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The Lifshitz formalism for determining the attractive force between material bodies with generalized elec-
tromagnetic susceptibility is applied numerically to gold, copper, and aluminum. The deviation from the
perfect conductivity Casimir force approximately agrees with a first-order plasma model calculation at large
separation, but at separations corresponding to the plasma frequency, deviations of over 50% from the first-
order model are found, while deviations from corrections up to second order are about 10%. These results are
discussed in the context of recent measurements of the Casimir f8rb@50-294{09)50605-7

PACS numbes): 12.20.Fv, 07.07.Mp

[. INTRODUCTION applied to any material for which the complex index of re-
fraction as a function of frequency is known. In the limit of
One of the surprising predictions of quantum electrody-infinite conductivity, the Lifshitz and Casimir results for the
namics, obtained by Casimir in 1948, is that two parallel,attractive force are equal; the Lifshitz formalism can be
closely spaced mirrorémetallic plateg will be mutually at-  thought of as a generalization of the Casimir calculation,
tracted[l]. This attractive force is due to the modification of a|though the source terms for each appear to be quite differ-
the electromagnetic mode structure between the plates ast. In the case of the Casimir calculation, the electromag-
compared to free space; when a zero-point endr@y2 is  npetic field is assumed to be quantized with a zero-point en-
assigned to each mode, there is a difference in the total ensqy 7 /2 that serves as the source of the attractive force. In
ergy between the plates as compared to free space. This leagls, | jtshit calculation, the electromagnetic field is treated as
to an attractive force between the pIate; of magnit(ué classical; the source terms are the current and electrical po-
unit surface area when separated by a distace larization fluctuations in the material bodies. These fluctua-
2 he ti9n§ can be calculated from the_ quantum fluctuation-
= —7=0.013 dyrfem)*/cm?. (1) dissipation the(_)re_-m and Fhe;_/ persist at zero temperature
240 a [3,4]. The Casimir and Lifshitz approaches are different
ways of looking at the same phenomenon: Since the material
This prediction, of course, must break down when the mirroffluctuations persist at zero temperature, in order for the bod-
separation is sufficiently small, that is, when the mode fredes to be in equilibrium with a radiation field at zero tem-
guencies being modified by the mirrors are near or above thperature, the classical field modes must also have a zero-
plasma frequency of the metal used to make the mirrorspoint energy, but we need not assume that the field is
Casimir made use of this point as a physical reason for trunquantized. In this regard, the Casimir force is analogous to
cating an otherwise divergent integral in the force calculathe Planck calculation of the blackbody spectrum; one can-
tion. not decide between quantization of the source or the field in
In order to interpret precision experimental results, theeither situation. For the Casimir force, this point is addressed
attractive force as a function of separation for real metalsn [5].
must be theoretically determined. This can be done by use of Unfortunately, there is no simple form for ttleomplex
the Lifshitz formalism for the determination of molecular permittivity as a function of frequency for any particular
attractive forces between bodig|. This formalism can be metal, although a plasmdree-electron model of a metal

F(a)
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can be used for estimating the deviations from the perfectlyhe force of attraction as a function of plate separation; the
conducting case. The first-order and second-order deviatiorrrected energf’(a) can be easily determined by numeri-
of the force, assuming a plasma model of a metal with di-cally integrating Eq(4) (or, alternatively, the formalism de-

electric constant veloped in[9] can be used to determine the energy dirgctly
2 In the case where one plate is spherical, the force of at-
e(w)~1-wp/ %, (2)  traction is given by
where w§=4wNe2/me, with N the number density of the F{(a)=27RE®a), (6)

free electrons, is
whereR is the radius of curvature. This result was first de-

F'(a)=F(a) 1—£3i+24<i 2 rived by Derjaguin and Abrikosova in 19520], and has
3 wpa wpa been applied more generally as the proximity force theorem
8 6 [n\2 [11]. The pl(afma correction for the Casimir energy, by inte-
_ _ 9 Ap Ap grating Eq.(3), is
=F(a)|l 377a+;2 al | 3
, Ao 18(\p)\2
with A, =2mc/ w, . The first-order term was derived by Har- E'(@=E@)1-——F+g 25 (7)
greaveg6] and by Schwingeet al.[7], and the second-order
term by Bezzerat al.[8], in the limitc/wy,a<1 (large plate
separation These corrections are nonphysical ®x\,; Il. NUMERICAL PROCEDURE
the second-order term in particular dominates sasp- A. Determination of (i £)

proaches zero, and gives a larger force than the uncorrected o ) _ _
Casimir force. A term-by-term expansionah , is required In Eq. (4), the permittivity of a material along the imagi-
in this region. For the case of dielectrics with an absorptiod@" frequency axig(i¢) is related to the force of attraction.
resonance, when the plate separation is sufficiently smallP€ first step to determing(i£) is to find the complex per-
(compared to the resonance wavelengthe net force falls mittivity as a function of frequency for the material of inter-
as 143 (see[9], p. 230; we might expect a similar distance €St
dependence for metals when the separation is small com-
pared to\,. In any case, the simple plasma model is not a

perfect description of a real metal. _ The complex index of refraction for a number of metals is
It is possible to accurately determine the attractive forcgapyjated as a function of frequency in several references
as a function of plate separation for any metal by a numencqﬂlz,la’ with the real part of the index listed asand the

calculation, provided we know its complex index of refrac-jmaginary part listed ak. The complex permittivity is given
tion as a function of frequency. The numerical calculationy,

described here is based on using the tabulated complex index

of refraction for the metal of interest as a function of fre- €' +ie"=n’—k?+2ink. 9
guency to determine its complex permittivity, the imaginary

part of which is then used with the Kramers-Kronig relation- For the calculation described here, the tabulated data are in-
ships to find the permittivity along the positive imaginary terpolated in steps of 10 rad/s(the distances we are inter-
frequency axis. This is then inserted into the Lifshitz expresested in are of order 1um, corresponding tow

e(w)=€'(w)+ie(w). (8

sion for the Casimir forcésee Sec. 90 df4]) (at zero tem-  ~10' rad/s). Values below those tabulated are obtained by
perature, and assuming the plates are made of the same mgxtrapolating the lowest table value bywl/the expected
terial) behavior for a metal; the upper limit is set to about 50
5 . X 10" rad/s, which the published tables extend to or be-
h " 2.l (5T P) 2péal ond
F(a)=5= 3j f 3 se?Pe/e—1 yond. . . .
2m°c’Jo J1 (s—p) Next, the Kramers-Kronig relationships are used to deter-

mine € along the imaginary axi¢ésee[4], Sec. 82, noting

[s+e(i&)pl® 1] hat e(i &) i I
: péalc_ q dp dé, 4 that e(i &) is real:
[s—(ie)pl? poe. @
. . . . . . . ) 2 Xe"(X)
wherew=i¢ for imaginaryw, p is a real integration vari- e(ié)=— f 5 2dx+ 1. (10
able, ande(i &) is a real function(the complex susceptibility mJo x+§
has only a real component along the imaginary axis; this ) o ) )
point will be discussed in the next sectjpand For the metal of interesg(i &) is determined by a numerical
integrating of this equation, using the values &{w) as
s=ve(ié)—1+p>. (5)  interpolated from the tabulated data. A simple rectangle rule

numerical is used.
Equation(4) is valid for a generalized complex permittivity The calculational errors near the ends of the tabulated and
[9], and makes possible, in principle, a calculation of theextrapolated range do not significantly affect the integration
force of attraction for any distance (i ¢) is known. of Eq. (4). The range was chosen to be large enough com-
In some situations, such as when one of the surfaces igared to the frequency range of interest so that the contribu-
curved, the energy per unit ar&ga) is required to evaluate tions from the end regions would be negligible.
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B. Determination of the force the calculation is better than 5%. However, the limitation to

Now thate(i £) has been determined, the force of attrac-the accuracy is certainly dominated by uncertainties in the
tion can be found by numerically integrating E4). Follow- tabulated complex index of refraction. In addition, the prop-

ing [4], Sec. 90, the substitution erties of a metallic surface are easily affected by surface
contamination or oxidation, crystalline structure and prepa-
X=2pégalc (11)  ration technique, and purity of the metal. In general, to make

a comparison with theory, the complex surface index of the
plates used in a Casimir force measurement would have to be
measured as a function of frequency; there are simply too
many variables to assume that the tabulated index is accu-
rately representative of any specific sample. Nonetheless, the
%bove calculation is useful for determining the general form
of the force for imperfect conductors, and would be directly
applicable to an experimental result, provided there is an
accurate measurement of the complex index for the specific
mirrors used in an experiment. Also, at frequencies above
B 10 rad/s, the permittivity along the imaginary axis is
very close to unity, so contributions to the force for higher

steps of 0.1um for a=.0..05 pm to 2.5 pm, and divided_ frequencies are insignificant and we are justified in the
by the perfect conductivity Casimir force at that separation,, ive of this as the upper integration liféee Eq(90.4) of
yielding a table of correction factors as a functioneaof [4]]

is made in Eq(4). The integration is done by first fixing
andp, then integrating ovex (using a rectangle rujeyield-
ing a function ofp at fixed a; the direct dependence an
appears only as an overall factor ofal/ simplifying the

and step size for th& integration are determined by the
range of data foe(i¢), with step size set to@2a/(c/1000).
For the integration ovep, the p step size is periodically
adjusted so thatip~ p/100, and the range qf is 1 to 900;
this large upper limit ensures convergence of the integratio
for all a of interest. This is repeated as a functionapfin

C. Determination of the energy IIl. APPLICATIONS

Simpson’s rule is used to integrate the force found in the
previous step, yielding an energy for each valueaaf the
table. The difficulty here is in the determination of the inte-
gration constant; this is found by extrapolating the numerica

force calculation as #/to distances beyond 2.xm, and
integrating the extrapolated force from to 2.5 um. A [12] pp. 12-131, 12-130, and 12-127, respectiveljuch
of these data also appear|ib3].

slight error in this constant does not affect the integration to For Au and Cu. the plasma wavelenckh~0.5 m
short distances. The integrated energy is divided by the peVVhen a=x.  the blasmap model gives ﬁ?:tl?’ and ';Lecbnd-
pl

fect copductmty Casimir energy, again yielding a table Oforder force corrections terms of 0.848 and 0.607, resulting in
correction factors, as a function af X .
an overall correction factor of 0.687. For Au, the numerically

determined force correction factor at 0/m is 0.657, while
for Cu, it is 0.837. Similarly, Eq(7) gives a plasma model

The step sizes of the integrations were made a factor of nergy correction factor 0.728 compared with numerical re-
larger, and the changes in the final results were always lesaults of 0.719Au) and 0.874Cu). The plasma correction to
than 5%. We therefore claim that the numerical accuracy ofecond order is accurate to about 1% for Au, but is nearly

The numerical determination of the Casimir force has
been applied to three materials of recent experimental inter-
Fst[14,13: Au, Cu, and Al. The complex index of refraction
as a function of frequency for these materials is tabulated in

D. Accuracy of the calculations
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20% below the numerical result for Gaee Figs. 1 and)2 results of this numerical analysis have already been applied
The origin of the discrepancy in the case of Cu is evidento a previous measurement of the Casimir fdrt4], and an
in Fig. 1(b). For the plasma model, the permittivity along the error relating to the calibration in the original measurement

imaginary axis should be was found[16].
_ ) A more recent measurement of the Casimir fofté&]
€(iw)=1+wplo, (12 made use of atomic force microscopy between Al coated

surfaces and has a claimed precision of 1%. This precision is
but a significant deviation from the numerically calculatedbased on a comparison of experimental data with the plasma
permittivity is evident in Fig. {b). This deviation is not sim-  correction(to second ordérfor the Al films, and also takes
ply due to the choice ok, but due to the complicated into account surface roughness. Based on the above analysis,
structure of the Cu absorption spectrum. The deviation of théhe simple plasma correction is about 11% different from a
permittivity along the imaginary axis for Au as compared tomore accurate calculatiofusing the tabulated properties of
Eq.(12) is not nearly as large as it is in the case of Cu, hencél) at separations around 100 rithe minimum distance in
the closer agreement between the plasma and numericall{5]).
determined corrections. The agreement for Au is likely in  Furthermore, the roughness correction[ib] is on the
part coincidental because the convergence of the expansiander of 75% at 100 nm. The roughness correctiof8irwas
for the plasma correction fax,~1 is very slow; the first- derived by simply performing a geometrical average of the
and second-order corrections are nearly equal. distance variations between the two surfaces forad at-

For Al, with A\;=0.1 um, the plasma force and energy tractive force(or 1/a® for the energy. Since the terms in the
correction factors a =\, are the same as above, 0.687 andplasma force correction scale as Hnd 142, and the cor-
0.728, respectively, compared to 0.557 and 0.651, as deterections are of order unity, the geometrical average should be
mined numerically. The discrepancy in this case is likely duedone for the 14° and 14° functional dependencies sepa-
to a small resonance in Al absorption neas=3  rately. The multiplicative technique used[it5] for combin-

X 10 rad/s. The deviation between the plasma model anihg corrections is only valid when the corrections are small.
numerical calculation is about 11% for Al. In conclusion, testing the theory of attractive force be-
tween metallic surfaces to high precision requires a number
of auxiliary measurements of the physical properties of the
surfaces and an extensive theoretical analysis for the effects

In this paper, a general numerical technique for calculatof nonidealities. For example, in the numerical analysis out-
ing the attractive force between plates with a knownlined above, the tabulated complex indices of refraction of
frequency-dependent complex index of refraction is develthe materials of interest were used. In reality, the frequency-
oped and applied to three metals, Au, Cu, and Al. Except irdependent index depends on a number of factors, including
the case of Au, the results from the numerical calculation aréilm purity, surface contamination, and preparation tech-
significantly different from the correctior(o second order nique. A fundamental test of the Lifshitz theory would re-
based on a plasma model description of the metals at sepguire a direct measurement of the frequency dependent-index
rations approaching the plasma wavelength. In the case dbr the particular metalcoated plate under study, and a very
Au, the agreement between the numerical and plasma correcareful analysis of possible roughness corrections. Under the
tions is probably coincidental because the expansions in Egsircumstances, reliably testing the theory to better than 5%
(3) and (7) are not necessarily valid whex,/a~1. The would seem a daunting task.

IV. CONCLUSION
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