for various coherent states. ThH&eNnt and data analysis.
difference is that, in addition, they correlate the internal state  One of us(P.J.B) thanks the Alexander von Humboldt
|g) in Eq. (3) with another shiftD(— «), wherea=ae'?. Foundation for supporting his work at the Royal Institute of
With their starting stat@=|0)(0|, this leads to Technology.

FIG. 2. Characteristic functiog(a@= a,+i«;) of an incoherent
and a coherent Schdnger-cat state. Iifa) we showy(a) for an
incoherent superpositiop=1/2| 8){ 8|+ 1/2| — B){— B|. The am-
plitude B=1.5-1.5 is encoded in the oscillations. lb) we show
x(a) for an even Schidinger-cat state with the same amplityéle
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