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Space-time localized structures in the degenerate optical parametric oscillator

M. Tlidi and Paul Mandel
Optique Nonlinaire Theorique, Campus Plaine Code Postal 231, Univérsitere de Bruxelles, 1050 Bruxelles, Belgium
(Received 2 September 1998

We study the transverse effects in a degenerate optical parametric oscillator with a saturable absorber. We
focus on the analysis of two-dimensional stationary and time-dependent localized patterns. The homogeneous
steady-state solution is destabilized by a Hopf bifurcation to periodic states with finite wave number and a
Turing bifurcation. These bifurcations are close enough that they interact. This leads to localized structures
consisting of a sharp peak emitting concentric rings of alternating high and low intensities.
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PACS numbe(s): 42.65.Sf, 42.65.Pc, 42.60.Mi

Stationary localized structure@lso called spatial soli- (DOPOSA was introduced in Ref[12]. Assuming fast
tons associated with homoclinic connections between coexatomic relaxation and the mean-field approximation, the evo-
isting stable steady states are now attracting growing interedfition equations in reduced variables are
in optics because of their potential application in information
technology. Such localized structurésS) have been pre- 9E
dicted in an early report on bistable systdrk Later, it was e YR E,+ETE,—
shown that the existence of LS does not require a bistable Jt
homogeneous steady state. They can be stable in the
monostable regimg2] where the single homogeneous steady JE,
state exhibits a subcritical Turingr modulational instabil- =— y(E,+E2—E)+ia,L, E,. 2
ity leading to a pattern forming process characterized by an
intrinsic wavelength that is determined by dynamical param-
eters and not by geometrical constraints imposed by the ca_ , are the normalized slowly varying envelopes of the sig-
|ty boundaries or System’s phySical dimensions. Stationary,a] and the pump fields at frequenciasand 2, respec-

LS have been also obtained in a Kerr medil8w], a purely  tively. E; is the driving field that is chosen real to fix the
dispersive two-level mediurfb], a quadratic mediuri6,7],  reference phasey is the ratio of the photon lifetimes at fre-
semiconductor devicd$], and a spin-1/2 atomic systel®].  quenciesw and 2». The saturable absorber is characterized
The LS can exhibit chaotic oscillations in tinj@0]. Re-  py its saturation intensity $and its linear loss coefficient
cently, the experimental evidence for LS in optical systemx a, and a, are the diffraction coefficients, and,
[11] has further stimulated the interest in the transverse pat= 52/ jx2+ 52/9y? is the Laplace operator acting on the
tern formation process. _ _ . transverse planex(y). The phase-matching condition im-

Up to now, investigations on two-dimension@D) LS in  poses thas, /a,=2 [13]. Time has been scaled such that the
optics have been limited to situations where the homogedecay rate of mode 1 is unity. Space is scaled in such a way
neous background is stable against oscillatory modes. Trl‘?]atafl anda,=1/2.
purpose of this paper is to study the dynamics of LS in a Equations(1) and (2) admit two types of homogeneous

situation where Turing and Hopf bifurcations interact. In th'ssteady—state solutiongf) the nonlasing statElzo andEz

regime, stationary and/or time-dependent LS appear. We re- — . . _
port evidence of LS that consists of a 2D stationary peak in E; that is stable below the lasing threshdig<Ey=1

the transverse profile of the cavity field. In the time- TRi (i) the lasing stateEj=1+1,+R/(1+Sl;) and E,
dependent regime, these peaks emit traveling waves forming Ei—Ef. The steady state,=|E,|? as a monotonic func-
concentric rings. The amplitude of the central peaks is essettion of E; if RS<1; it is bistable ifRS>1. The linear sta-
tially the same as the corresponding static Turing structuredility of these solutions with respect to perturbations of the
These solutions have already been described in one tranfrm exppt+ik-r) where (€, +k?)exp@t+ik-r)=0 has
verse dimensiof7]. been studied in Ref7].

We consider a ring cavity, driven by a coherent plane The homogeneous lasing steady-state solution can be de-
wave, filled by a nonlinear medium in which frequency con-stabilized by the competition between two processes: diffrac-
version takes place. We focus on degenerate intracavity ogion that tends to restore spatial uniformity in the transverse
tical parametric amplification: one photon with frequenay 2 plane and the nonlineariti€quadratic medium and saturable
is absorbed and two photons with frequenaieare emitted. absorber that are responsible for the amplification of the
In addition, we assume the presence of a saturable absorbgpatial inhomogeneities. The balance between the two pro-
that absorbs the field at frequenay The effective absorp- cesses generates a well known Tur{iog modulational in-
tion coefficient is therefore field dependent and is modeledtability [14] leading to the formation of intrinsic stationary
by a saturable two-level medium. This model for the degenperiodic patterns characterized by the wavelength
erate optical parametric oscillator with a saturable absorbe+2#7/k; where
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RSh(1+R+Sl) a

ki=y(l11—¥/2)— — ,
2(1+Sly7)3

andl ;7 is the critical intensity at the Turing bifurcation. It is
the solution of

(21174 V(B2 1= Bir+4y7) =2y(4B_1l 17+ 39, .

r
C

whereB, =+ 1+ aR(1*aSl;) andB. 1 is evaluated at,
=1,7. The lasing steady state undergoes a Hopf bifurcation
if a pair of complex-conjugate eigenvalues has a vanishing
real part with a finite imaginary part. This instability occurs

atl,=1,4, which is the solution of

b(TlH,k)[zw—ﬁ,)—b(Tm,k>]=4<y—ﬁ,>a<l_m,k>( )
4
FIG. 1. 2D localized structures. Parameters @arel, R=4.5,

; T 2 _ 2 T . 2 S=0.1, andE;=5.75. Single localized structure obtained after per-
Wltq b(Ll’k) 2y(,8__ﬂ+)+4zfl 1(72 ’8‘)4 2’?‘(2: turbing the stable homogeneous steady state at one grid point, the
+K%) +8vk%, _a(ly,k)=(BZ—BL+4k") (v +K")  amplitude of the perturbatio |E;|=10 andA|E,|=2. (a) Real
— 4yl (yB_+2k*—vyl;), and a=1/(1+Sl;). The fre- part of the signal fieldE,; (b) real part of the pump fieldE,.
quency of the periodic solution at the Hopf bifurcation is Random distribution of localized structures obtained from a small-

amplitude random noise initially added [,| = 15 and|E,|=5. (c)

- e real part of the signal fiel&,; (d) real part of the pump fielé,.
Ol k)= Vbl k)/2. ©) Maxima are plain white and mesh number integration is 128

. L . . X128
The homogeneous time-periodic mode has maximum gain.

The threshold associated with this instability, obtained byhranches lose their stability in favor of a mixed-mode branch
solving Eq. (4) with k=0, is |14+ (k=0)=J;y.=(R—y that is stable over a large range of paramef&8s.
+*VR(R—2y)/(yS) with critical frequency Qy To analyze the implications of the interaction between the
=0(J1n+,0)=Vy(2J14+—v). The Hopf instability with  Hopf and the Turing bifurcations in the dynamics of the 2D
k#0 always arises fof;>1,,_. We fix y=1, S=0.1 and LS, we select parameters leading to the monostable homoge-
let R andE; be the control parameters. For these parametersieous steady state and f&4.5. The critical Hopf bifurca-
there are two pairs of Hopf and Turing instabilities. We fo-tion (E;=Ey) occurs in the hysteresis domain involving the
cus on the pair of Hopf and Turing bifurcations that occurhomogeneous steady state and the hexagonal structures. Note
first when the input field amplitude is increased. The relativethat forR=4.5 stripes are not observed. Let us consider first
order between the two bifurcations is controlled by the lineathe domain of input field where the hexagonal structures and
loss of the saturable absorber.R&R.~5.47 the Hopf bi- the homogeneous steady state are stable for the same value
furcation occurs before the Turing instability. of the input field. This occurs before the Hopf bifurcation
In the vicinity of the codimension-two-poifR=R, where  (E;<Ey). In this domain 2D stationary stable localized
the two bifurcations coalesce, a weakly nonlinear analysis o$tructures can be generated, an example of which is dis-
Egs. (1) and (2) has shown that the system can exhibitplayed in Fig. 1a) where we plot the transverse profile of
bistable behavior not only between the homogeneous steade(E;). The boundary conditions used in all our numerical
state and the Turing branch but also between the static Tusimulations are periodic. These LS connect the homogeneous
ing and the homogeneous Hopf branchi@s In addition, steady state to the hexagonal state. The number and the po-
when the static Turing branch becomes unstable, a stabktion of the stationary peaks depend on the initial condi-
solution emerges from the homogeneous steady state, thi®ns. They are stable against small variations of their posi-
so-called mixed-mode solution corresponding to periodic ostions. The LS can also be randomly distributed in the
cillation in time and space. A completely different mecha-transverse plangsee Figs. (c) and Xd)]. They are thus of
nism for the generation of mixed-mode solutions is a Hopfthe same nature as the LS analyzed in our previous y&jrk
bifurcation located at the Turing branch. This secondary biHowever, for the pump fiel&,, the 2D transverse profile is
furcation arises as a result of a nonlinear interaction betweecharacterized by rings encircling a dipee Figs. (b) and
transverse unstable modes. This behavior was described irid)]. This behavior is explained by the fact that signal and
the case of two counterpropagating coherent beams in a Kethhe pump fields are out of phase. To stabilize the LS, the
medium[15] and in the Lugiato-Lefever mod¢B,16]. In-  pump field must have a minimum amplitude where the signal
tracavity second-harmonic generation, neglecting diffractiorfield amplitude has a maximum.
but including chromatic dispersion, leads to either Turing or As the input field is increased beyond the Hopf bifurca-
Hopf bifurcationd 17]. An analytical stability analysis of this tion, the LS become time dependent. They are characterized
model shows that the homogeneous Hopf and Turingy a stationary strongly localized peak for bd&th andE,.
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FIG. 4. Gain versus the transverse wave numberyferl, R
FIG. 2. 2D time-dependent localized structures. Parameters are45 sS=0.1, andle 2.8. (a) and (b) are, respectively, the real
y=1, R=45, 5=0.1, andE;=6.5. The initial condition is the and the imaginary parts of the eigenvaluesbtained from the
profile obtained in Figs. (&) and 1b). Isolated localized struc- |inear stability analysis(c) is the stability curve associated with the
ture: (a) real part of the signal fieldb) real part of the pump field.  Tyring instability.
Two localized structures: (c) real part of the signal fieldd) real

part of the pump field. Maxima are plain white and mesh number )
integration is 12& 128. time-dependent modes with nonzero wave vectors. As we

have seen from the above linear stability analysis, there ex-
ists a Hopf bifurcation with finite wave number that always
appears folg; larger than the threshold associated with the
: . . homogeneous Hopf bifurcation. This instability leads to the
2(c) and Zd.) we d_|§play two interacting LS. Th? numbe_r_ of formation of traveling wave§TW) that are emitted in phase
LS and _thelr positions depend (_)nly on the initial cond|t|0n_,t0 the left and to the right of the peaks located at the center of
and their amplitudes are essentially the same as the coexig}znsverse spadsee Fig. 3 The wave numbekyy, which

ing hexagonal structure. The prominent feature is that eachharacterizes the TW solutions, is exactly half the most un-
peak emits concentric waves. To analyze this behavior, Wgtaple mode associated with the static Turing instability
make a cross section at the center of Fig®) 2nd 2b), k., =k{/2 (see Fig. 4 This means that the wavelength of
parallel to they direction, for the signal and pump fields. the TW solutions is twice as large as the coexisting hexago-
This section is shown in Fig. 3. This self-organized spanal stationary structurkry=2\t. The velocity of the TW
tiotemporal behavior originates from the amplification of emitted from the center ig|=Q(krw)\tw/27. The value

of the inhomogeneous Hopf frequen€y(kry) can be cal-
culated from Eq(5). It is found to be close to the homoge-

In Figs. 2a) and Zb) we show a single LS, while in Figs.

Kt s s K .."

N T neous Hopf frequency. In fact, as shown in Figcdrve(b)],
| A Re(E )V the imaginary part of the root is practically constant:

To summarize, we have shown that LS can be generated
on an oscillatory background by studying a degenerate opti-
cal parametric oscillator for a range of parameters where
Hopf and Turing bifurcations interact. The steady LS found
below the Hopf bifurcation are characterized by a sharp
maximum and out-of-phase fieldpeak forE; and dip for
) s s E,). In the vicinity of the Hopf bifurcation, the LS change
0 32 64 96 128 dramatically. The LS associated with both fields display a

y central peak surrounded by rings generated by traveling
waves emanating from the peak.

FIG. 3. Cross section taken from FigsaRand 2b) passing
through the center of the transverse plane. The labeling of thés This research was supported in part by the Fonds National
is the number of mesh points. The increment between two consec@le la Recherche ScientifiquéBelgium) and the Inter-
tive points is 0.8 so that the dimensionless transverse length iEJniversity Attraction Pole program of the Belgian govern-
102.4. ment.
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