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Collisional relaxation in a fermionic gas
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We propose a method to study the degeneracy of a trapped atomic gas of fermions through the relaxation of
the motion of a test particle. In the degenerate regime, and for an energy of the test particle well below the
Fermi energy, we show that the Fermi-Dirac statistics is responsible for a strong decrease in the relaxation rate.
This method can be used to directly measure the temperature of the fermionic gas.@S1050-2947~99!50506-4#

PACS number~s!: 03.75.2b, 05.30.Fk, 32.80.Pj
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New techniques for cooling atomic gases, based on ei
laser manipulation or evaporative cooling, have led to sp
tacular progress in the realization of degenerate ato
samples. The most striking example is the Bose-Eins
condensation of alkali-metal vapors@1–3# and, more re-
cently, of an atomic hydrogen gas@4#. These techniques ca
also be applied to fermionic samples, in which spectacu
phenomena, such as the Cooper pairing of atoms@5#, or the
inhibition of the spontaneous emission of an excited atom@6#
have been predicted. In this Rapid Communication,
present a simple and powerful tool to study the degener
parameters of such a fermionic sample, which we cons
ideal for the sake of simplicity.

Numerous possible ways to analyze an atomic Fermi
in the degenerate regime have recently been studied fro
theoretical point of view. Several authors focus on the int
action of the atomic cloud with light: modifications of th
refraction index or of the absorption coefficient of the g
@7,8#, reduction of the spontaneous-emission rate of an
cited atom inside the atomic cloud, and angular depende
of the radiation pattern@9,10#. Spectacular effects are ex
pected when the Fermi momentumpF of the cloud is larger
than the photon momentum. Unfortunately, in this regime
quantitative analysis of the interaction of the gas with re
nant light is difficult. Indeed, it corresponds tonl3.1,
wheren is the spatial density of the gas andl is the wave-
length of the light. Light propagation in the medium is th
strongly affected by multiple scattering effects, which a
difficult to handle.

Other proposed diagnostics of Fermi degeneracy o
trapped gas involve the study of its spatial distribution, eit
for a pure fermionic sample@11–14#, or for a mixture with a
Bose-Einstein condensate@15#. These methods are we
adapted to study the region where the temperatureT is
around the Fermi temperatureTF , but become less sensitiv
to temperature in the strongly degenerate regime wherT
!TF . Also, as pointed out in@10#, one can take advantage o
inelastic processes inside the gas to collect information ab
its degeneracy parameter.

In the present paper we investigate the dynamics o
probe particle~P! in the same trapping potential as the Fer
gas. We assume that we can prepareP on an arbitrary orbit
of the trapping potential. An experimental procedure for su
a preparation is outlined in the last part of this paper. N
glecting any inelastic process, the only way to change
trajectory ofP is an interaction with the Fermi gas. We sho
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that the collisional dynamics ofP gives access to the statis
tical properties of the Fermi gas, in particular its temperat
T.

The trapping potential for the test particleU(r ) is as-
sumed to be harmonic and isotropic, with a frequencyv/2p.
For simplicity we neglect the modification of the potenti
due to the mean-field interaction betweenP and the Fermi
gas. We calculate the dynamics ofP in the Fermi sea by
means of the Boltzmann transport equation@16# in the local-
density approximation:

]w

]t
1v•“ rw1“ rU•“pw5

dw

dt U
coll.

, ~1!

wherew(r ,p,t) is the phase-space density ofp at timet. We
put v5p/M , where M is the mass ofP. With a notation
similar to @16# the collisional contribution to the quantum
Boltzmann transport equation forP is

dw

dt U
coll.

~r ,p,t !52
s

4ph3E d3pf d2V

3@w f~12 f 8!2w8 f 8~12 f !#uv2vf u,

~2!

wheres is the collisional cross section for interactions b
tween P and fermions. Collisions occur in the low-energ
range wheres-wave scattering is dominant; hence the cro
section is isotropic and independent of energy. The first p
of the collisional integral corresponds to the decay of
phase-space density inr ,p due to a collision betweenP and
a fermion with momentumpf : p1pf→p81pf8 . The final
relative velocity points in the direction given byV. The sec-
ond part of the integral describes the reverse process, an
put vf5pf /m, wherem is the fermionic mass. We assum
that a single probe particle is present, or that the gas of
probe particles is sufficiently dilute to be treated as an id
Boltzmann gas. In the latter case we suppose that the num
of test particles is sufficiently low that the relaxation do
not significantly perturb the distribution of the Fermi ga
We use the abbreviationsw85w(r ,p8,t), f 5 f T(r ,pf), and
f 85 f T(r ,pf8). The quantity f T(r ,p) represents the steady
state phase-space distribution of the Fermi gas in the lo
density approximation:
R4125 ©1999 The American Physical Society
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f T~r ,p!5
1

11exp$@p2/2m1U~r !2m#/~kBT!%
, ~3!

wherem is the chemical potential. The Pauli exclusion pri
ciple is represented in the collisional integral by the fact
12 f 8 and 12 f , which give the occupation of the final sta
of the collision @17#. The local-density approximation i
valid whenr FpF@\, wherer F andpF are the sizes in posi
tion and momentum space of the Fermi gas. For a temp
ture much lower than the Fermi temperatureTF @where
kBTF5(6N)1/3\v#, this requires thatN@1. Indeed, one
gets in this caser F5(48N)1/6aHO and pF5(48N)1/6pHO,
whereaHO5@\/(mv)#1/2 andpHO5(m\v)1/2 are the spatial
and momentum extensions of the ground-state harmonic
cillator.

We shall assume that thew(r ,p) is initially a distribution
centered inr0 ,p0, much narrower than the steady-state d
tribution of Eq.~2!: wSS}exp$2@p2/2M1U(r )#/(kBT)%. As
the collisional relaxation proceeds, the population of the n
row peak is transferred to a broad distribution proportiona
wSS. In the following we focus on the initial stage of th
relaxation phenomenon, namely the decay of the nar
peak, which occurs at the rateGT(r0 ,p0) deduced from Eq.
~2!:

GT~r0 ,p0!5
s

4ph3E d3pf d2V f ~12 f 8!uv02vf u. ~4!

This rate could also be derived from the Fermi golden ru
within the local-density approximation.

We now consider three different classes of trajectories
P and discuss how the damping of those trajectories is
fected by the Fermi statistics of the cloud. Most of the c
culations assume equal mass for theP and the fermionic
atoms. Such a condition is approximately realized ifP and
the fermions are isotopes of the same element~i.e., 7Li and
6Li, 39K and 40K). For each trajectory class we calculate t
multiple integral~4! for an arbitrary temperature numerical
and we derive scaling laws for interesting limiting cases.

The first situation consists ofP at rest in the trap center
For a Boltzmann gas with the same number of atoms,
would expectGT

(Bol.)(0,0)5nsv th , where n is the spatial
density at the center of the trap for this gas andv th is the
most probable speed„v th5@8kBT/(pm)#1/2

…. To put in evi-
dence the effects of the Fermi statistics, we plot in Fig. 1
rateGT(0,0) normalized byGT

(Bol.)(0,0). At high temperature
(T.TF) the deviations due to Fermi statistics are negligib
On the other hand, forT,TF , these deviations are spectac
lar and we find thatGT /GT

(Bol.)}T3. This power-law depen-
dence originates from two different phenomena both rela
to Fermi statistics.~i! For the Boltzmann gas,n}T23/2 and
v}AT, while in the fermionic gas the spatial density and t
most probable speed remain constant for vanishingT. This
accounts for a factor}T. ~ii ! For T!TF , P has a finite
collision probability only with fermions within an energ
interval DE;kBT ~see Fig. 2! at the surface of the Ferm
sphere@18#. The solid angleDV available for the allowed
fermionic final states is also proportional toT. Therefore the
collisional rate is reduced by an additional factorDE DV
}T2.
s
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This situation is well suited for determining the temper
ture of the Fermi gas in the degenerate regime. Its abso
calibration depends on the exact mass ratio betweenP and
the fermions. Consequently, in Fig. 1 we also plotGT(0,0)
for the specific case of a cesium atom (133Cs) asP for a
lithium gas (6Li).

We now consider a second type of trajectory consisting
an oscillation ofP with an energyE, and an angular momen
tum L which we set equal to zero~see inset of Fig. 3!. To
calculate the rate at whichP is ejected from this trajectory by
collisions, we suppose that the relaxation is slow with
spect to the period of an oscillation~collisionless regime!.
SinceGT(r ,p) is not constant over the trajectory, we defin
an average collision rate:

gT~E,L50!5
v

2p R GT„r ~ t !,p~ t !… dt. ~5!

FIG. 1. Collisional rateGT(r50,p50) of a probe particle~P! of
massM at rest in the bottom of a trap containing a fermionic gas
temperatureT ~atomic massm). The temperature is plotted in unit
of the Fermi temperatureTF , andGT in units of the rateGBol. for a
Boltzmann gas at the same temperature and with the same nu
of atoms. Squares,M5m; circles,M5(133/6)m ~case of a6Li gas
probed by 133Cs).

FIG. 2. Collision between a fermion andP at rest. The fermion
has an initial momentum equal to the Fermi momentumpF . pP8 and
pf8 are the momenta ofP and the fermion after collision. The cir
cumference with diameterpF passing through the center of th
Fermi sphere gives the possible final states in the case of e
mass. The shell of thicknessmkBT/pF represents the final state
available to the Fermi particle.
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Depending on the energy of the oscillation and the temp
ture of the fermionic gas, we find different regimes~see Fig.
3!. As expected, forT.TF the relaxation rate is the same
the one predicted for a Boltzmann gas. It does not dep
much on the energy of the excitation, even forE.kBT ~as
long as we assume a constants-wave elastic cross section!.
Indeed, whenE grows, the relative velocity betweenP and
the cloud increases asE1/2, while the fraction of the timeP
spends within the cloud decreases asE21/2, leading to a con-
stant average rate. For the degenerate caseT,TF , three en-
ergy domains have to be considered forP. ~i! For E,kBT
,EF , we recover the rateGT(0,0) displayed in Fig. 1.~ii !
For kBT,E,EF , the rate varies asE2. This can be easily
understood at zero temperature withE!EF . In this case
only collisions with fermionic particles with energy close
EF contribute~first factor E), and the solid angle availabl
for the allowed final states brings an extra factorE. ~iii ! For
kBT,EF,E, almost all final states for the fermions after th
collision lie above the Fermi surface so that the inhibiti
due to statistics in no longer effective. One recovers in t
case a rate independent ofE, as for a Boltzmann gas.

The last type of trajectory considered in this paper c
sists of a circular orbit of the test particle in the trappi
potential (L5E/v). The corresponding decay rate is plott
in Fig. 4 as a function of the mechanical energy ofP. For a
weakly degenerate gas we recover the same result as
Boltzmann gas. When one increases the energy ofP, the
damping rate is constant up tokBT and then decreases, asP
is orbiting outside the cloud. In the degenerate case
damping rate presents a resonant behavior aroundE5EF .
For E!EF this rate is decreased because of Pauli’s exclus
principle, while forE@EF it is small sinceP is outside the
Fermi cloud.

We now address the preparation ofP with arbitrary initial
position and momentum. The simplest idea is to exploit
difference in the ground-state hyperfine splitting between

FIG. 3. Damping rategT(E,L50) for a linear oscillation ofP
as a function of its excitation energyE. E is expressed in units o
the Fermi energy andgT is normalized by the ratensvF , wheren
is the fermionic density at the bottom of the trap andvF the Fermi
velocity. Circles,T5TF ; squares,T5TF/4; diamonds,T5TF/16;
triangles,T5TF/64. The inset shows a trajectory ofP through the
fermionic cloud.
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various alkali-metal atoms, or between two isotopes of
same species. Consider, for example, the specific cas
lithium atoms. If one starts with a mixture of6Li and 7Li,
one can perform radio-frequency evaporation around a
quencyn rf;804 MHz, corresponding to the7Li hyperfine
splitting. One can prepare in this way an ultracold sample
7Li, playing the role ofP, without eliminating any fermionic
atom 6Li, whose hyperfine splitting corresponds to 228 MH
@19#. The state obtained in this way corresponds to the fi
situation considered in this paper. One can then prepareP on
an arbitrary trajectory by means of successive optical stim
lated Raman transitions@20#. Due to the isotopic shift of the
Li resonance line~10 GHz!, these transitions can be mad
isotopically selective. In a realistic case, we can consider8

fermions in an isotropic magnetic trap withv/2p5100 Hz
(TF54 mK, r F50.17 mm). The density of the fermioni
gas is 531012 cm23, giving a mean-field energy created b
the Fermi cloud onP equal to 10 nK@21,22#, which is neg-
ligible with respect toEF , as assumed in this paper.

To summarize, we have shown in this paper that the c
lisional relaxation of a probe particle embedded in a Fe
atomic cloud gives direct access to the quantum degene
of this gas. In the degenerate regime,P can be regarded as a
excitation ‘‘frozen’’ by Pauli’s exclusion principle. One ca
determine both the temperature of the Fermionic cloud fr
the value of the relaxation rateG for E;0, and the value of
the Fermi energy exploiting the resonant behavior ofG for
E;EF . For simplicity we have considered here a nonint
acting Fermi gas, but it is clear that this method can
extended to study the effects of interactions superimpo
onto the fermionic excitation spectrum. In particular, we pl
to address the consequences of Cooper pairing of the fe
ons @5,23–25# in a subsequent paper.

I am very grateful to Jean Dalibard for stimulating discu
sions and for a careful reading of the manuscript. I ackno
edge useful discussions with Micha Baranov, Yvan Cas
Marc-Oliver Mewes, Christophe Salomon, and Flori
Schreck. This work was partially supported by the CNR
Collège de France, DRET, DRED, and EC~TMR Network
No. ERB FMRX-CT96-0002!.

FIG. 4. Damping rategT(E,L5E/v) for a circular orbit of the
TP as a function of its excitation energyE. The normalizations and
symbols are the same as in Fig. 3.
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