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Local sampling of phase-space distributions by cascaded optical homodyning
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We propose the determination of phase-space distributions of optical fields by cascaded optical homodyning,
where phase-randomized balanced homodyning is used for measuring the output photon-number statistics of an
unbalanced homodyne detection scheme. The phase-space point of interest is controlled by the complex
amplitude of the local oscillator and a universal sampling function is sufficient for mapping the measured
quadrature statistics onto the phase-space distribution.@S1050-2947~99!50201-1#

PACS number~s!: 42.50.Ar, 03.65.Bz, 42.50.Dv
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The first successful reconstruction of the quantum stat
a radiation mode was based on balanced optical homod
tomography@1#. In this method the quadrature distribution
are measured for a~sufficiently dense! set of phases and th
results of all these measurements are combined to num
cally calculate a quasiprobability distribution that conta
the full information on the quantum state. The mathemat
procedure needed for homodyne tomography is the inv
Radon transform, which essentially consists of a threef
integral transform@2#. The pioneering tomography exper
ment has stimulated a manifold of theoretical work@3,4#.
More direct ways have been derived for reconstructing
density matrix from the data recorded in balanced opt
homodyning. The density matrix in a quadrature represe
tion can be obtained via a twofold Fourier transform of t
data@5#. Moreover, it is possible to derive the density mat
in a photon-number representation by a twofold integrat
of the data with appropriate sampling functions for ea
density-matrix element@6–8#. In these methods the accurac
of the reconstruction crucially depends on the number
adjusted local-oscillator phases@9#.

The latter problem can be avoided in a local method
reconstructing the phase-space distribution of a light fie
which is based on unbalanced homodyning@10,11#. The sig-
nal field is superimposed by the local oscillator whose int
sity and phase uniquely define the point in phase sp
where the quasiprobability of the signal field is reco
structed. That is, this method yields a local reconstruction
the quantum state for each point in phase space inde
dently of other points. Therefore, the density of the cho
set of phase-space points has no impact on the quality o
reconstructed quasiprobabilities, contrary to the situation
homodyne tomography. The phase-space distributions
simply derived as weighted sums of the photon-number
tistics of the signal field that has been displaced by the lo
oscillator. For applying this method one has to discrimin
betweenn andn11 photons, which is a nontrivial task wit
available photodetection devices. To avoid these techn
limitations, a multichannel detection scheme has been
posed@10,12#, which requires exceeding both experimen
and numerical efforts.
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In the present paper we solve this problem by combin
the unbalanced homodyne scheme for the local reconst
tion of phase-space distributions@10,11# and the phase-
randomized balanced homodyne detection of the photon
tistics @13# to a unified detection scheme, which we call
the following cascaded optical homodyning. Here the pha
randomized balanced homodyne detection scheme serv
the photon counter in an unbalanced homodyne meas
ment. We derive a local sampling relation for the cascad
homodyne scheme that maps the measured phase-integ
quadrature statistics directly onto the quasiprobability of
signal field for the phase-space point defined by the set
of the local-oscillator amplitude in the unbalanced sub
vice. An important result is that the complete phase sp
can be locally probed by a universal sampling function. T
is in contrast to the, in principle, infinite set of samplin
functions needed for the density-matrix reconstruction
balanced optical homodyning@6#. In our method rapidly os-
cillating sampling functions, which appear in balanced h
modyning for large photon numbers, become superfluo
Moreover, we obtain an analytical expression for the sa
pling function for cascaded homodyning, which turns out
be an appropriately scaled zeroth-order pattern func
known from quantum-state tomography. Consequently,
sampling function is well-behaved and the scheme is rob
against noisy data.

Let us consider the cascaded optical homodyne sch
given in Fig. 1. The signal field is superimposed with t
local-oscillator field LO1, which is in the coherent stateub&,
by the beam splitter BS1 whose amplitude-transmission
efficient T is close to unity. That is,e5R/T!1 whereR is
the coefficient of amplitude reflection anduTu21uRu251.
The quantum state of the superimposed light fieldSL can be
considered to be the signal state that has been displace
phase space by the effective local-oscillator amplitudeeb.
The displaced signal field is then mixed by the second be
splitter BS2 with another local-oscillator field LO2 that
phase-randomized and strong compared with the displa
signal. The difference-count statistics of the output fields
BS2 is measured by the two photodetectorsD1 andD2 of
quantum efficiencyhD .
R39 ©1999 The American Physical Society
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The relation between thes-parametrized quasiprobabilit
distribution W(a;s) and the photocount statisticsPn(a,h)
of the displaced signal field~displacement amplitude
a52eb! measured with overall quantum efficiencyh
5hDuTu2 reads as@10,11#

W~a;s!5
2

p~12s! (
n50

`

~2j!nPn~a,h!, ~1!

where the parameterj5j(s,h) accounts for the detectio
losses and the ordering parameter of the desired quasip
ability distribution; it is given by

j~s,h!5
22h~12s!

h~12s!
. ~2!

The photocount statisticsPn(a,h) of the displaced fieldSL
can be obtained by balanced homodyne detection wit
phase-randomized, strong local oscillator@13#. In our cas-
caded scheme this is realized by the second~50:50! beam
splitter BS2, the strong~phase-randomized! local oscillator
LO2, and the detectorsD1 andD2.

Taking into account the losses due to imperfect detec
of the displaced field, we easily obtain from the results
@13# the photocount statisticsPn(a,h) in the form

Pn~a,h!5E
2`

`

dx fnn~x!p~x;a,h!, ~3!

wherep(x;a,h) is the phase-integrated quadrature distrib
tion of the displaced signal field measured with the nonp
fect detectorsD1 andD2. The pattern functionsf nn(x) can
be expressed in terms of the regular and irregular eigenfu
tions of the Schro¨dinger equation of the harmonic oscillato
@7#, cn(x) andwn(x), respectively,

f nn~x!5
]

]x
@cn~x!wn~x!#. ~4!

Inserting Eq.~3! into Eq. ~1! we obtain a formal expres
sion for the direct sampling of the quasiprobability distrib
tion W(a;s) from the measured datap(x;a,h)

W~a;s!5E
2`

`

dxS~x;s,h!p~x;a,h!. ~5!

FIG. 1. Draft scheme of the cascaded optical homodyne se
The signal field is measured with two detectorsD1, D2, with the
help of two local-oscillator fields LO1, LO2, and two beam splitte
BS1, BS2.
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The overall sampling functionS(x;s,h) is given by the in-
finite series of pattern functions

S~x;s,h!5
2

p~12s! (
n50

`

@2j~s,h!#nf nn~x!. ~6!

So far the sampling function is determined by an infin
number of pattern functionsf nn(x), which become strongly
oscillating functions ofx for large values of the photon num
ber n. Note that the sampling functionS(x;s,h) does not
depend on the phase-space amplitudea determined by the
local-oscillator field LO1. That is, the quasiprobability di
tribution can be obtained on the complete phase space f
the measured data by integration with only one unique s
pling function.

The calculation of the sampling functionS(x;s,h) as
given in Eq. ~6! is numerically not very stable due to th
alternating sum over highly oscillating pattern functions.
the following we derive a closed analytic form of the sam
pling function. The result turns out to be surprisingly simp
it contains only the appropriately rescaled zeroth-order p
tern function f 00(x). No higher-order sampling function
are needed to determine the quantum state by the casc
homodyne method. Note that in balanced optical homod
ing one even needs the pattern functionsf nm(x) (nÞm) in
order to obtain off-diagonal density-matrix elements;
Refs.@6,7#.

The task is now to give an analytic expression for t
alternating sum(n(2j)nf nn(x) that determines our uniqu
sampling function~6!. Since the pattern functionsf nn(x) are
bound, forj,1 the sum in Eq.~6! converges and the sam
pling function exists. Therefore, in the following we wi
restrict ourselves to the case wherej,1, giving us an upper
bound for thes parameter of the reconstructable quasipro
ability distributions ofs,(h21)/h.

Using the definition of the pattern functions~4! and ex-
ploiting the properties of the regular and irregular eigenfu
tions of the harmonic oscillator@14#, we obtain the relation

f nn1 f n11,n1152x~cnwn2cn11wn11!. ~7!

For notational simplicity we ignore the argumentx of the
eigenfunctions. Summing up the left-hand side of Eq.~7!
with alternating signs,(k50

n21(21)k( f kk1 f k11,k11)5 f 002
(21)nf nn , we get

f 002~21!nf nn

52xFc0w012(
k51

n

~21!kckwk2~21!ncnwnG . ~8!

Multiplying both sides of this equation withjn and summing
up from n51 to N, we obtain after rearranging some term

p.
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(
n50

N

~2j!nf nn5
12jN11

12j
~ f 0012xc0w0!22x

11j

12j

3 (
n50

N

~2j!ncnwn14x
jN11

12j

3 (
n50

N

~21!ncnwn . ~9!

With the help of the asymptotic forms of the regular a
irregular wave functions@3,7#, it can be shown that the
growth of the last sum in Eq.~9! is linear in N, i.e.,
jN11(n50

N (21)ncnwn,cNjN11, wherec is a positive con-
stant. Thus, forj,1 in the limit N→` the last term in Eq.
~9! vanishes and we obtain

(
n50

`

~2j!nf nn5
1

12j
~ f 0012xc0w0!22x

11j

12j

3 (
n50

`

~2j!ncnwn . ~10!

For obtaining a solution for the desired sum from E
~10!, we now introduce the function

M ~x;j!5 (
n50

`

~2j!ncn~x!wn~x!, ~11!

whose derivative can be identified via Eq.~4! as the left-hand
side of Eq.~10!. The relation given in Eq.~10! can then be
rewritten as a first-order differential equation forM (x;j),

]

]x
M ~x;j!522x

11j

12j
M ~x;j!1

1

12j

3@ f 00~x!12xc0~x!w0~x!#, ~12!

with the initial conditionM (0;j)50 @15#. The solution of
Eq. ~12! can be written, after some algebra, in the comp
form

M ~x;j!5
1

A12j2
c0SA11j

12j
xDw0SA11j

12j
xD ,

~13!

where we have used the structure of the zeroth-order ei
functionsc0(x) andw0(x) @16,17#. Combining Eqs.~13! and
~4! we get the solution for the alternating sum over the p
tern functions, which can be used to obtain the explicit fo
of the sampling function~6! of the cascaded optical homo
dyne scheme,

S~x;s,h!5
h

p@h~12s!21#
f 00S x

Ah~12s!21
D , ~14!

where we used the expression forj(s,h) given in Eq.~2!.
This result is strikingly simple in that we need only th
lowest-order pattern function, which is rescaled to take i
account the detection efficiencyh and thes parameter. The
zeroth-order pattern functionf 00(x) can be numerically cal-
.

t

n-

t-

o

culated very efficiently by the use of Dawson’s integralF(x)
@18#, as f 00(x)5224xF(x). Examples for the sampling
function are shown in Fig. 2.

To illustrate the applicability of our method we simulate
cascaded-homodyne experiment. In agreement with re
experiments @8,13# for obtaining the phase-integrate
quadrature distributionp(x;a,h), we simulate for each
phase-space amplitude 5000 measurements of the differ
current of the detectors. The events are accumulated in
bins to derive the probabilities of obtaining a difference c
rent in intervals of sizeDx, the latter being chosen such th
the relevant range ofx values is contained in the set of bin
The quantum state of the signal field is supposed to be
odd coherent state. The overall efficiency and thes param-
eter of the desired quasiprobability distribution have be
chosen ash50.9 ands520.2, respectively. That is, we
sample a phase-space distribution that is close to the Wig
function. The reconstructed phase-space distribution
shown in Fig. 3 along the real axis of phase space, toge
with the exact distribution, where the statistical variances
the reconstructed quasiprobabilities are given as error b
Within the statistical uncertainties the reconstructed inter
ence structure of the cat state is in good agreement with
exact one.

While the classical noise of the strong phase-randomi
local oscillator LO2 is compensated by the balanced se

FIG. 2. Sampling function fors520.2 and efficienciesh50.85
~solid!, h50.9 ~dashed!, andh51.0 ~dot-dashed!.

FIG. 3. Simulation of the reconstruction ofW(a;20.2) along
the real axis for an odd cat stateua&2}(ua&2u2a&) with a
51.5i and h50.9. For each phase-space point 5000 events h
been sampled in 128 bins.
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the noise of the first local oscillator LO1 leads to a smear
of the displacement of the signal field. It has been sho
that due to the fact that the reflected amplitude of LO1 a
the amplitude of the transmitted signal field are of com
rable magnitude, the effects of the noise of LO1 are of mi
importance @10#. For a Gaussian smearing of the loca
oscillator amplitude they effectively lead to a decrease of
overall detection efficiencyh.

In summary we have shown that cascaded optical ho
dyning is suited for locally sampling phase-space distri
tions from data obtained by difference-count measureme
The sampling function needed for the reconstruction i
unique one; that is, regardless of the amplitude in ph
space where the quasiprobability is probed for, the samp
function is always the same. An analytic expression for
sampling function has been derived that is simply given b
s

dt

a

h,
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scaled zeroth-order pattern function known from homody
tomography. So far, the cascaded homodyne method av
the use of highly oscillating sampling functions and is the
fore expected to be more stable with respect to noisy d
The method works for realistic experimental parameters
can be regarded as an alternative scheme to balanced o
homodyne tomography. The main advantage of the casca
scheme consists in the local probing of phase space, w
gives a more direct connection of the measured data to
desired quasiprobabilities via a single, universal sampl
function.
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