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The Lifshitz formalism for determining the attractive force between material bodies with generalized elec-
tromagnetic susceptibility is applied numerically to gold, copper, and aluminum. The deviation from the
perfect conductivity Casimir force approximately agrees with a first-order plasma model calculation at large
separation, but at separations corresponding to the plasma frequency, deviations of over 50% from the first-
order model are found, while deviations from corrections up to second order are about 10%. These results are
discussed in the context of recent measurements of the Casimir force.@S1050-2947~99!50605-7#
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I. INTRODUCTION

One of the surprising predictions of quantum electrod
namics, obtained by Casimir in 1948, is that two paral
closely spaced mirrors~metallic plates! will be mutually at-
tracted@1#. This attractive force is due to the modification
the electromagnetic mode structure between the plate
compared to free space; when a zero-point energy\v/2 is
assigned to each mode, there is a difference in the total
ergy between the plates as compared to free space. This
to an attractive force between the plates of magnitude~per
unit surface area when separated by a distancea!

F~a!5
p2

240

\c

a4 50.013 dyn~mm!4/cm2. ~1!

This prediction, of course, must break down when the mir
separation is sufficiently small, that is, when the mode f
quencies being modified by the mirrors are near or above
plasma frequency of the metal used to make the mirr
Casimir made use of this point as a physical reason for tr
cating an otherwise divergent integral in the force calcu
tion.

In order to interpret precision experimental results,
attractive force as a function of separation for real me
must be theoretically determined. This can be done by us
the Lifshitz formalism for the determination of molecul
attractive forces between bodies@2#. This formalism can be
PRA 591050-2947/99/59~5!/3149~5!/$15.00
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applied to any material for which the complex index of r
fraction as a function of frequency is known. In the limit o
infinite conductivity, the Lifshitz and Casimir results for th
attractive force are equal; the Lifshitz formalism can
thought of as a generalization of the Casimir calculatio
although the source terms for each appear to be quite di
ent. In the case of the Casimir calculation, the electrom
netic field is assumed to be quantized with a zero-point
ergy\v/2 that serves as the source of the attractive force
the Lifshitz calculation, the electromagnetic field is treated
classical; the source terms are the current and electrical
larization fluctuations in the material bodies. These fluct
tions can be calculated from the quantum fluctuatio
dissipation theorem and they persist at zero tempera
@3,4#. The Casimir and Lifshitz approaches are differe
ways of looking at the same phenomenon: Since the mate
fluctuations persist at zero temperature, in order for the b
ies to be in equilibrium with a radiation field at zero tem
perature, the classical field modes must also have a z
point energy, but we need not assume that the field
quantized. In this regard, the Casimir force is analogous
the Planck calculation of the blackbody spectrum; one c
not decide between quantization of the source or the field
either situation. For the Casimir force, this point is addres
in @5#.

Unfortunately, there is no simple form for the~complex!
permittivity as a function of frequency for any particula
metal, although a plasma~free-electron! model of a metal
R3149 ©1999 The American Physical Society
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can be used for estimating the deviations from the perfe
conducting case. The first-order and second-order deviat
of the force, assuming a plasma model of a metal with
electric constant

e~v!'12vp
2/v2, ~2!

where vp
254pNe2/me , with N the number density of the

free electrons, is

F8~a!5F~a!F12
16

3

c

vpa
124S c

vpaD 2G
5F~a!F12

8

3p

lp

a
1

6

p2 S lp

a D 2G , ~3!

with lp52pc/vp . The first-order term was derived by Ha
greaves@6# and by Schwingeret al. @7#, and the second-orde
term by Bezzeraet al. @8#, in the limit c/vpa!1 ~large plate
separation!. These corrections are nonphysical fora,lp ;
the second-order term in particular dominates asa ap-
proaches zero, and gives a larger force than the uncorre
Casimir force. A term-by-term expansion ina/lp is required
in this region. For the case of dielectrics with an absorpt
resonance, when the plate separation is sufficiently sm
~compared to the resonance wavelength!, the net force falls
as 1/a3 ~see@9#, p. 230!; we might expect a similar distanc
dependence for metals when the separation is small c
pared tolp . In any case, the simple plasma model is no
perfect description of a real metal.

It is possible to accurately determine the attractive fo
as a function of plate separation for any metal by a numer
calculation, provided we know its complex index of refra
tion as a function of frequency. The numerical calculati
described here is based on using the tabulated complex i
of refraction for the metal of interest as a function of fr
quency to determine its complex permittivity, the imagina
part of which is then used with the Kramers-Kronig relatio
ships to find the permittivity along the positive imagina
frequency axis. This is then inserted into the Lifshitz expr
sion for the Casimir force~see Sec. 90 of@4#! ~at zero tem-
perature, and assuming the plates are made of the same
terial!

F8~a!5
\

2p2c3E
0

`E
1

`

p2j3H F ~s1p!2

~s2p!2 e2pja/c21G21

1F @s1e~ i j!p#2

@s2e~ i j!p#2 e2pja/c21G21J dp dj, ~4!

wherev5 i j for imaginaryv, p is a real integration vari-
able, ande( i j) is a real function~the complex susceptibility
has only a real component along the imaginary axis;
point will be discussed in the next section!, and

s5Ae~ i j!211p2. ~5!

Equation~4! is valid for a generalized complex permittivit
@9#, and makes possible, in principle, a calculation of t
force of attraction for any distance ife( i j) is known.

In some situations, such as when one of the surface
curved, the energy per unit areaE(a) is required to evaluate
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the force of attraction as a function of plate separation;
corrected energyE8(a) can be easily determined by numer
cally integrating Eq.~4! ~or, alternatively, the formalism de
veloped in@9# can be used to determine the energy directl!.

In the case where one plate is spherical, the force of
traction is given by

Fs~a!52pRE~a!, ~6!

whereR is the radius of curvature. This result was first d
rived by Derjaguin and Abrikosova in 1957@10#, and has
been applied more generally as the proximity force theor
@11#. The plasma correction for the Casimir energy, by in
grating Eq.~3!, is

E8~a!5E~a!F12
2

p

lp

a
1

18

5p2S lp

a D 2G . ~7!

II. NUMERICAL PROCEDURE

A. Determination of e„ i j…

In Eq. ~4!, the permittivity of a material along the imag
nary frequency axise( i j) is related to the force of attraction
The first step to determinee( i j) is to find the complex per-
mittivity as a function of frequency for the material of inte
est,

e~v!5e8~v!1 i e9~v!. ~8!

The complex index of refraction for a number of metals
tabulated as a function of frequency in several referen
@12,13#, with the real part of the index listed asn and the
imaginary part listed ask. The complex permittivity is given
by

e81 i e95n22k212ink. ~9!

For the calculation described here, the tabulated data ar
terpolated in steps of 1012 rad/s~the distances we are inter
ested in are of order 1mm, corresponding to v
'1015 rad/s). Values below those tabulated are obtained
extrapolating the lowest table value by 1/v, the expected
behavior for a metal; the upper limit is set to about
31015 rad/s, which the published tables extend to or b
yond.

Next, the Kramers-Kronig relationships are used to de
mine e along the imaginary axis~see@4#, Sec. 82!, noting
that e( i j) is real:

e~ i j!5
2

p E
0

` xe9~x!

x21j2
dx11. ~10!

For the metal of interest,e( i j) is determined by a numerica
integrating of this equation, using the values ofe9(v) as
interpolated from the tabulated data. A simple rectangle r
numerical is used.

The calculational errors near the ends of the tabulated
extrapolated range do not significantly affect the integrat
of Eq. ~4!. The range was chosen to be large enough co
pared to the frequency range of interest so that the contr
tions from the end regions would be negligible.
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FIG. 1. ~a! The imaginary component of the
complex permittivity of Cu as a function of fre
quency from tabulated data.~b! The calculated
permittivity along the imaginary axis~solid
curve!, compared to Eq.~12!, with vp53.8
31015 rad/s~dashed curve!.
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B. Determination of the force

Now thate( i j) has been determined, the force of attra
tion can be found by numerically integrating Eq.~4!. Follow-
ing @4#, Sec. 90, the substitution

x52pja/c ~11!

is made in Eq.~4!. The integration is done by first fixinga
andp, then integrating overx ~using a rectangle rule!, yield-
ing a function ofp at fixed a; the direct dependence ona
appears only as an overall factor of 1/a4, simplifying the
comparison with the perfect conductivity case. The ran
and step size for thex integration are determined by th
range of data fore( i j), with step size set to 2pa/(c/1000).
For the integration overp, the p step size is periodically
adjusted so thatdp'p/100, and the range ofp is 1 to 900;
this large upper limit ensures convergence of the integra
for all a of interest. This is repeated as a function ofa, in
steps of 0.1mm for a50.05 mm to 2.5 mm, and divided
by the perfect conductivity Casimir force at that separati
yielding a table of correction factors as a function ofa.

C. Determination of the energy

Simpson’s rule is used to integrate the force found in
previous step, yielding an energy for each value ofa in the
table. The difficulty here is in the determination of the int
gration constant; this is found by extrapolating the numer
force calculation as 1/a to distances beyond 2.5mm, and
integrating the extrapolated force from̀ to 2.5 mm. A
slight error in this constant does not affect the integration
short distances. The integrated energy is divided by the
fect conductivity Casimir energy, again yielding a table
correction factors, as a function ofa.

D. Accuracy of the calculations

The step sizes of the integrations were made a factor
larger, and the changes in the final results were always
than 5%. We therefore claim that the numerical accuracy
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the calculation is better than 5%. However, the limitation
the accuracy is certainly dominated by uncertainties in
tabulated complex index of refraction. In addition, the pro
erties of a metallic surface are easily affected by surf
contamination or oxidation, crystalline structure and pre
ration technique, and purity of the metal. In general, to ma
a comparison with theory, the complex surface index of
plates used in a Casimir force measurement would have t
measured as a function of frequency; there are simply
many variables to assume that the tabulated index is a
rately representative of any specific sample. Nonetheless
above calculation is useful for determining the general fo
of the force for imperfect conductors, and would be direc
applicable to an experimental result, provided there is
accurate measurement of the complex index for the spe
mirrors used in an experiment. Also, at frequencies ab
531016 rad/s, the permittivity along the imaginary axis
very close to unity, so contributions to the force for high
frequencies are insignificant and we are justified in
choice of this as the upper integration limit@see Eq.~90.4! of
@4##.

III. APPLICATIONS

The numerical determination of the Casimir force h
been applied to three materials of recent experimental in
est@14,15#: Au, Cu, and Al. The complex index of refractio
as a function of frequency for these materials is tabulated
@12# pp. 12–131, 12–130, and 12–127, respectively!. Much
of these data also appear in@13#.

For Au and Cu, the plasma wavelengthlp'0.5 mm.
When a5lp , the plasma model gives first- and secon
order force corrections terms of 0.848 and 0.607, resulting
an overall correction factor of 0.687. For Au, the numerica
determined force correction factor at 0.5mm is 0.657, while
for Cu, it is 0.837. Similarly, Eq.~7! gives a plasma mode
energy correction factor 0.728 compared with numerical
sults of 0.719~Au! and 0.874~Cu!. The plasma correction to
second order is accurate to about 1% for Au, but is nea
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FIG. 2. The solid curve in each plot corre
sponds to the Lifshitz formalism calculation
while the dashed corresponds to the plasma c
rection to second order.~a! Force correction fac-
tor as a function of plate separation for Cu.~b!
Energy correction factor for Cu.
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5%
20% below the numerical result for Cu~see Figs. 1 and 2!.
The origin of the discrepancy in the case of Cu is evid

in Fig. 1~b!. For the plasma model, the permittivity along th
imaginary axis should be

e~ iv!511vp
2/v, ~12!

but a significant deviation from the numerically calculat
permittivity is evident in Fig. 1~b!. This deviation is not sim-
ply due to the choice oflp , but due to the complicated
structure of the Cu absorption spectrum. The deviation of
permittivity along the imaginary axis for Au as compared
Eq. ~12! is not nearly as large as it is in the case of Cu, he
the closer agreement between the plasma and numeri
determined corrections. The agreement for Au is likely
part coincidental because the convergence of the expan
for the plasma correction forlp'1 is very slow; the first-
and second-order corrections are nearly equal.

For Al, with lp50.1 mm, the plasma force and energ
correction factors ata5lp are the same as above, 0.687 a
0.728, respectively, compared to 0.557 and 0.651, as d
mined numerically. The discrepancy in this case is likely d
to a small resonance in Al absorption nearv53
31015 rad/s. The deviation between the plasma model
numerical calculation is about 11% for Al.

IV. CONCLUSION

In this paper, a general numerical technique for calcu
ing the attractive force between plates with a kno
frequency-dependent complex index of refraction is dev
oped and applied to three metals, Au, Cu, and Al. Excep
the case of Au, the results from the numerical calculation
significantly different from the corrections~to second order!
based on a plasma model description of the metals at s
rations approaching the plasma wavelength. In the cas
Au, the agreement between the numerical and plasma co
tions is probably coincidental because the expansions in
~3! and ~7! are not necessarily valid whenlp /a'1. The
t

e

e
lly

ion

er-
e

d

t-

l-
in
re

a-
of
c-
s.

results of this numerical analysis have already been app
to a previous measurement of the Casimir force@14#, and an
error relating to the calibration in the original measurem
was found@16#.

A more recent measurement of the Casimir force@15#
made use of atomic force microscopy between Al coa
surfaces and has a claimed precision of 1%. This precisio
based on a comparison of experimental data with the pla
correction~to second order! for the Al films, and also takes
into account surface roughness. Based on the above ana
the simple plasma correction is about 11% different from
more accurate calculation~using the tabulated properties o
Al ! at separations around 100 nm~the minimum distance in
@15#!.

Furthermore, the roughness correction in@15# is on the
order of 75% at 100 nm. The roughness correction in@8# was
derived by simply performing a geometrical average of
distance variations between the two surfaces for a 1/a4 at-
tractive force~or 1/a3 for the energy!. Since the terms in the
plasma force correction scale as 1/a and 1/a2, and the cor-
rections are of order unity, the geometrical average should
done for the 1/a5 and 1/a6 functional dependencies sep
rately. The multiplicative technique used in@15# for combin-
ing corrections is only valid when the corrections are sm

In conclusion, testing the theory of attractive force b
tween metallic surfaces to high precision requires a num
of auxiliary measurements of the physical properties of
surfaces and an extensive theoretical analysis for the eff
of nonidealities. For example, in the numerical analysis o
lined above, the tabulated complex indices of refraction
the materials of interest were used. In reality, the frequen
dependent index depends on a number of factors, includ
film purity, surface contamination, and preparation tec
nique. A fundamental test of the Lifshitz theory would r
quire a direct measurement of the frequency dependent-in
for the particular metal~coated! plate under study, and a ver
careful analysis of possible roughness corrections. Under
circumstances, reliably testing the theory to better than
would seem a daunting task.
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