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Local sampling of phase-space distributions by cascaded optical homodyning
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We propose the determination of phase-space distributions of optical fields by cascaded optical homodyning,
where phase-randomized balanced homodyning is used for measuring the output photon-number statistics of an
unbalanced homodyne detection scheme. The phase-space point of interest is controlled by the complex
amplitude of the local oscillator and a universal sampling function is sufficient for mapping the measured
guadrature statistics onto the phase-space distribJi&#050-294{09)50201-1

PACS numbd(ps): 42.50.Ar, 03.65.Bz, 42.50.Dv

The first successful reconstruction of the quantum state of In the present paper we solve this problem by combining
a radiation mode was based on balanced optical homodyrtee unbalanced homodyne scheme for the local reconstruc-
tomography{1]. In this method the quadrature distributions tion of phase-space distributior]40,11 and the phase-
are measured for @ufficiently densgset of phases and the randomized balanced homodyne detection of the photon sta-
results of all these measurements are combined to numetistics [13] to a unified detection scheme, which we call in
cally calculate a quasiprobability distribution that containsthe following cascaded optical homodyning. Here the phase-
the full information on the quantum state. The mathematicatandomized balanced homodyne detection scheme serves as
procedure needed for homodyne tomography is the inversine photon counter in an unbalanced homodyne measure-
Radon transform, which essentially consists of a threefoldnent. We derive a local sampling relation for the cascaded
integral transform2]. The pioneering tomography experi- homodyne scheme that maps the measured phase-integrated
ment has stimulated a manifold of theoretical wd&4]. quadrature statistics directly onto the quasiprobability of the
More direct ways have been derived for reconstructing thesignal field for the phase-space point defined by the setting
density matrix from the data recorded in balanced opticabf the local-oscillator amplitude in the unbalanced subde-
homodyning. The density matrix in a quadrature representasice. An important result is that the complete phase space
tion can be obtained via a twofold Fourier transform of thecan be locally probed by a universal sampling function. This
data[5]. Moreover, it is possible to derive the density matrix is in contrast to the, in principle, infinite set of sampling
in a photon-number representation by a twofold integratiorfunctions needed for the density-matrix reconstruction via
of the data with appropriate sampling functions for eachbalanced optical homodynif®]. In our method rapidly os-
density-matrix elemeri6—§]. In these methods the accuracy cillating sampling functions, which appear in balanced ho-
of the reconstruction crucially depends on the number ofmodyning for large photon numbers, become superfluous.
adjusted local-oscillator phasgs). Moreover, we obtain an analytical expression for the sam-

The latter problem can be avoided in a local method fompling function for cascaded homodyning, which turns out to
reconstructing the phase-space distribution of a light fieldbe an appropriately scaled zeroth-order pattern function
which is based on unbalanced homodynjh@,11]. The sig- known from quantum-state tomography. Consequently, the
nal field is superimposed by the local oscillator whose intensampling function is well-behaved and the scheme is robust
sity and phase uniquely define the point in phase spacagainst noisy data.
where the quasiprobability of the signal field is recon- Let us consider the cascaded optical homodyne scheme
structed. That is, this method yields a local reconstruction ofjiven in Fig. 1. The signal field is superimposed with the
the quantum state for each point in phase space indepetpcal-oscillator field LO1, which is in the coherent sta,
dently of other points. Therefore, the density of the choserby the beam splitter BS1 whose amplitude-transmission co-
set of phase-space points has no impact on the quality of thefficient T is close to unity. That iss=R/T<1 whereR is
reconstructed quasiprobabilities, contrary to the situation ihe coefficient of amplitude reflection and@|?+|R|?>=1.
homodyne tomography. The phase-space distributions arEhe quantum state of the superimposed light fieldcan be
simply derived as weighted sums of the photon-number staconsidered to be the signal state that has been displaced in
tistics of the signal field that has been displaced by the locaphase space by the effective local-oscillator amplitege
oscillator. For applying this method one has to discriminateThe displaced signal field is then mixed by the second beam
betweem andn+ 1 photons, which is a nontrivial task with splitter BS2 with another local-oscillator field LO2 that is
available photodetection devices. To avoid these technicgihase-randomized and strong compared with the displaced
limitations, a multichannel detection scheme has been presignal. The difference-count statistics of the output fields of
posed[10,12, which requires exceeding both experimentalBS2 is measured by the two photodetectdrs andD2 of
and numerical efforts. quantum efficiencyyp .
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The overall sampling functio®(x;s, ) is given by the in-

b1 ‘ finite series of pattern functions
SIGNAL SL 2 >
- A A - S8 M=o 2 [—&E,m] (). (6
| m(1-8) 0
BS1 BS2 bz
Lot Loz So far the sampling function is determined by an infinite

, number of pattern functiong,,(x), which become strongly
FIG. 1. Draft scheme of the cascaded optical homodyne setupyqj|ating functions ok for large values of the photon num-
The signal field is measured with two detect@rg, D2, with the . . .
) . . ber n. Note that the sampling functio8(x;s,n) does not
help of two local-oscillator fields LO1, LO2, and two beam splitters . !
BS1, BS2. depend on the phase-space amplituddetermined by the
local-oscillator field LO1. That is, the quasiprobability dis-

The relation between theparametrized quasiprobability {ribution can be obtained on the complete phase space from
distribution W(a;s) and the photocount statistid®, (a, 7) thg measu_red data by integration with only one unique sam-
of the displaced signal field(displacement amplitude Pling function.

a=—¢B) measured with overall quantum efficiency The calculation of the sampling functio§(x;s,7) as
= 5p|T|? reads a$10,11] given in Eq.(6) is numerically not very stable due to the

alternating sum over highly oscillating pattern functions. In
2 * the following we derive a closed analytic form of the sam-
W(a;s)= =(1=9) Zo (—&)"Pn(a,n), (1) pling function. The result turns out to be surprisingly simple:
"~ it contains only the appropriately rescaled zeroth-order pat-
where the parametef= &(s,5) accounts for the detection tern function fyo(x). No higher-order sampling functions
losses and the ordering parameter of the desired quasipropte needed to determine the quantum state by the cascaded

ability distribution; it is given by homodyne method. Note that in balanced optical homodyn-
ing one even needs the pattern functidpg(x) (n#m) in
2—7n(l-y) order to obtain off-diagonal density-matrix elements; cf.
fsm=—r—g (2 Refs.[6,7].

The task is now to give an analytic expression for the
The photocount statistid®,(«, 7) of the displaced fiel&L  alternating sun,(— &)"f,,(x) that determines our unique
can be obtained by balanced homodyne detection with &ampling function(6). Since the pattern functiorfs,(x) are
phase-randomized, strong local oscillafa8]. In our cas- bound, foré<1 the sum in Eq(6) converges and the sam-
caded scheme this is realized by the sec@®@50 beam pling function exists. Therefore, in the following we will
splitter BS2, the strongphase-randomiz@docal oscillator  restrict ourselves to the case where 1, giving us an upper
LO2, and the detecto®1 andD?2. bound for thes parameter of the reconstructable quasiprob-
Taking into account the losses due to imperfect detectiombility distributions ofs<<(7—1)/%.
of the displaced field, we easily obtain from the results of Using the definition of the pattern functiortd) and ex-
[13] the photocount statistidB,(«, ) in the form ploiting the properties of the regular and irregular eigenfunc-
tions of the harmonic oscillatqii4], we obtain the relation

Pn(a:"]):f_o:chfnn(X)p(X;a’lU): ©)

fnn+fn+1,n+1:2X('//n(Pn_‘/’n+l‘Pn+1)- (7)
wherep(Xx; «, ) is the phase-integrated quadrature distribu-
tion of the displaced signal field measured with the nonper-
fect detectordD 1 andD2. The pattern function$,,(x) can  For notational simplicity we ignore the argumentof the
be expressed in terms of the regular and irregular eigenfungigenfunctions. Summing up the left-hand side of EQ.
tions of the Schidinger equation of the harmonic oscillator with alternating signs,=p-5(— 1)%(fit fies 1x:1) = foo—
[7], ¥n(X) and @,(X), respectively, (=1)"f,,, we get

0
fnn(x)za['ﬁn(x)@n(x)]- (4) fOO_(_l)nfnn

n

Inserting Eq.(3) into Eq. (1) we obtain a formal expres-
9 Eq/3) into Eq. (1) P =2 ogo+2 3, (~DMher— (=g ®

sion for the direct sampling of the quasiprobability distribu-
tion W(«;s) from the measured dag(X; «, )

W(a:s)= f dxS(x:s, 7)p(X;a, 7). (5) Mult|ply|ng_both sides of th|§ equation witf" gnd summing
—w up fromn=1 to N, we obtain after rearranging some terms
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N 1—gN+1 1+¢
nZO (_g)nfnn:?g(foo*' 2Xifopg) — 2X rg
N N+1
X2 (= hentax T
n=0 f

N
X 2 (=1 nen. )

With the help of the asymptotic forms of the regular and
irregular wave functiond3,7], it can be shown that the
growth of the last sum in Eq(9) is linear in N, i.e.,
ENTISN (= 1)"ynen<cNENTL, wherec is a positive con-
stant. Thus, fog<1 in the limit N—o° the last term in Eq.
(9) vanishes and we obtain

3

1-¢

1= g(foo"‘ 2Xopg) — 2X

2 (_f)nfnn:
n=0

xgo (— ) "Ynon - (10)

For obtaining a solution for the desired sum from Eqg.
(10), we now introduce the function

M(x;§>=n§0 (— &) Pn(X) @n(X), (12)

whose derivative can be identified via E4) as the left-hand
side of Eq.(10). The relation given in Eq(10) can then be
rewritten as a first-order differential equation fdr(x; £),

3

1
_ox = _—

1-¢ 1-¢
X[ foo(X) +2Xho(X) @o(X) ],
with the initial conditionM (0;£)=0 [15]. The solution of

d
&M(x;@: M(x;¢)+

12
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FIG. 2. Sampling function fos= —0.2 and efficiencie=0.85
(solid), »=0.9 (dasheg and »=1.0 (dot-dashej

culated very efficiently by the use of Dawson’s intedgfék)
[18], as fp(x)=2—4xF(x). Examples for the sampling
function are shown in Fig. 2.

To illustrate the applicability of our method we simulate a
cascaded-homodyne experiment. In agreement with recent
experiments [8,13] for obtaining the phase-integrated
quadrature distributionp(x; @, ), we simulate for each
phase-space amplitude 5000 measurements of the difference
current of the detectors. The events are accumulated in 128
bins to derive the probabilities of obtaining a difference cur-
rent in intervals of sizé\x, the latter being chosen such that
the relevant range of values is contained in the set of bins.
The quantum state of the signal field is supposed to be an
odd coherent state. The overall efficiency and shgaram-
eter of the desired quasiprobability distribution have been
chosen asyp=0.9 ands=—0.2, respectively. That is, we
sample a phase-space distribution that is close to the Wigner
function. The reconstructed phase-space distribution is
shown in Fig. 3 along the real axis of phase space, together
with the exact distribution, where the statistical variances of
the reconstructed quasiprobabilities are given as error bars.
Within the statistical uncertainties the reconstructed interfer-

Eqg. (12) can be written, after some algebra, in the compacence structure of the cat state is in good agreement with the

form
1 1+¢ 1+¢
M(X:§)=ﬁ¢o 1T§X T X

Po 1_§'-

(13

where we have used the structure of the zeroth-order eigen-

functionsy(x) andey(x) [16,17. Combining Eqs(13) and

(4) we get the solution for the alternating sum over the pat-
tern functions, which can be used to obtain the explicit form

of the sampling functior(6) of the cascaded optical homo-
dyne scheme,

n

X
a[p(1-s)—1] foo( Jn(l—s)—1

where we used the expression s, ) given in Eq.(2).
This result is strikingly simple in that we need only the

S(x;s,m)= ) (14

exact one.
While the classical noise of the strong phase-randomized
local oscillator LO2 is compensated by the balanced setup,
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FIG. 3. Simulation of the reconstruction W(«;—0.2) along

lowest-order pattern function, which is rescaled to take intahe real axis for an odd cat stafer)_o(|a)—|—a)) with

account the detection efficiency and thes parameter. The
zeroth-order pattern functiofyg(x) can be numerically cal-

=1.5 and »=0.9. For each phase-space point 5000 events have
been sampled in 128 bins.
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the noise of the first local oscillator LO1 leads to a smearingscaled zeroth-order pattern function known from homodyne
of the displacement of the signal field. It has been showntomography. So far, the cascaded homodyne method avoids
that due to the fact that the reflected amplitude of LO1 andhe use of highly oscillating sampling functions and is there-
the amplitude of the transmitted signal field are of compafore expected to be more stable with respect to noisy data.
rable magnitude, the effects of the noise of LO1 are of minorrhe method works for realistic experimental parameters and
importance[10]. For a Gaussian smearing of the local- can be regarded as an alternative scheme to balanced optical
oscillator amp_litude Fhey effectively lead to a decrease of th@]omodyne tomography. The main advantage of the cascaded
overall detection efficiency;. _ scheme consists in the local probing of phase space, which
In summary we have shown that cascaded optical homagives a more direct connection of the measured data to the

dyning is suited for locally sampling phase-space distribuesjred quasiprobabilities via a single, universal sampling
tions from data obtained by difference-count measurementsgynction.

The sampling function needed for the reconstruction is a

unique one; that is, regardless of the amplitude in phase This research was supported by the National Research
space where the quasiprobability is probed for, the samplingfund of Hungary(OTKA) under Contract Nos. T023777,
function is always the same. An analytic expression for thd=019232, and F017381, by Deutscher Akademischer Aus-
sampling function has been derived that is simply given by @auschdienst, and by the Deutsche Forschungsgemeinschaft.
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