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Optical control and entanglement of atomic Schro¨dinger fields
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Optical Sciences Center and Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 31 July 1998!

We develop a fully quantized model of a Bose-Einstein condensate driven by a far off-resonant pump laser
and interacting with a single mode of an optical ring cavity. This geometry leads to the generation of two
condensate side modes that grow exponentially and are strongly entangled with the cavity mode. By changing
the initial state of the optical field one can vary the quantum-statistical properties of the atomic side modes
between thermal and coherent limits, as well as vary the degree of quantum entanglement.
@S1050-2947~99!50603-3#

PACS number~s!: 03.75.Fi, 42.50.Vk, 42.55.2f
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The recent demonstration of Bose-Einstein condensa
~BEC! in low-density alkali-metal vapors@1,2# opens up a
new paradigm in atomic/optical physics. It is now possible
generate macroscopic atomic fields whose quant
statistical properties can in principle be manipulated a
controlled, very much like those of quantum-optical field
One important consideration is to define to which extent
quantum state of a many-particle atomic field can beopti-
cally manipulated. In the single-particle case, the answe
this problem is known to a large extent. This is the domain
atom optics@3#, where a number of optical elements for ma
ter waves have now been developed, including gratings,
rors, interferometers, resonators, etc. But these optical
ments manipulate just the atomic field ‘‘density,’’ or at mo
first-order coherence properties. However, Schro¨dinger fields
possess a wealth of further properties past their first-o
coherence, including atom statistics, density correlat
functions, etc. In analogy to the optical case, one can th
fore think of ‘‘quantum atom optics’’ as that extension
atom optics where the quantum state of a many-part
matter-wave field is being controlled, characterized, and u
in novel applications.

This Rapid Communication presents an analysis of a s
tem where a quantized optical field is used to manipulate
quantum state of a matter-wave field, as well as to gene
new forms of quantum entanglement. The principle of us
a quantized electric field to manipulate the coherence o
matter-wave field was first proposed by Zeng and co-work
@4#, where they treated a condensate subject to a Raman
sition. That paper is flawed, however, in that it incorrec
concludes that all solutions are stable~sinusoidal!, and that
the system cannot be triggered by noise. Using a geom
identical to that used in the collective atomic recoil las
@5–7# and similar to that described in@4#, as well as those
used for atom interferometry@8# and recoil-induced reso
nances @9,10#, we consider a Bose-Einstein condens
driven by a far off-resonant pump laser and coupled t
single mode of an optical ring cavity. This results in gain
the cavity mode, as well as the generation of momentum
modes of the BEC, which are assumed to be unbound by
magnetic or optical trap. In particular, we study the unsta
~exponential! solutions, as these result in the largest gen
ated fields. We show how the quantum-statistical proper
of the side modes are strongly manipulated by varying
PRA 591050-2947/99/59~3!/1754~4!/$15.00
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initial state of the optical cavity mode, and in addition, tha
strong quantum-mechanical entanglement can develop
tween the optical and matter-wave fields, as well as betw
matter-wave side modes. The experimental realization of
system is currently feasible, in view of recent experiments
the diffraction of condensates by Denget al. @11#.

We consider an ultracold sample of bosonic atoms driv
by a strong classical ‘‘pump’’ and a counterpropagati
weak quantized ‘‘probe’’ optical field, both being far off
resonant from any electronic transition. Under these con
tions the internal atomic degrees of freedom can be adiab
cally eliminated and the matter-wave field is effective
scalar. The combined Hamiltonian for the atomic and pro
fields is

Ĥ5
\2

2m(
q

q2ĉ†~q!ĉ~q!1\ckÂ†Â

1 i
\

2D (
q

@gV0e2 iv0tÂ†ĉ†~q2K !ĉ~q!2H.c.#

1
\

D S uV0u2

4
1ugu2Â†ÂD(

q
ĉ†~q!ĉ~q!. ~1!

Here, V0 is the Rabi frequency of the pump laser of fr
quencyv0 and momentumk0, Â is the annihilation operato
of the probe field of frequencyv and momentumk, satisfy-
ing @A,A†#51, and ĉ(q) is the annihilation operator for a
ground state atom of momentumq, satisfying
@ ĉ(q),ĉ†(q8)#5dq,q8 . In addition, D is the detuning be-
tween the pump frequency and the upper electronic le
closest to resonance, andg5d@ck/(2\e0LS)#1/2 is the atom-
probe coupling constant. Hered is the atomic dipole mo-
ment,L the length of the ring cavity, andS the cross section
of the probe mode in the region of the atomic sample.
nally, K[k2k0 is the atomic recoil momentum resultin
from the absorption of a pump photon followed by the em
sion of a probe photon.

The first two terms in Eq.~1! are the free Hamiltonians o
the atomic and probe fields, respectively. The remain
terms correspond to the various processes by which an a
undergoes a virtual transition under the influence of the
tical fields. The first such term involves the exchange o
R1754 ©1999 The American Physical Society
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photon between the pump and probe fields, e.g., stimul
absorption of a pump photon followed by stimulated em
sion of a probe photon, or vice versa. In coordinate repres
tation, this term would take the form of the familiar period
optical potential generated by the counterpropagating pu
and probe lasers fields. The last two terms in Eq.~1! corre-
spond to processes where a photon is first absorbed and
reemitted into the same field. These transitions are recoill
but contribute a cross-phase modulation between the ato
and optical fields.

Assuming that the initial momentum width of the conde
sate is small compared to the recoil momentumK, it is rea-
sonable to treat it as asingle-modeatomic field of momen-
tum q50. We furthermore restrict our discussion to the ca
T!Tc , whereTc is the critical temperature, and assume
large condensate for which the bare modeq50 can then be
described to a good approximation as ac number, ĉ(0)
→AN exp(iuV0u2t/4D), whereN is the mean number of at
oms in the condensate. This approximation neglects both
depletion that occurs as atoms are transferred into the
modesqÞ0 and the cross-phase modulation between
condensate and the probe field; thus it is valid for times sh
enough that(qÞ0^ĉ

†(q) ĉ(q)&!N and ^Â†Â&!uV0u2/4ugu2.
This is the matter-wave optics analog of the familiar class
and undepleted pump approximation of nonlinear opt
Hence we describe the optical and matter-wave fields
equal footings, treating all strongly populated modes cla
cally and all weakly populated modes quantu
mechanically.

Once we have replaced the condensate mode with itc-
number counterpart, we then neglect all terms in the Ham
tonian ~1! involving the product of three or more weak
populated field modes. This is a direct consequence of B
enhancement, which strongly strengthens the interaction
volving the centralq50 mode relative to those involving
only the side modes, and leads us to the effective Ham
tonian

Ĥ5\v r@ ĉ1
† ĉ11 ĉ2

† ĉ22dâ†â

1x~ â†ĉ2
† 1â†ĉ11 ĉ1

† â1 ĉ2â!#, ~2!

where v r5\K2/2m, and we have introduced th
slowly varying operatorsĉ65exp(iuV0u2t/4D) ĉ(6K ) and â

52 i (gV0* uDu/uguV0D)exp(iv0t)Â. The system is fully
characterized by the effective coupling constantx
5uguuV0uAN/2v r uDu and the dimensionless pump-probe d
tuning d5(v02v)/v r .

The Hamiltonian~2! describes three coupled field mode
the optical probe and two atomic condensate side modes
wave numbers6K . The termâ†ĉ2

† in Eq. ~2! describes the
creation of correlated atom-photon pairs, and immedia
brings to mind the optical parametric amplifier@12#, a device
known to generate highly nonclassical optical fields exhib
ing two-mode intensity correlations and squeezing, a
which has been extensively employed in the creation of
tangled photon pairs for fundamental studies of quantum
chanics, quantum cryptography, and quantum computing
novel aspect of the present system is that it offers a wa
achieve quantum entanglement between atomic and op
fields.
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The dynamics of the system can be determined by solv
the three coupled-mode equations

d

dt S d̂a

d̂2

d̂1

D 5 iS d 2x 2x

x 1 0

2x 0 21
D S d̂a

d̂2

d̂1

D , ~3!

where t5v r t, and we have introducedd̂a(t)[â(t),
d̂2(t)[ ĉ2

† (t), and d̂1(t)[ ĉ1(t) for future notational
compactness.

An analytic solution can be constructed explicitly fro
the eigenvalues$l j% and eigenvectors$vj% of the matrix on
the right-hand side of Eq.~3!. The eigenvalues$l j% have
been studied in detail in Ref.@7# in the context of the theory
of the collective atom recoil laser~CARL!. It was shown
that, provided the system parametersx andd satisfy certain
threshold conditions, they take the forml15v1 ,l25l3*
5V1 iG, wherev1 , V, andG are all real quantities. Henc
we see that after an initial transient, the solution grows
ponentially in time at the rateG. This regime of exponentia
growth is familiar from the physics of the free-electron las
and of the CARL, where it is usually studied at high tem
peratures. The explicit form of the eigenvalues and eigenv
tors is not required for the current analysis and will be p
sented elsewhere. For our present purposes, it is sufficie
know that for a given set of parametersx,d they are simply
constants.

The solution of Eq.~3! is

d̂i~t!5(
j

ui j ~t!d̂ j~0!, ~4!

where the coefficientsui j (t) are given by

ui j ~t!5(
k

v ikvk j
21eilkt'z i j e

~G1 iV!t. ~5!

Here v ik is the i th component of the eigenvectorvk , vk j
21

satisfies(kv ikvk j
215d i j , andz i j [v i3v3 j

21 . The approximate
equality in Eq.~5! is valid for times long enough that one ca
neglect all but the exponentially growing terms, hencefo
referred to as the exponential growth regime.

This exponential growth of the system can be trigge
either from vacuum fluctuations, as we discuss in more de
shortly, or by a weak injected probe signal. We investig
both situations by assuming that the probe field is initially
the coherent statea, the vacuum state corresponding toa
50. The condensate side modes, in contrast, are alw
taken to be in the vacuum state att50, so that the initial
state of the system isua,0,0&.

The expectation valueŝd̂i& of the three coupled mode
are readily found to be

^d̂i~t!&5auia~t!'az iae~G1 iV!t, ~6!

where the approximate result is for the exponential grow
regime. As expected, in the absence of an injected signa
mean fields remain zero, but the injected probe breaks
symmetry of the system and leads to nonzero expecta
values.
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Decomposing the expectation values^di& in terms of an
amplitude and phase as^di&5r i(t)exp@iui(t)#, we find that
in the exponential growth regime their uncertainties obey

Dr i~t!/r i~t!5Du i~t!' f ~x,d!/~&uau!, ~7!

where the fluctuation functionf (x,d)5uv32
21/v3a

21u has a
relatively simple dependence on the control parameterx
and d. Specifically, for a givenx, f (x,d) is approximately
unity at thed, which maximizes the growth rateG, and in-
creases steadily away from this value. Clearly, Eq.~7! holds
only in the case of an injected probe signal,aÞ0. In that
case, the phase uncertainties of all three mean fields
proach the same limiting value for larget, and this value
approaches zero asa becomes very large; i.e., for larg
enougha all three modes are effectively in coherent stat
We note that for largea the system is essentially equivale
to Kapitza-Dirac atomic diffraction of a condensate by
standing wave@11#, which we now see produces atomic si
modes in coherent states.

We now investigate the mean intensitiesI i(t)
[^di

†(t)di(t)&2d i ,2 . The d function accounts for the fac

that d̂2(t) in Eq. ~3! is a creation rather than an annihilatio
operator, thus guaranteeing that the initial intensity of
‘‘ 2’’ side mode vanishes. These intensities are given exp
itly by

I i~t!5uau2uuia~t!u21uui 2~t!u22d i ,2 . ~8!

In the exponential growth regime they reduce to

I i~t!'~ uau2uz iau21uz i 2u2!e2Gt. ~9!

They have a stimulated component, proportional touau2, and
a spontaneous component, which is present even whe
three field modes begin in the vacuum state. The stimula
component is simply the squared amplitude of the m
field, while the spontaneous component has no mean field
it originates from the amplification of vacuum fluctuations
the atomic bunching.

To help understand this in more detail, we introduce
atomic ‘‘bunching operator’’B̂5(1/N)( j exp(iKẑj), where
ẑj is the position operator of thej th atom. If the atoms in the
sample are evenly distributed in space, then^B̂&50. At the
opposite extreme, if all the atoms are localized on a arra
period 2p/K, then u^B̂&u51. Second-quantizingB̂ and lin-
earizing the result by treating theq50 mode as ac number
and keeping as in the derivation of Eq.~2! only the lowest-
order terms in the side mode operators, we can reexp
B̂ in terms of the atomic field operators asB̂
5(1/AN)~c2†1c1!. It is immediately apparent from tha
definition that^B̂(0)&50 for our initial stateua,0,0&. How-
ever, the fluctuationŝB̂2(0)& are nonzero, due to the fac
that ^ĉ2(0)ĉ2

† (0)&51. It is precisely this expectation valu
that leads to the spontaneous intensity component, which
therefore be attributed to vacuum fluctuations in the ini
atomic bunching. These fluctuations play a role similar
that of vacuum fluctuations in spontaneous emission.
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In addition to the side-mode intensity, it is instructive
also study their equal-time intensity correlation function
For the probe mode, we have

ga
~2!~t !5

^â†~t!â†~t!â~t!â~t!&

^â†~t!â~t!&2 . ~10!

The side-mode correlation functionsg2
(2)(t) andg1

(2)(t) are
defined likewise but withâ(t) replaced by ĉ2(t) and
ĉ1(t), respectively. These correlation functions are giv
explicitly as

gi
~2!~t !522

uau4uuia~t!u4

I i
2~t!

'22
uau4

@ uau21 f 2~x,d!#2 .

~11!

As before, the approximate result applies to the exponen
growth regime, where the intensity correlation functions b
come constant in time and the same for each mode. In
case where the system builds up from noise (uau250), we
have thengi

(2)52, the signature of a thermal or chaotic fiel
As the injected signal strength is increased, however,gi

(2)

→1, which is characteristic of a Glauber coherent field w
Poissonian excitation statistics. Note the important point t
the state of the side modes can be continuously varied f
thermal to coherent by varying the strength of the injec
probe signal and/or the system parametersx andd. Thus the
coherence properties of the matter-wave fields are dire
controlled by an optical field.

We have mentioned the analogy between the problem
hand and the parametric oscillator. It is the tool of choice
generating entangled quantum-optical states. We now in
tigate if similar entanglements can be obtained here. We p
ceed by investigating the equal-time two-mode intens
cross correlations, which are a measure of the degree of
tanglement between the modes of the system. For exam
the intensity cross-correlation functionga2

(2)(t) is defined as

ga2
~2!5

^â†~t!â~t!ĉ2
† ~t!ĉ2~t!&

^â†~t!â~t!&^ĉ2
† ~t!ĉ2~t!&

. ~12!

Other intensity cross-correlation functions, such asga1
[2] (t)

andg21
(2) (t), are defined similarly.

For classical fields, there is an upper limit to the seco
order equal-time correlation function. It is given by th
Cauchy-Schwartz inequality@12#

gi j
~2!~t !<@gi

~2!~t !#1/2@gj
~2!~t !#1/2. ~13!

Quantum-mechanical fields, however, can violate this
equality and are instead constrained by@12#

gi j
~2!~t !<Fgi

~2!~t !1
1

I i~t!G
1/2Fgj

~2!~t !1
1

I j~t!G
1/2

, ~14!

which reduces to the classical result in the limit of lar
intensities.

We focus our attention on the spontaneous casea50,
where the single-mode intensity correlation functions
given by gi

(2)(t)52. In this case, the equal-time intensi
cross-correlation functions are found to be
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ga2
~2!5g21

~2! 5F21
1

I a~t!1I 1~t!G
1/2F21

1

I 2~t!G
1/2

,

ga1
~2!52. ~15!

From Eq.~15! we see that bothga2
(2)(t) andg21

(2) (t) violate
the Cauchy-Schwartz inequality, whilega1

(2)(t) is consistent
with classical cross correlations. Furthermore, the exp
evaluation of thez i j ’s shows thatI 1(t)!I a(t), which im-
plies thatga2

(2)(t) is very close to the maximum violation o
the classical inequality consistent with quantum mechan
whereas forg21

(2) (t) the violation is not close to the allowe
maximum. In the two-mode parametric amplifier, the tw
mode correlation function shows the maximum violation
the Cauchy-Schwartz inequality consistent with quant
mechanics. In the three-mode system, however, the t
mode cross-correlation functions involve a trace over
third mode; hence it is not surprising that the two-mode c
relations are not maximized.

If we now allow for an injected coherent probe fie
(aÞ0), we must first note that the intensities are increa
by approximatelyuau2, which means that the time scale o
which the classical and quantum upper limits~13! and ~14!
converge is reduced by 1/uau2, making an experimental con
firmation of quantum correlations more difficult. In additio
whereas for the spontaneous casea50, numerics show the
cross correlationga2

(2) follows almost exactly the quantum
upper limit ~14! for all t.0; for aÞ0, it lies somewhere in
s

it

s,

-
f

o-
e
-

d

between the quantum~14! and classical~13! limits. As a is
increased, it falls ever closer to the classical upper limit,
that in the limit of very largea, the fields exhibit classica
cross correlations only.

In summary, we have discussed how the quantum stat
momentum side modes of a condensate can be varied
tinuously between two distinct limits by specifying the initi
state of an optical cavity mode. When it begins in t
vacuum state, the side-mode and the cavity-mode fields
velop with zero mean fields, thermal intensity fluctuation
and strong quantum correlations between the modes. In
trast, when it is prepared in a strong coherent state, we
proach a ‘‘classical’’ limit in which the fields develop with
nonzero mean fields having well-defined phases, inten
fluctuations indicating a coherent state, and exhibiting cl
sical correlations only. Condensate side modes have rece
been realized in an experiment by Denget al., where a con-
densate was subjected to Kapitza-Dirac diffraction by
standing-wave laser field@11#. In order to observe the effect
predicted here, this field would need to be replaced b
combination of a strong pump laser and a weak coun
propagating probe sustained by an optical cavity, which d
not appear to present any major difficulty.
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