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Optical control and entanglement of atomic Schralinger fields
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We develop a fully quantized model of a Bose-Einstein condensate driven by a far off-resonant pump laser
and interacting with a single mode of an optical ring cavity. This geometry leads to the generation of two
condensate side modes that grow exponentially and are strongly entangled with the cavity mode. By changing
the initial state of the optical field one can vary the quantum-statistical properties of the atomic side modes
between thermal and coherent limits, as well as vary the degree of quantum entanglement.
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PACS numbe(s): 03.75.Fi, 42.50.Vk, 42.55:f

The recent demonstration of Bose-Einstein condensatiomitial state of the optical cavity mode, and in addition, that a
(BEC) in low-density alkali-metal vaporgl,2] opens up a strong quantum-mechanical entanglement can develop be-
new paradigm in atomic/optical physics. It is now possible totween the optical and matter-wave fields, as well as between
generate macroscopic atomic fields whose quantummatter-wave side modes. The experimental realization of this
statistical properties can in principle be manipulated andystem is currently feasible, in view of recent experiments on
controlled, very much like those of quantum-optical fields.the diffraction of condensates by Deegal. [11].

One important consideration is to define to which extent the We consider an ultracold sample of bosonic atoms driven
quantum state of a many-particle atomic field canopsi- Py a strong classical “pump” and a counterpropagating
cally manipulated. In the single-particle case, the answer t§veak quantized “probe” optical field, both being far off-
this problem is known to a large extent. This is the domain of€sonant from any electronic transition. Under these condi-
atom opticg 3], where a number of optical elements for mat- tions the internal atomic degrees of freedom can be adiabati-
ter waves have now been developed, including gratings, mircally eliminated and the matter-wave field is effectively
rors, interferometers, resonators, etc. But these optical elécalar. The combined Hamiltonian for the atomic and probe
ments manipulate just the atomic field “density,” or at most fields is

first-order coherence properties. However, Sdinger fields
possess a wealth of further properties past their first-order
coherence, including atom statistics, density correlation
functions, etc. In analogy to the optical case, one can there-
fore think of “quantum atom optics” as that extension of R ot Atat R

atom optics where the quantum state of a many-particle +'ﬁ% [gQoe "“CATCT(q—K)E(q)—H.c]
matter-wave field is being controlled, characterized, and used

in novel applications. |Qo|? 2A T o

This Rapid Communication presents an analysis of a sys- + K(T+ lg]“A A) > el(@)e(g). 1)
tem where a quantized optical field is used to manipulate the K
guantum state of a matter-wave field, as well as to generate ) .
new forms of quantum entanglement. The principle of using1€"® {o is the Rabi frequency of the pump laser of fre-

a quantized electric field to manipulate the coherence of guencyw, and momentunk,, A is the annihilation operator
matter-wave field was first proposed by Zeng and co-workersf the probe field of frequency and momentunk, satisfy-

[4], where they treated a condensate subject to a Raman traing [A,AT]=1, and&(q) is the annihilation operator for a
sition. That paper is flawed, however, in that it incorrectlyground state atom of momentumqg, satisfying
concludes that all solutions are stalffnusoida)l, and that [e(q),e'(q")]= 8q.q’ - In addition, A is the detuning be-
the system cannot be triggered by noise. Using a geometyveen the pump frequency and the upper electronic level
identical to that used in the collective atomic recoil laserclosest to resonance, agek d[ ck/(27% €,LS)]*?is the atom-
[5-7] and similar to that described @], as well as those probe coupling constant. Hew is the atomic dipole mo-
used for atom interferometr{8] and recoil-induced reso- ment,L the length of the ring cavity, anfl the cross section
nances[9,10, we consider a Bose-Einstein condensateof the probe mode in the region of the atomic sample. Fi-
driven by a far off-resonant pump laser and coupled to anally, K=k—Kk, is the atomic recoil momentum resulting
single mode of an optical ring cavity. This results in gain infrom the absorption of a pump photon followed by the emis-
the cavity mode, as well as the generation of momentum sidsion of a probe photon.

modes of the BEC, which are assumed to be unbound by any The first two terms in Eq(1) are the free Hamiltonians of
magnetic or optical trap. In particular, we study the unstabléhe atomic and probe fields, respectively. The remaining
(exponential solutions, as these result in the largest generterms correspond to the various processes by which an atom
ated fields. We show how the quantume-statistical propertiesndergoes a virtual transition under the influence of the op-
of the side modes are strongly manipulated by varying thdical fields. The first such term involves the exchange of a

. h? o
A=-—> q%'(q)&(q)+#ckAA
2m =<y
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photon between the pump and probe fields, e.g., stimulated The dynamics of the system can be determined by solving
absorption of a pump photon followed by stimulated emis-the three coupled-mode equations
sion of a probe photon, or vice versa. In coordinate represen-

tation, this term would take the form of the familiar periodic q d, § —x —x\/[d,
optical potential generated by the counterpropagating pump —la_|=il x 1 0 a._ 3)
and probe lasers fields. The last two terms in &g.corre- dr P 0 1 3 ’

+ —X - +

spond to processes where a photon is first absorbed and then
reemitted into the same field. These transitions are recoilless,

but contribute a cross-phase modulation between the atomihereé 7=w;t, and we have introducedly(7)=a(7),

and optical fields. d,(T)E(:T,(T), and cL(r)Em(r) for future notational
Assuming that the initial momentum width of the conden-compactnesg. ' N
sate is small compared to the recoil momentkimit is rea- An analytic solution can be constructed explicitly from

sonable to treat it as single-modeatomic field of momen- the eigenvalue$\;} and eigenvectorgv;} of the matrix on
tum g=0. We furthermore restrict our discussion to the casghe right-hand side of Eq3). The eigenvalueg\;} have
T<T,., whereT, is the critical temperature, and assume abeen studied in detail in Reff7] in the context of the theory
large condensate for which the bare mape0 can then be of the collective atom recoil laseiCARL). It was shown
described to a good approximation ascanumber,&(0) that, provided the system parametgrand ¢ satisfy certain
— N exp(|Qo/?/4A), whereN is the mean number of at- threshold conditions, they take the forky=w;,\;=\3
oms in the condensate. This approximation neglects both the 1 +il’, wherew,, (), andI are all real quantities. Hence
depletion that occurs as atoms are transferred into the sidee see that after an initial transient, the solution grows ex-
modesq+#0 and the cross-phase modulation between th@onentially in time at the rat€. This regime of exponential
condensate and the probe field; thus it is valid for times shorgrowth is familiar from the physics of the free-electron laser
enough thaEq¢0(6T(q)é(q)><N and(ATA)<|Q,|?/4/g|2. and of the CARL, yvhere it is usuqlly studied at hlg.h tem-
This is the matter-wave optics analog of the familiar classicaPeratures. The explicit form of the eigenvalues and eigenvec-
and undepleted pump approximation of nonlinear opticsf‘ors is not required for the current analysis ar_1d_ will b_e_pre-
Hence we describe the optical and matter-wave fields ofented elsewhere. For our present purposes, it is sufficient to
equal footings, treating all strongly populated modes classikNOW that for a given set of parameteyss they are simply
cally and all weakly populated modes quantum-constants. ,
mechanically. The solution of Eq(3) is

Once we have replaced the condensate mode witb-its
number counterpart, we then neglect all terms in the Hamil- di(7)=>, uij(r)aj(O), (4)
tonian (1) involving the product of three or more weakly i
populated field modes. This is a direct consequence of Bose . ,
enhancement, which strongly strengthens the interactions ifvhere the coefficients;; (7) are given by
volving the centralg=0 mode relative to those involving

only the side modes, and leads us to the effective Hamil- uij(T)zz vikvgjle”k%{ije(”m)’. (5)
tonian k
ﬂ:ﬁwr[61@++@ié__53‘ra Here v, is theith component of the eigenvectoy, vl:jl
At e satisfiesS,v ;' = 8, andij=visv3; . The approximate
+x(@'c.+ac,+c at+c_aj, (2)  equality in Eq.(5) is valid for times long enough that one can

) , neglect all but the exponentially growing terms, henceforth

where o =£K?/2m, and we ha;ve introduced  the referred to as the exponential growth regime.
slowly varying operatorsizexpﬂﬂol /4A)e(+K) anda This exponential growth of the system can be triggered
=—i(gQg|A|/|g|QA)explwt)A. The system is fully either from vacuum fluctuations, as we discuss in more detail
characterized by the effective coupling constayt shortly, or by a weak injected probe signal. We investigate
=19||Q|VN/2w,|A| and the dimensionless pump-probe de-both situations by assuming that the probe field is initially in
tuning 6= (wg— w)/ o, . the coherent state, the vacuum state corresponding do

The Hamiltonian(2) describes three coupled field modes: =0. The condensate side modes, in contrast, are always
the optical probe and two atomic condensate side modes wittaken to be in the vacuum state &t 0, so that the initial
wave numberstK. The terma’é! in Eq. (2) describes the state of the system ig,0,0.
creation of correlated atom-photon pairs, and immediately The expectation valueégfji> of the three coupled modes
brings to mind the optical parametric amplif{é:2], a device  are readily found to be
known to generate highly nonclassical optical fields exhibit-
ing two-mode intensity correlations and squeezing, and <ai(T)>:auia(T)%aé‘iae(FHQ)T, (6)
which has been extensively employed in the creation of en-
tangled photon pairs for fundamental studies of quantum mewhere the approximate result is for the exponential growth
chanics, quantum cryptography, and quantum computing. Aegime. As expected, in the absence of an injected signal the
novel aspect of the present system is that it offers a way tonean fields remain zero, but the injected probe breaks the
achieve quantum entanglement between atomic and opticaymmetry of the system and leads to nonzero expectation
fields. values.
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Decomposing the expectation valu@) in terms of an In addition to the side-mode intensity, it is instructive to
amplitude and phase &sl;)=r;(7)exdif(7)], we find that also study their equal-time intensity correlation functions.
in the exponential growth regime their uncertainties obey For the probe mode, we have

(a'(na'(na(na()

(a'(na(n)?

where the fluctuation functiorf(x,8)=[vs /vsa| has a  he sige-mode correlation functiond? () andg@(7) are
relatively simple dependence on the control parameers jafined likewise but witha(r) replaced byé (7) and

and 6. Specifically, for a giverny, f(x,d) is approximately ivelv. Th lation f . .
unity at the, which maximizes the growth rafé, and in- Z;Iglai-():itl;eggectlve y. These correfation functions are given

creases steadily away from this value. Clearly, &g.holds
only in the case of an injected probe signak: 0. In that la|*|uia(7)|* la|*

case, the phase uncertainties of all three mean fields ap- gi<2>(7_):2_ 2 ~2— a2+ 2. 012
proach the same limiting value for large and this value i (7) [l (x. 9] (11)
approaches zero as becomes very large; i.e., for large

enougha all three modes are effectively in coherent statesas before, the approximate result applies to the exponential
We note that for larger the system is essentially equivalent growth regime, where the intensity correlation functions be-
to Kapitza-Dirac atomic diffraction of a condensate by acome constant in time and the same for each mode. In the
standing wav¢11], which we now see produces atomic side case where the system builds up from noike|3=0), we
modes in coherent states. _ - have therg(®'=2, the signature of a thermal or chaotic field.
_ V\/Te how investigate the _mean intensities; (7) As the injected signal strength is increased, howegézr),
=<diA(T)di(T)>_ 8, . The & function accounts for the fact _ 1 '\ynich is characteristic of a Glauber coherent field with
thatd,(7) in Eq. (3) is a creation rather than an annihilation pojssonian excitation statistics. Note the important point that
operator, thus guaranteeing that the initial intensity of thehe state of the side modes can be continuously varied from
“ =" side mode vanishes. These intensities are given explicthermal to coherent by varying the strength of the injected

AL(DIN(D=A6(D~T(x.9)/(V2lal), (D) g2(r)= (10

itly by probe signal and/or the system paramejeasd 6. Thus the
coherence properties of the matter-wave fields are directly
Li(7)=|a|?|uia( D)2+ ]u_(7)]?— & _. (8)  controlled by an optical field.
We have mentioned the analogy between the problem at
In the exponential growth regime they reduce to hand and the parametric oscillator. It is the tool of choice for

generating entangled quantum-optical states. We now inves-
tigate if similar entanglements can be obtained here. We pro-
~ 217 124 |7 |2y@2lT ! ! ) : )
Li(n=(lal*fial*+]£-)e™ . ©  ceed by investigating the equal-time two-mode intensity
_ _ cross correlations, which are a measure of the degree of en-
They have a stimulated component, proportiondbt, and  tanglement between the modes of the system. For example,

a spontaneous component, which is present even when alle intensity cross-correlation functigi®)(r) is defined as
three field modes begin in the vacuum state. The stimulated

component is simply the squared amplitude of the mean @ @a'(na(net(ne_(n)

field, while the spontaneous component has no mean field, as 9a- :<éT(’T)é( 7_)><6T (Ne_(7) 12
it originates from the amplification of vacuum fluctuations in - -

the atomic bunching. : : ) . .

Tq help und_erstand this irj more detail, Wehintroduce thegr:zegr@lf Ei;] :sg);ec;t;?;ggr;ierﬁz?y-functlons, SUChgﬁ(T)
atomic “bunching operator"B=(1/N)Z; exp(Kz), where For classical fields, there is an upper limit to the second-
2 is the position operator of thigh atom. If the atoms in the  grger equal-time correlation function. It is given by the
sample are evenly distributed in space, tiBn=0. At the  Cauchy-Schwartz inequalifyl 2]
opposite extreme, if all the atoms are localized on a array of
period 27/K, then|(B)|=1. Second-quantizing and lin- 9P (<[9P (n]¥qg{? ()] (13
earizing the result by treating tlgg=0 mode as & number . i . L
and keeping as in the derivation of E@) only the lowest- QuanFum—mechanlcal fields, however, can violate this in-
order terms in the side mode operators, we can reexpre§Sluality and are instead constrained[g]

B in terms of the atomic field operators a8 1 12
=(1/YN)(c—t+c+). It is immediately apparent from that 9P (n)=< ) g2 (n)+ |(_T)} , (19
definition that(B(0))=0 for our initial state|a,0,0. How- ' .

ever, the fluctuationgB?(0)) are nonzero, due to the fact which reduces to the classical result in the limit of large
that(¢_(0)e" (0))=1. It is precisely this expectation value intensities.

that leads to the spontaneous intensity component, which can We focus our attention on the spontaneous case0,
therefore be attributed to vacuum fluctuations in the initialwhere the single-mode intensity correlation functions are
atomic bunching. These fluctuations play a role similar togiven by gi(z)(r)=2. In this case, the equal-time intensity
that of vacuum fluctuations in spontaneous emission. cross-correlation functions are found to be

1/2
g% (r)+
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2 @ 1 y 1 12 between the quanturfi4) and classica(13) limits. As « is

= =2+ 2+ , i i i imi
a-—9-% (1) +1.(7) I (1) increased, it falls ever closer to the classical upper limit, so

that in the limit of very largea, the fields exhibit classical
g =2. (15)  cross correlations only.
In summary, we have discussed how the quantum state of
From Eq.(15) we see that botlg'®(7) andg®, () violate =~ momentum side modes of a condensate can be varied con-

the Cauchy-Schwartz inequality, whigéﬁ(r) is consistent  tinuously between two distinct limits by specifying the initial

with classical cross correlations. Furthermore, the expliciState of an optical cavity mode. When it begins in the
evaluation of thef;;’s shows thatl , (7)<l 4(7), which im- vacuum state, the side-mode and the cavity-mode fields de-

plies thatggz,)(a-) is very close to the maximum violation of velop with zero mean fields, thermal intensity fluctuations,

the classical inequality consistent with quantum mechanicsand strong quantum correl_atlons between the modes. In con-
) T trast, when it is prepared in a strong coherent state, we ap-
whereas folg:“, (7) the violation is not close to the allowed

. In the t d tri lifier the t proach a “classical” limit in which the fields develop with
maximum. in In€ two-mode parametric amplifier, th€ Wo-, ., 0.5 mean fields having well-defined phases, intensity
mode correlation function shows the maximum violation of

fluctuations indicating a coherent state, and exhibiting clas-

the Cauchy-Schwartz inequality consistent with quantumsical correlations only. Condensate side modes have recently

mechanics. In the three-mode system, however, the tWQseq, eajized in an experiment by Deeigal, where a con-
mode cross-correlation functions involve a trace over the

third mode; hence it is not surprising that the two-mode Cor_densate was subjected to Kapitza-Dirac diffraction by a
. ’ - P 9 standing-wave laser field 1]. In order to observe the effects
relations are not maximized.

If we now allow for an injected coherent probe field predicted here, this field would need to be replaced by a

(a#0), we must first note that the intensities are increase(gombination of a strong pump laser and a weak counter-
P . i ropagating probe sustained by an optical cavity, which does
by approximately|a|?, which means that the time scale on pagating p y b y

which the classical and quantum upper limi18) and (14) not appear to present any major difficulty.

converge is reduced by|#/?, making an experimental con-  This work has been supported in part by the U.S. Office
firmation of quantum correlations more difficult. In addition, of Naval Research under Contract No. 14-91-J1205, by the
whereas for the spontaneous case0, numerics show the U.S. Army Research Office, by NSF Grant No. PHY-
cross correlatiorggz,) follows almost exactly the quantum 9801099, and by the Joint Services Optics Program. P.M.
upper limit(14) for all t>0; for a#0, it lies somewhere in acknowledges partial support by the Humboldt Foundation.
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