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Space-time localized structures in the degenerate optical parametric oscillator

M. Tlidi and Paul Mandel
Optique Nonline´aire Théorique, Campus Plaine Code Postal 231, Universite´ Libre de Bruxelles, 1050 Bruxelles, Belgium

~Received 2 September 1998!

We study the transverse effects in a degenerate optical parametric oscillator with a saturable absorber. We
focus on the analysis of two-dimensional stationary and time-dependent localized patterns. The homogeneous
steady-state solution is destabilized by a Hopf bifurcation to periodic states with finite wave number and a
Turing bifurcation. These bifurcations are close enough that they interact. This leads to localized structures
consisting of a sharp peak emitting concentric rings of alternating high and low intensities.
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PACS number~s!: 42.65.Sf, 42.65.Pc, 42.60.Mi
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Stationary localized structures~also called spatial soli-
tons! associated with homoclinic connections between co
isting stable steady states are now attracting growing inte
in optics because of their potential application in informati
technology. Such localized structures~LS! have been pre-
dicted in an early report on bistable systems@1#. Later, it was
shown that the existence of LS does not require a bista
homogeneous steady state. They can be stable in
monostable regime@2# where the single homogeneous stea
state exhibits a subcritical Turing~or modulational! instabil-
ity leading to a pattern forming process characterized by
intrinsic wavelength that is determined by dynamical para
eters and not by geometrical constraints imposed by the
ity boundaries or system’s physical dimensions. Station
LS have been also obtained in a Kerr medium@3,4#, a purely
dispersive two-level medium@5#, a quadratic medium@6,7#,
semiconductor devices@8#, and a spin-1/2 atomic system@9#.
The LS can exhibit chaotic oscillations in time@10#. Re-
cently, the experimental evidence for LS in optical syste
@11# has further stimulated the interest in the transverse
tern formation process.

Up to now, investigations on two-dimensional~2D! LS in
optics have been limited to situations where the homo
neous background is stable against oscillatory modes.
purpose of this paper is to study the dynamics of LS in
situation where Turing and Hopf bifurcations interact. In th
regime, stationary and/or time-dependent LS appear. We
port evidence of LS that consists of a 2D stationary peak
the transverse profile of the cavity field. In the tim
dependent regime, these peaks emit traveling waves form
concentric rings. The amplitude of the central peaks is es
tially the same as the corresponding static Turing structu
These solutions have already been described in one tr
verse dimension@7#.

We consider a ring cavity, driven by a coherent pla
wave, filled by a nonlinear medium in which frequency co
version takes place. We focus on degenerate intracavity
tical parametric amplification: one photon with frequencyv
is absorbed and two photons with frequenciesv are emitted.
In addition, we assume the presence of a saturable abso
that absorbs the field at frequencyv. The effective absorp-
tion coefficient is therefore field dependent and is mode
by a saturable two-level medium. This model for the deg
erate optical parametric oscillator with a saturable abso
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~DOPOSA! was introduced in Ref.@12#. Assuming fast
atomic relaxation and the mean-field approximation, the e
lution equations in reduced variables are

]E1

]t
52E11E1* E22

RE1

11SuE1u2 1 ia1L'E1 , ~1!

]E2

]t
52g~E21E1

22Ei !1 ia2L'E2 . ~2!

E1,2 are the normalized slowly varying envelopes of the s
nal and the pump fields at frequenciesv and 2v, respec-
tively. Ei is the driving field that is chosen real to fix th
reference phase.g is the ratio of the photon lifetimes at fre
quenciesv and 2v. The saturable absorber is characteriz
by its saturation intensity 1/S and its linear loss coefficien
R, a1 and a2 are the diffraction coefficients, andL'

5]2/]x21]2/]y2 is the Laplace operator acting on th
transverse plane (x,y). The phase-matching condition im
poses thata1 /a252 @13#. Time has been scaled such that t
decay rate of mode 1 is unity. Space is scaled in such a
that a151 anda251/2.

Equations~1! and ~2! admit two types of homogeneou
steady-state solutions:~i! the nonlasing stateĒ150 andĒ2
5Ei that is stable below the lasing thresholdEi,Eth51
1R; ~ii ! the lasing stateEi511 Ī 11R/(11SĪ1) and Ē2

5Ei2Ē1
2. The steady stateĪ 15uĒ1u2 as a monotonic func-

tion of Ei if RS,1; it is bistable ifRS.1. The linear sta-
bility of these solutions with respect to perturbations of t
form exp(lt1ik–r ) where (L'1k2)exp(lt1ik–r )50 has
been studied in Ref.@7#.

The homogeneous lasing steady-state solution can be
stabilized by the competition between two processes: diffr
tion that tends to restore spatial uniformity in the transve
plane and the nonlinearities~quadratic medium and saturab
absorber! that are responsible for the amplification of th
spatial inhomogeneities. The balance between the two
cesses generates a well known Turing~or modulational! in-
stability @14# leading to the formation of intrinsic stationar
periodic patterns characterized by the wavelengthLT
52p/kT where
R2575 ©1999 The American Physical Society
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kT
45g~ Ī 1T2g/2!2

RSĪ1T~11R1SĪ1T!

2~11SĪ1T!3
,

andI 1T is the critical intensity at the Turing bifurcation. It i
the solution of

~2 Ī 1T1g!~b2T
2 2b1T

2 14g2!52g~4b2TĪ 1T13g2!,
~3!

whereb65616aR(16aSĪ1) andb6T is evaluated atĪ 1

5 Ī 1T . The lasing steady state undergoes a Hopf bifurca
if a pair of complex-conjugate eigenvalues has a vanish
real part with a finite imaginary part. This instability occu
at Ī 15 Ī 1H , which is the solution of

b~ Ī 1H ,k!@2~g2b2!2b~ Ī 1H ,k!#54~g2b2!a~ Ī 1H ,k!
~4!

with b( Ī 1 ,k)52g(b2
2 2b1

2 )14g Ī 1(g2b2)22b2(g2

1k4)18gk4, a( Ī 1 ,k)5(b2
2 2b1

2 14k4)(g21k4)

24g Ī 1(gb212k42g Ī 1), and a51/(11SĪ1). The fre-
quency of the periodic solution at the Hopf bifurcation is

V~ Ī 1H ,k!5Ab~ Ī 1H ,k!/2. ~5!

The homogeneous time-periodic mode has maximum g
The threshold associated with this instability, obtained
solving Eq. ~4! with k50, is Ī 1H6(k50)[J1H65(R2g
6AR(R22g)/(gS) with critical frequency VH

5V(J1H6,0)5Ag(2J1H62g). The Hopf instability with
kÞ0 always arises forI 1.I 1H2 . We fix g51, S50.1 and
let R andEi be the control parameters. For these paramet
there are two pairs of Hopf and Turing instabilities. We f
cus on the pair of Hopf and Turing bifurcations that occ
first when the input field amplitude is increased. The relat
order between the two bifurcations is controlled by the lin
loss of the saturable absorber. IfR,Rc'5.47 the Hopf bi-
furcation occurs before the Turing instability.

In the vicinity of the codimension-two-pointR5Rc where
the two bifurcations coalesce, a weakly nonlinear analysi
Eqs. ~1! and ~2! has shown that the system can exhi
bistable behavior not only between the homogeneous ste
state and the Turing branch but also between the static
ing and the homogeneous Hopf branches@7#. In addition,
when the static Turing branch becomes unstable, a st
solution emerges from the homogeneous steady state
so-called mixed-mode solution corresponding to periodic
cillation in time and space. A completely different mech
nism for the generation of mixed-mode solutions is a Ho
bifurcation located at the Turing branch. This secondary
furcation arises as a result of a nonlinear interaction betw
transverse unstable modes. This behavior was describe
the case of two counterpropagating coherent beams in a
medium @15# and in the Lugiato-Lefever model@3,16#. In-
tracavity second-harmonic generation, neglecting diffract
but including chromatic dispersion, leads to either Turing
Hopf bifurcations@17#. An analytical stability analysis of this
model shows that the homogeneous Hopf and Tur
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branches lose their stability in favor of a mixed-mode bran
that is stable over a large range of parameters@18#.

To analyze the implications of the interaction between
Hopf and the Turing bifurcations in the dynamics of the 2
LS, we select parameters leading to the monostable hom
neous steady state and fixR54.5. The critical Hopf bifurca-
tion (Ei5EH) occurs in the hysteresis domain involving th
homogeneous steady state and the hexagonal structures.
that forR54.5 stripes are not observed. Let us consider fi
the domain of input field where the hexagonal structures
the homogeneous steady state are stable for the same
of the input field. This occurs before the Hopf bifurcatio
(Ei,EH). In this domain 2D stationary stable localize
structures can be generated, an example of which is
played in Fig. 1~a! where we plot the transverse profile o
Re(E1). The boundary conditions used in all our numeric
simulations are periodic. These LS connect the homogene
steady state to the hexagonal state. The number and the
sition of the stationary peaks depend on the initial con
tions. They are stable against small variations of their po
tions. The LS can also be randomly distributed in t
transverse plane@see Figs. 1~c! and 1~d!#. They are thus of
the same nature as the LS analyzed in our previous work@2#.
However, for the pump fieldE2 , the 2D transverse profile is
characterized by rings encircling a dip@see Figs. 1~b! and
1~d!#. This behavior is explained by the fact that signal a
the pump fields are out of phase. To stabilize the LS,
pump field must have a minimum amplitude where the sig
field amplitude has a maximum.

As the input field is increased beyond the Hopf bifurc
tion, the LS become time dependent. They are character
by a stationary strongly localized peak for bothE1 andE2 .

FIG. 1. 2D localized structures. Parameters areg51, R54.5,
S50.1, andEi55.75. Single localized structure obtained after p
turbing the stable homogeneous steady state at one grid point
amplitude of the perturbationDuE1u510 andDuE2u52. ~a! Real
part of the signal fieldE1 ; ~b! real part of the pump fieldE2 .
Random distribution of localized structures obtained from a sm
amplitude random noise initially added touE1u515 anduE2u55. ~c!
real part of the signal fieldE1 ; ~d! real part of the pump fieldE2 .
Maxima are plain white and mesh number integration is 1
3128.
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In Figs. 2~a! and 2~b! we show a single LS, while in Figs
2~c! and 2~d! we display two interacting LS. The number o
LS and their positions depend only on the initial conditio
and their amplitudes are essentially the same as the coe
ing hexagonal structure. The prominent feature is that e
peak emits concentric waves. To analyze this behavior,
make a cross section at the center of Figs. 2~a! and 2~b!,
parallel to they direction, for the signal and pump field
This section is shown in Fig. 3. This self-organized sp
tiotemporal behavior originates from the amplification

FIG. 2. 2D time-dependent localized structures. Parameters
g51, R54.5, S50.1, andEi56.5. The initial condition is the
profile obtained in Figs. 1~a! and 1~b!. Isolated localized struc-
ture: ~a! real part of the signal field;~b! real part of the pump field.
Two localized structures: ~c! real part of the signal field;~d! real
part of the pump field. Maxima are plain white and mesh num
integration is 1283128.

FIG. 3. Cross section taken from Figs. 2~a! and 2~b! passing
through the center of the transverse plane. The labeling of they axis
is the number of mesh points. The increment between two cons
tive points is 0.8 so that the dimensionless transverse lengt
102.4.
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time-dependent modes with nonzero wave vectors. As
have seen from the above linear stability analysis, there
ists a Hopf bifurcation with finite wave number that alwa
appears forEi larger than the threshold associated with t
homogeneous Hopf bifurcation. This instability leads to t
formation of traveling waves~TW! that are emitted in phas
to the left and to the right of the peaks located at the cente
transverse space~see Fig. 3!. The wave numberkTW , which
characterizes the TW solutions, is exactly half the most
stable mode associated with the static Turing instabi
kTW5kT/2 ~see Fig. 4!. This means that the wavelength o
the TW solutions is twice as large as the coexisting hexa
nal stationary structurelTW52lT . The velocity of the TW
emitted from the center isuvu5V(kTW)lTW/2p. The value
of the inhomogeneous Hopf frequencyV(kTW) can be cal-
culated from Eq.~5!. It is found to be close to the homoge
neous Hopf frequency. In fact, as shown in Fig. 4@curve~b!#,
the imaginary part of the root is practically constan
V(kTW)'VH for k,1.

To summarize, we have shown that LS can be genera
on an oscillatory background by studying a degenerate o
cal parametric oscillator for a range of parameters wh
Hopf and Turing bifurcations interact. The steady LS fou
below the Hopf bifurcation are characterized by a sh
maximum and out-of-phase fields~peak forE1 and dip for
E2). In the vicinity of the Hopf bifurcation, the LS chang
dramatically. The LS associated with both fields display
central peak surrounded by rings generated by trave
waves emanating from the peak.

This research was supported in part by the Fonds Natio
de la Recherche Scientifique~Belgium! and the Inter-
University Attraction Pole program of the Belgian gover
ment.
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FIG. 4. Gain versus the transverse wave number forg51, R

54.5, S50.1, andĪ 152.8. ~a! and ~b! are, respectively, the rea
and the imaginary parts of the eigenvaluesl obtained from the
linear stability analysis.~c! is the stability curve associated with th
Turing instability.
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