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Order-a radiative correction to the rate for parapositronium decay to four photons
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~Received 13 July 1998!

We have calculated theO(a) radiative correction affecting the decay rate of parapositronium to four
photons. Our result for the rate isG(4g)5GLO(4g)@1214.5(6)a/p1O(a2)#, whereGLO(4g) is the lowest
order four-photon decay rate. Our prediction for the four-photon to two-photon branching ratio, including all
O(a) corrections, isR51.4388(21)31026. We also have a higher precision result for the lowest-order rate:
GLO(4g)50.013 8957(4)ma7. @S1050-2947~99!50202-3#

PACS number~s!: 36.10.Dr, 12.20.Ds, 31.15.Md, 31.30.Jv
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It has recently become possible to measure the branc
ratio R for the four-photon vs two-photon decay of par
positronium. A measurement of the four-photon decay,
ported in 1990, yielded a result@1#

R5@1.3060.26~statistical!60.16~systematic!#31026.
~1!

Two measurements reported in 1994 gave more precise
sults @2,3#:

R5@1.5060.07~statistical!60.09~systematic!#31026,
~2!

R5@1.4860.13~statistical!60.12~systematic!#31026.
~3!

Another measurement was obtained in 1996 as a by-pro
of a search forC-violating decays@4#:

R5@1.1960.14~statistical!60.22~systematic!#31026.
~4!

Theoretically, the branching ratioR5G(4g)/G(2g) is
obtained as the ratio of four-photon to two-photon dec
rates, which are calculated individually. TheO(a) corrected
two-photon decay rate was found by Harris and Brown to
@5,6#

G~2g!5GLO~2g!H 12S 52
p2

4 D a

p
1O~a2!J , ~5!

where the lowest-order two-photon rate

GLO~2g!5
1

2
ma5 ~6!

was calculated long ago by Wheeler@7# and by Pirenne@8#.
The lowest-order four-photon rate has been obtained by
eral groups@9–13#. The most precise of these is due
Adachi @13#, who found a lowest-order QED prediction o
RLO51.4796(6)31026, which translates into

GLO~4g!50.013 893~6!ma7. ~7!

The O(a) corrections to multiphoton decay rates tend
enter at the few percent level@0.6% for the two-photon rate
of Eq. ~5! and 2.4% for the three-photon decay of ortho
PRA 591050-2947/99/59~2!/915~4!/$15.00
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ositronium@14–16##. Since the combined uncertainty of th
results in Eqs.~2! and~3! is 6.4%, it seems safe to compa
these results to the lowest-order value ofR. However, the
O(a) correction toR will have to be known in order to
analyze future, more precise experimental results. Our m
result in this Rapid Communication is a calculation of t
O(a) correction toG~4g!, and thus toR.

The general expression for the parapositronium to fo
photon decay rate is

G~4g!5E d~PS!
1

4!
uM u2, ~8!

whereM is the amplitude for parapositronium decay at re
into four photons having momentaki and polarizatione i ,
and uM u2 is the spin sum

uM u25 (
e1 ,e2 ,e3 ,e4

uM u2. ~9!

The four-photon phase-space integral is@17#

E d~PS!5E d3k1

~2p!32v1

d3k2

~2p!32v2

d3k3

~2p!32v3

d3k4

~2p!32v4

3~2p!4d~P2k12k22k32k4!, ~10!

wherev i5ukW i u andP'(2m,0W ). ~It is adequate at this orde
of approximation to ignore the binding energy and take
parapositronium rest mass to be simply 2m.) After using the
four-dimensionald function and performing a trivial integra
tion over the three Euler angles describing the overall ori
tation in space of the decay configuration, the phase spa
described by five variables. We made use of two expl
parametrizations of the phase space. The first,

E d~PS!5
m4

210p6 E
0

1

dx1E
0

x2
max

dx2E
0

p

du2 sinu2

3E
0

p

du3sinu3E
0

2p

df3x1x2H, ~11!

wherexi5v i /m, is in terms of the~normalized! energies of
photons 1 and 2, the polar angles of photons 2 and 3, and
R915 ©1999 The American Physical Society
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azimuthal angle of photon 3.~The direction of photon 1 is
taken to define thez axis, and photon 2 is taken to lie in th
xz plane.! Here one has

x2
max5

2~12x1!

22x1~12cosu2!
, ~12!

x35
Q2

2m~Q02QW •kŴ3!

, ~13!

where Q5P2k12k2 . The function H has the formH
54m2x3

2/Q2. The second phase-space parametrization
based on invariant variables, and has the form@18,19#

E d~PS!5
m4

27p6 E
0

1

ds1E
0

s1
ds2E

s2 /s1

12s11s2
du1

3E
u2

2

u2
1

du2E
21

1

dz
1

Al~1,s2 ,s28!~12z2!
,

~14!

whereu2
6 and l are defined in@19#, as are expressions fo

the inner productski•kj in terms of the integration variables
We found that the decay rate contributions were gener
smoother when using the second phase-space parame
tion. Unfortunately, the second parametrization led more r
idly to floating-point errors, often forcing us to stick with th
first parametrization or to use quadruple precision variab
in our numerical routines.

The lowest-order decay rate comes from Eq.~8!, with M
replaced by the lowest-order decay amplitudeMLO ~depicted
in Fig. 1!. The lowest-order amplitude can be written as

MLO5
1

m3 (
S4

trF ~2 iege4* !
i

2gr 421
~2 iege3* !

i

gr 1221

3~2 iege2* !
i

gr 121
~2 iege1* !CG , ~15!

where the sum is over the 4! elements of the permuta
groupS4 , r i5n2ki /m, r i j 5n2(ki1kj )/m, n5(1,0W ), and
the wave-function factorC is the product of the nonrelativ
istic wave function at contactf05@m3a3/(8p)#1/2 times a
normalized spin-zero matrix factor@20#:

FIG. 1. Lowest-order parapositronium to four-photon decay d
gram.
is
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iza-
-

s

n

C5f0S 0 1/&

0 0 D . ~16!

One finds that

MLO5
ip3/2a7/2

m3/2 (
S4

1

x1x12x4

1

4

3tr@ge4* ~2gr 411!ge3* ~gr 1211!ge2*

3~gr 111!ge1* ~gn11!g5#, ~17!

where xi5n•ki /m and xi j 5xi1xj2ki•kj /m2. The polar-
ization sums were done using the replacement

-

FIG. 2. Diagrams contributingO(a) corrections to the four-
photon decay of parapositronium. They represent~a! light-by-light
scattering,~b! outer self-energy,~c! inner self-energy,~d! outer
single vertex,~e! inner single vertex,~f! outer double vertex,~g!
inner double vertex,~h! triple vertex, and~i! ladder contributions to
the decay rate. The bound-state wave function is implicit in e
diagram. Note that diagrams~a!, ~b!, ~d!–~f!, and ~h! must be
doubled.

TABLE I. Contributions to the parapositronium to four-photo
decay rate in units of (a/p)GLO(4g). Infrared divergences are
regulated by a photon massl ~measured in terms of the electro
mass!.

Graph Contribution

Light-by-light 20.0271(3)
Outer self-energy 4 lnl13.178(12)
Inner self-energy 2 lnl12.690(5)
Outer single vertex 24 ln l10.351(9)
Inner single vertex 24 ln l20.987(3)
Outer double vertex 21.430(6)
Inner double vertex 23.280(8)
Triple vertex 21.78(30)

Ladder
2p

l
12 ln l213.21~52!

Total
2p

l
214.5~6!
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(
e

em* en→2gmn . ~18!

We performed the traces with the symbolic manipulat
systemREDUCE @21#, and did the resulting five-dimensiona
integral using the adaptive Monte Carlo integration routi
VEGAS @22#. Our result for the lowest-order rate is

GLO~4g!50.013 895 7~4!ma7. ~19!

The O(a) contribution to the decay rate was comput
following the procedure of Stroscio and Holt@23# and
Caswell, Lepage, and Sapirstein@14# for the analogous prob
lem of orthopositronium decay to three photons, except
the interpretation and removal of the ladder graph thresh
singularity was handled by way of nonrelativistic QE
~NRQED! @24,25#. The contributions for the various dia
grams of Fig. 2 are shown in Table I. The unrenormaliz
self-energy and single vertex diagrams are divergent in
ultraviolet but finite in the infrared. The renormalized di
grams, however, contain infrared divergences that are lo
rithmic in the photon mass that is used for infrared regu
ization. We used known analytic forms for the self-ener
and single-vertex functions, and used Feynman paramete
combine denominators for the double-vertex, triple-vert
ladder, and light-by-light graphs. The integrals~of up to ten
dimensions! were performed numerically usingVEGAS. For
the nine-dimensional triple-vertex integral we found it ne
essary to use the second phase-space parametrization
break up the integral over the angular variablez into a num-
ber of parts that were evaluated individually.

The ladder graph contains a threshold singularity and
quires special consideration. The integral for this graph
the form

I L5E d~PS!(
S4

E d4q

ip2

T~q!

Z~q!

3@~2q21l2!~2q212qn!~2q222qn!#21,

~20!

where Z(q)5@2(q1r 1)211#@2(q1r 12)
211#@2(q

2r 4)211# andT(q) is a trace factor.~The loop momentum
q and photon massl are measured in terms of the electr
massm.) We found it useful to writeT(q) as the sum of
three terms:T(q)2T(0)2T1 , T1 , and T(0), whereT1 is
the part ofT(q) that is linear inq. In the first two terms we

TABLE II. Results from numerical integration forI L(3), the
T(0) part ofT(q), at various values of the photon mass parame
l @in units of (a/p)GLO(4g)]. Removal of the threshold and loga
rithmic singularities givesI L8(3)5I L(3)2(2p/l 12 ln l).

l I L(3) I L8(3)

0.20 20.025~34! 28.172(34)
0.15 29.250~57! 28.844(57)
0.12 38.842~78! 29.277(78)
0.10 48.527~109! 29.699(109)
0.07 74.138~209! 210.303(209)
0.05 108.537~396! 211.135(396)
,
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setl→0 and used the second phase-space parametrizati
do the integrals. We found values of213.82(7) and
12.82(19), respectively@in units of (a/p)GLO(4g)]. For the
third term I L(3) we used the first phase-space parametr
tion to perform the integrals at various values ofl as shown
in Table II. The uncertainties grew rapidly forl smaller than
0.10. The 1/l threshold singularity is evident in the results
Table II. Analysis shows that the integral behaves li
2p/l12 lnl1O(1) for smalll. @The analogous integral fo
the two-photon decay of parapositronium can be done
actly, and has an expansion 2p/l12 lnl1A1Bl1Cl2

1Dl31(E ln l1F)l41Gl51Hl61O(l7), whereA-H are all
constants, withA52222 ln 2, B5p/12, C521/3, etc.#
We subtracted 2p/l12 lnl from the results shown in the
second column of Table II to obtain the third columnI L8(3)
of that table. We fit theI l8(3) numbers to a quadratic form
A1Bl1Cl2 ~see Fig. 3!. Our best-fit value forA was
212.21 with a fitting error of 0.47. The 2p/l in the final
result represents the threshold singularity, and is remove
the process of NRQED matching@25#.

Our final result for theO(a) corrected decay rate is

G~4g!5GLO~4g!H 1214.5~6!
a

p
1O~a2!J . ~21!

This corresponds to a 3.4% correction to the lowest-or
rate. Our prediction for the branching ratio is

R51.4388~21!31026. ~22!

Corrections of ordera2 have not been computed, but shou
be negligible compared to the order-a uncertainties given.

G.S.A. acknowledges the support of the National Scie
Foundation~through Grant Nos. PHY-9722074 and PHY
9711991! and the Franklin and Marshall College Gran
Committee. We would like to thank Mark Skalsey for usef
discussions and encouragement, and Dave Crandles fo
vice on the fitting procedure.

FIG. 3. Graph showsI L8(3) as a function of the photon massl.
The data points with error bars represent results from numer
integration ~the third column of Table II!. The solid line is the
quadratic best fit A1Bl1Cl2, with A5212.21(47), B
529.9(6.3), andC5249(21).
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