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Order- a radiative correction to the rate for parapositronium decay to four photons

Gregory S. Adkins and Eric D. Pfahl
Franklin and Marshall College, Lancaster, Pennsylvania 17604
(Received 13 July 1998

We have calculated th®(«) radiative correction affecting the decay rate of parapositronium to four
photons. Our result for the rate ’i{47y) =T o(47y)[1— 14.5(6)a/ 7+ O(a?)], wherel' | o(47) is the lowest
order four-photon decay rate. Our prediction for the four-photon to two-photon branching ratio, including all
O(a) corrections, isR=1.4388(21)< 10 8. We also have a higher precision result for the lowest-order rate:
I' o(4y)=0.013 8957 (4)ma’. [S1050-294®9)50202-3

PACS numbdps): 36.10.Dr, 12.20.Ds, 31.15.Md, 31.30.Jv

It has recently become possible to measure the branchingsitronium[14-16]. Since the combined uncertainty of the
ratio R for the four-photon vs two-photon decay of para- results in Eqs(2) and(3) is 6.4%, it seems safe to compare
positronium. A measurement of the four-photon decay, rethese results to the lowest-order valueRaf However, the

ported in 1990, yielded a resylt] O(a) correction toR will have to be known in order to
o ] 6 analyze future, more precise experimental results. Our main
R=[1.30+0.2¢ statistica) + 0.16 systematig] X 10" ". result in this Rapid Communication is a calculation of the

O(«) correction tol'(4y), and thus taR.

Two measurements reported in 1994 gave more precise re- The general exp_ression for the parapositronium to four-
sults[2,3]: photon decay rate is

1

_ it o . s _
R=[1.50* 0.07 statistica) = 0.09 systemati¢] X 10 ,(2) T(4y)=fd(PS)E|M|2, ®

- ot i -6
R=[1.48+0.13 statistica) = 0.12 systematig] X 10"°. whereM is the amplitude for parapositronium decay at rest

( into four photons having momentq and polarizatione; ,

Another measurement was obtained in 1996 as a by-produénd|M|? is the spin sum
of a search folC-violating decay44]:

R=[1.19+0.14 statistica) == 0.22 systematig] x 10~ . M[2= > [M[2 9

€1,€,€3,€4
4

Theoretically, the branching rati®=T(4y)/T'(2y) is '€ four-photon phase-space integral i3]
obtained as the ratio of fqur—photon to two-photon decay K K K K
rates, which are calculated individually. Th¥ «) corrected J d(PS)=f 1 2 3 4
two-photon decay rate was found by Harris and Brown to b (2m) 2w, (27)320, (27)* 203 (27)%2w,

[5,6] X (27)*8(P—ky—ko,—kz—Ky), (10

2

a a
F(27’)=FL0(27)[ 1_<5_ T);’Lo(az)]a ©) wherew;=|k;| andP~(2m,0). (It is adequate at this order
of approximation to ignore the binding energy and take the

where the lowest-order two-photon rate parapositronium rest mass to be simply.2 After using the
four-dimensionals function and performing a trivial integra-
tion over the three Euler angles describing the overall orien-
tation in space of the decay configuration, the phase space is
described by five variables. We made use of two explicit

was calculated long ago by Wheel[@i and by Pirenng¢8].  parametrizations of the phase space. The first,
The lowest-order four-photon rate has been obtained by sev-

eral groups[9-13. The most precise of these is due to m¢ (1 (max w _
Adachi [13], who found a lowest-order QED prediction of f d(P9= WJ dxlf 2 dxzf dé,sind,
Ro=1.4796(6)x 10 ©, which translates into 0 0 0

1
FLO(Z?’):Emas (6)

T 2
' o(4y)=0.0138986)ma’. (7) X fo d6,sin 63 . daX xoH, (11

The O(«) corrections to multiphoton decay rates tend to
enter at the few percent leve).6% for the two-photon rate wherex;= w;/m, is in terms of thgnormalized energies of
of Eq. (5) and 2.4% for the three-photon decay of orthop-photons 1 and 2, the polar angles of photons 2 and 3, and the
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FIG. 1. Lowest-order parapositronium to four-photon decay dia-

gram.

azimuthal angle of photon 3The direction of photon 1 is
taken to define the axis, and photon 2 is taken to lie in the
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xz plane) Here one has

max__
X —

2(1—-x%y)

2

X3:

Q2

2—X4(1—cosb,) '

2m(Qy—G-ks)

(12

13

where Q=P—k;—k,. The functionH has the formH
=4m?x5/Q? The second phase-space parametrization i$yne finds that

based on invariant variables, and has the fp1i8,19

m* 1 Sy
J’ d(PS):27776 fo dslfo ds,

U+ 1
xffduzf d¢
uz -1 \/)\(1,52,

1-s1+s)

Sy /sy

1

$5)(1- %)
(14
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FIG. 2. Diagrams contributin@®(«) corrections to the four-

photon decay of parapositronium. They repregentight-by-light
scattering,(b) outer self-energy(c) inner self-energy,(d) outer
single vertex,(e) inner single vertex(f) outer double vertex(g)
inner double vertex(h) triple vertex, andi) ladder contributions to
the decay rate. The bound-state wave function is implicit in each
diagram. Note that diagram&), (b), (d)—(f), and (h) must be

doubled.
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Xt yey (— yra+1)yes(yrit+1)yes
X (yri+1)yey (yn+1)ys], 17

where x;=n-k;/m and xijzxi+xj—ki-kj/m2. The polar-

whereu, and\ are defined i{19], as are expressions for ization sums were done using the replacement

the inner productg; - k; in terms of the integration variables.

We found that the decay rate contributions were generally TABLE I. Contributions to the parapositronium to four-photon
smoother when using the second phase-space parametriziecay rate in units of ¢/7)I" o(4v). Infrared divergences are
tion. Unfortunately, the second parametrization led more rapregulated by a photon maas(measured in terms of the electron
idly to floating-point errors, often forcing us to stick with the mass.

first parametrization or to use quadruple precision variables

in our numerical routines.
The lowest-order decay rate comes from E), with M

replaced by the lowest-order decay amplitidg, (depicted
in Fig. 1). The lowest-order amplitude can be written as

1 i
Mio=—52, trl(—ieyel) ———
Lo m3;4 (—ieyey) Y

where the sum is over the 4! elements of the permutation
groupS,, ri=n—k;/m, rj=n—(k+k;)/m, n=(1,0), and
the wave-function factoW is the product of the nonrelativ-
istic wave function at contaap,=[m3a’/(87)]¥? times a
normalized spin-zero matrix fact¢20]:

X(—ieyes) ——
( 7’52),”1

-1

(—ieye]) ¥,

i
_- * —
1(Tleve) oy

(19

Graph

Contribution

Light-by-light

Outer self-energy
Inner self-energy
Outer single vertex
Inner single vertex
Outer double vertex
Inner double vertex
Triple vertex

Ladder

Total

—0.0271(3)

4 1n+3.178(12)
2 In+2.690(5)
—4In\+0.351(9)
—41n\—0.987(3)
—1.430(6)
—3.280(8)
—1.78(30)

2
~ +2In\—13.2%52)

2T 1456
~ 56)
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TABLE I1l. Results from numerical integration fdr (3), the
T(0) part of T(q), at various values of the photon mass parameter
N [in units of (a/m)T" o(4y)]. Removal of the threshold and loga-
rithmic singularities gives| (3)=1,(3)—(2@/\ +2 In}).
A 1.(3) 1L(3)
I'(3)

0.20 20.02634) —8.172(34) -

0.15 29.25(67) —8.844(57)

0.12 38.84278) —9.277(78)

0.10 48.527109 —9.699(109)

0.07 74.13809 —10.303(209) i

0.05 108.537396) —11.135(396) 0 —350s o1 RE 02

* FIG. 3. Graph shows/ (3) as a function of the photon maks
EE: €u€= "0y (18) The data points with error bars represent results from numerical
integration (the third column of Table )I The solid line is the
We performed the traces with the symbolic manipulationduadratic best fit A+BA+CA?  with A=-1221(47), B
systemREDUCE [21], and did the resulting five-dimensional =29.9(6.3), andC=—49(21).
integral using the adaptive Monte Carlo integration routine,

VEGAS [22]. Our result for the lowest-order rate is setA —0 and used the second phase-space parametrization to
do the integrals. We found values of 13.82(7) and
I o(4y)=0.01389574)ma’. (19 12.82(19), respectivelyin units of (a/7)I" o(47v)]. For the

o third term1, (3) we used the first phase-space parametriza-

The O(a) contribution to the decay rate was computedtion to perform the integrals at various valueskos shown
following the procedure of Stroscio and Hdl23] and  jn Taple II. The uncertainties grew rapidly farsmaller than
Caswell, Lepage, and Sapirst¢itd] for the analogous prob- ¢ 10, The It threshold singularity is evident in the results of
lem of orthopositronium decay to three photons, except thafaple |I. Analysis shows that the integral behaves like
the interpretation and removal of the ladder graph thresholg -\ 4 2 |n\+0(1) for smallx. [The analogous integral for
singularity was handled by way of nonrelativistic QED the two-photon decay of parapositronium can be done ex-
(NRQED) [24,29. The contributions for the various dia- 4oty and has an expansionmf\ + 2 In\+A+BA+C\2
grams of Fig. 2 are shown in Table I. The unrenormalized+D)\3+(E|n)\+F))\4+G)\5+H)\6+O()\7), whereA-H are all
self-energy and single vertex diagrams are divergent in th‘?:onstants, WithA=—2-21n2, B=x/12, C=—1/3, etc]

ultraviolet but finite in the infrared. The renormalized dia- We subtracted 2/ +2 In\ from the results shown in the

grams, however, contain infrared divergences that are Iogas'econd column of Table I to obtain the third colut{(3)
rithmic in the photon mass that is used for infrared regular-

L . of that table. We fit thd, (3) numbers to a quadratic form
ization. We used known analytic forms for the self-energy 5 ) )
and single-vertex functions, and used Feynman parame'fers‘tAbJr BMLC.)‘ (S‘?e_ Fig. 3 Our best-fit value_ forA was
combine denominators for the double-vertex, triple-vertex, 12.21 with a fitting error of 0.47. Th?ﬁ/)‘ m_the final :
ladder, and light-by-light graphs. The integréis up to ten result represents the threshold_ singularity, and is removed in
dimensiong were performed numerically usingeGAs. For the process of NRQED matchin@s].
; : - : ; o Our final result for theD(«) corrected decay rate is

the nine-dimensional triple-vertex integral we found it nec-
essary to use the second phase-space parametrization, and
break up the integral over the angular variabiato a num-
ber of parts that were evaluated individually.

The ladder graph contains a threshold singularity and re-
quires special consideration. The integral for this graph ha
the form

[(47)=To(47) 1—14.5(6)%4—0((12) @)

srhis corresponds to a 3.4% correction to the lowest-order
rate. Our prediction for the branching ratio is

d*q T(q)
IL:fd(PS% fﬁfq) R=1.438821)x 10" ®. (22)

X[(—g®+\?)(—g?+2qn)(—g?—2qn)]*
[(~q )(=a am(-a ami Corrections of order? have not been computed, but should

(20) be negligible compared to the orderuncertainties given.

where Z(q)=[—(gq+r)?+1][—(g+r)%+1][—(q G.S.A. acknowledges the support of the National Science
—r,)%+1] andT(q) is a trace factor(The loop momentum Foundation(through Grant Nos. PHY-9722074 and PHY-

g and photon mask are measured in terms of the electron 971199} and the Franklin and Marshall College Grants
massm.) We found it useful to writeT(q) as the sum of Committee. We would like to thank Mark Skalsey for useful
three termsT(q)—T(0)—T4, T,, andT(0), whereT, is  discussions and encouragement, and Dave Crandles for ad-
the part ofT(q) that is linear ing. In the first two terms we vice on the fitting procedure.
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