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Levinson’s theorem for the Klein-Gordon equation in two dimensions
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In terms of the modified Sturm-Liouville theorem, the two-dimensional Levinson theorem for the Klein-
Gordon equation with a cylindrically symmetric potenti4lr) is established for an angular momentamas
a relation between the numbers, of the particle and antiparticle bound states and the phase shifts

Nm(EM):
(Nt —np+ 1) when a half-bound state occurseastM  for m=1
IM) = 7(—M)=4 (Ng—Nnp— 1) when a half-bound state occurstat —M  for m=1
(nh—n)m the remaining cases.

A solution of the Klein-Gordon equation with the enegyor — M is called a half-bound state if it is finite but
does not decay fast enough at infinity to be square integre®1€50-294709)01702-3

PACS numbdps): 03.65.Ge, 11.86-m, 73.50.Bk

[. INTRODUCTION ized relation with a weight factor. As pointed out in Refs.
[25,24, after Bose quantization those amplitudes with real

The Levinson theorerl], an important theorem in scat- and positivee describe particles, and those with real and
tering theory, established the relation between the total nurmegativee antiparticles.
ber of bound states and the phase shift at zero momentum. Recall that, in three-dimensional spaces, two methods
During the past half-century, the Levinson theorem has beewere used to set up the Levinson theorem for the Klein-
proved by several authors with different methods, and genGordon equation. One relied on the Green-function method
eralized to different field§1-24]. Roughly speaking, there [5,22], where some formulas are valid only for the cases
are three main methods for proving the Levinson theoremwithout complex energies. The other was based on a modi-
One[1] is based on the elaborate analysis of the Jost funcfied Sturm-Liouville theoren{9], by which the Levinson
tion. The second relies on the Green-function metf®d  theorem for the Klein-Gordon equation was established for
The third method is used to demonstrate the Levinson theaases even with complex energies.
rem by the Sturm-Liouville theorerf6—8]. This simple, in- The reasons we present this paper are as follows. On the
tuitive method is readily generalized, and has been applied tone hand, the Levinson theorem in two dimensions has been
many physical problem$6—-9,23,24. Some obstacles and studied numericall{18] as well as in theoryf19—-24, in
ambiguities, which may occur in the other two methods, disvirtue of the wide interest in lower-dimensional field theo-
appear in the third method. However, the Sturm-Liouvilleries. On the other hand, the Levinson theorem for the Klein-
theorem has to be modified in proving the Levinson theorenGordon equation in two dimensions has never appeared in
for the Klein-Gordon equatiofg]. the literature, to our knowledge. In our previous works

The Klein-Gordon equation, which describes the motion[23,24], Levinson theorems in two dimensions for nonrela-
of a relativistic scalar particle, is a second-order differentialtivistic and relativistic particles, as well as those with a non-
equation with respect to both space and time. When therkcal interaction, were established by the Sturm-Liouville
exists a potential as the time component of a vector field, theneorem. Now we attempt to set up the Levinson theorem for
energy eigenvalues it is not necessary for the Klein-Gordomhe Klein-Gordon equation in two dimensions for complete-
equation to be real, and the eigenfunctions satisfy the orness.

thogonal relations with a weight fact¢5,2€ such that a This paper is organized as follows. In Sec. Il, we review
parametek, which is not always real, appears in the normal-the properties of the Klein-Gordon equation, especially those
related to the parameter In Sec. lll, it is proved that the
difference between the number of bound states of a particle
*Electronic address: DONGSH@BEPC4.IHEP.AC.CN and an antiparticle relies only on the changes of the logarith-
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mic derivatives of the wave functions &= =M, as the #?Re (T \) m2—1/4
potentialV(r) changes from zero to the given value. In Sec. —+ [ (E*=M?)—(2EV—V?)— — ]

IV, it turns out that these changes are connected with the ar r

phase shifts aE=+ M, which then results in the establish-

ment of the two-dimensional Levinson theorem for the XRem(r,A)=0. ©®)

Klein-Gordon equation.
Denote byRElm(r,)\) the solution to Eq(6) for the energy

Il. KLEIN-GORDON EQUATION E;

Throughout this paper the natural unitssc=1 are em- )
ployed. Consider a relativistic scalar particle satisfying the ¢ Relm(f.?\)
Klein-Gordon equation or2

(= V2+ M) g0 ={E- V() }¢(x), oY)

where the potential/(x) is the time component of a vector

field, andM and E denote the mass and the energy of themuyltiplying Egs. (6) and (7) by Re,m(r,\) and Req(r,\),

partlcle_, respectlvely._ Assume that the potential is static an?espectively, and calculating their difference, we have
cylindrically symmetric,

2

m?—1/4
+[(E§—M2)—(2E1v—v2)— }
r

X Re,m(r,\)=0. (7)

V(X)=V(r), 2 d
po=vin) B RenT MRE(T M)~ RE (T MRE(r )}

and satisfies the asymptotic conditions
= —(EI —E)RE (1 M)(ET +E=2V)Ren(r,N),

)

ri\vV(r)] =0 when r—0, (3a)

and

V(r)=0 when r=r,. (3p)  Where the prime denotes the derivative of the radial function
with respect to the variable It is well known[25,26 that,
Equation(3a) is required to make the wave function single due to the so-called Klein paradox, the energy eigenvalues
value at the origin, and Eq3b), called the condition of the are not necessarily real for some potentiét). Integrating
cutoff potential, is, for the sake of simplicity of discussion, Eq. (8 over the whole space and noting that
vanishing beyond a sufficiently large radiug. Following REm(r,)\)R’E’:m(r,)\)—R’glm(r,)\)R’Em(r,)\) vanishes both at
the method given in Ref$22,23, the results obtained in the e origin and at infinity for the physically admissible solu-

present paper also hold if the potential vanishes faster thag, s with the different energieE and E;, we obtain the

72 . . u A ” N X i
r—< at infinity. _ weighted orthogonality relation for the radial wave function
Introduce a parametex for the potentiaV(r),

VIEM) =MV, @ (E*{—E)fo £ (T N)(EE+E—2V)Ren(r \)dr=0.
which shows that the potenti#&(r,\) changes from zero to (9)

the given potentiaV(r) when\ increases from zero to 1.

Let As a matter of fact, we are always able to obtain thal

(X, \)=r YR (r,\)e*'™ m=0,1,2..., (5  sSolutions for thereal energies. However, it is easy to see
from Eq. (9) that the normalized relation for the solutions
where the radial wave equatid®y(r,\) satisfies the radial with real energies are not always positive on account of the
equation weight factor €,+E—2V):

ee8(E,—E)(E2—M?)YY|E| when |E|>M

10
€e0e e when |E[<M. (10

f RElm(r,)\)(E1+ E_ZV)REm(r,)\)dr:
0

The parametegg, which depends on the particular radial wave functi®g,(r,\), may be either positive, negative, or
vanishing. Normalized factors of the solutions cannot change the sigp.oGenerally speaking, iRg(r,\) is a complex
solution of Eq.(6) with a complex energ¥, thenRg , is also a solution with a complex energy, and a complexg appears

for a pair of the complex solutions. It is evident after Bose quantization that tRpgér,\) with positive eg describe
particles, and those with negati¥e describe antiparticles. The solution with zese can be dealt with as a pair of solutions

with infinitesimal + | e¢|, which describe a pair of particle and antiparticle bound states. The Hamiltonian and charge operator
cannot be written as the diagonal forms for the solutions with compjextherefore, they describe neither particles nor
antiparticles. In the present paper, we only count the number of bound states with tlag,redlich are called particle and
antiparticle bound states, respectively.
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Since we are always able to obtain tieal solution for thereal energy, we now solve E¢6) in two regions and match two
real solutions aty. Only one matching condition at is needed, which is the condition for the logarithmic derivative of the
radial wave function

Am(E,)\)E( 1 (?REm(r,)\)} :{ 1 IRgy(r)

Ren(r,\) or Ren(r)  or ] B =Bm(E). (1)
r=ro+
Actually, solutions in the regiof0,r o] with Rg(0,A) =0 can be obtained in principle. Only one solution is convergent at
the origin because of the conditi¢Ba). For example, for the free particla £0), the solution to Eq(6) at the regiorj O,r ]
is proportional to the Bessel functial,(x),

kr
\/%Jm(kr) when |E|>M and k=\E’-M?
. [ kY
e imm/2 %\]m(ixr) when |E|<M and «k={M?-EZ

Rem(r,0)= (12

The solutionRg(r,0) given in Eq.(12) is a real function. A constant factor in front of the radial wave functp,(r,0) is
not important.

In the regior{ry,), we haveV(r,\)=0. For|E|>M, there are two oscillatory solutions to §§). Their combination can
always satisfy the matching conditi@fil), so that there is a continuous spectrum|Bf>M.

w

kr ) mar
REm(r,)\)=\/T{cosnm(E,)\)Jm(kr)—5|n77m(E,)\)Nm(kr)}~co{kr—T—4+77m(E,)\) when r—o, (13)

whereN,(kr) is the Neumann function. It is through the matching condifib}) that the radial functiofRg,(r,A) as well as
the phase shifty,,(E,\) depend on the parameter

On the other hand, there is only one convergent solution in the régigm) for |E|<M, so that the matching condition
(12 is not always satisfied,

) mTKI
Rem(r)=€/(M D24 THﬁf)(i kr)~e *"  when r—oe, (14)

whereHﬁnl)(x) is the Hankel function of the first kind. When conditi¢hl) is satisfied, a bound state appears at this energy.
This means that there is a discrete spectrum Ep=M.

For the case with aeal energy, integrating Eq8) in two regions[0r,] and[rg,%), respectively, and taking the limit
E,—E, we obtain the following equations in terms of the boundary conditionRaf0)=0 andRg,(«)=0 for |E|<M:

IAREN) 9 1 aREm(r,)\)) B ("o )
9E  OE\Rgn(r,\)  or r=r 7__2REm(r°’)‘) Jo Ren(rM)LE=V(r)Jdr (153
and
dBy(E) d 1 dRegn(r) B ("
—E =_dE(—REm(r)—dr )r_r +—2REm(r0) 2froREm(r)ZEdr. (15b)

It is demonstrated from E@15) thatA,(E,\) is no longer monotonic with respect to the energy, By(E) is still monotonic
with respect to the energy if the energy does not change sign. Furthermore, their diff@&g@€®;- A,,(E,\), is monotonic
with respect to the energy for the particlez(>0) and for the antiparticle€c<<0), respectively:

J
E{Am(Ev)\)_Bm(E)}:_REm(rO:)\)izeE- (16)

Equation(16) is called the modified Sturm-Liouville theorem. It is owing to the modified Sturm-Liouville theorem that a
bound state can be identified as a partiale>0) or an antiparticle oneeg<<0) by whetherA,(E,\) —B,(E) decreases or
increases as the energyincreases.

From the matching conditiofiL1) we have

Im(kro) Am(E,N) —kJf(kro)/Im(krg) — 14(2r o)
Nm(Kro) A (E,N)— KN/ (Krg)/Nm(kro)—1/(2rg)

tanym(E,N) = 17
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7 E)=nm(E,1), (18) except form=0, where there is a half-bound state &t
+M, which will be discussed later.
where the prime denotes the derivative of the Bessel func- As \ changes from zero to the given potentiBl,(E)
tion, the Neumann function, and later, the Hankel functiondoes not change, but,,(E,\) changes continuously except
with respect to their argument. for the points wherdRg(rg) =0 andA,(E,\) tends to in-
The phase shifty,,(E,\) is determined from Eq17) up finity. Generally speakingd(E,\) is continuous except for
to a multiple of 7 due to the period of the tangent function. those finite points, and intersects with the cuBg(E) sev-
Following our previous papef$,7,22—24, we use the con- eral times forlE|<M. The bound state will appear only if a
vention for determining the phase shift absolutely that thepoint of intersection occurs. The number of points of inter-
phase shifty,,(E,0) for the free particleX=0) is defined to  section is the same as the number of bound states. It is shown
be zero, from Eq. (16) that the relative slope with respect to the en-
ergy at the point of intersection decides whether the bound
7m(E,00=0 where A=0. (19 state describes a particle or an antiparticle.
Denote byn,’(\) the number of particle bound states, and

As ghown In Eq.(_lO), the spattermg statdﬁ|>M are by n,(\) the number of antiparticle bound states. Their dif-
normalized as the Diraé function, where the main contri- .
ference is denoted bM,(N\),

bution to the integration comes from the radial wave func-

tions in the region far away from the origin. Therefore, we N, (M) =n*(A)=n-(\). (23)
may change the integral region in E40) to [ry,%) where m m m
there is no potential. Substituting EG.3) into Eq. (10), we When the potentiaV/(r,\) changes with, the number of
obtain points of intersection in the regidi|<M may change only
for the following two reasons. First, the points of intersection
ee=mE when [E[>M. (20 move inward or outward aE=+M. Second, the curve

An(E,\) intersects with the curvB,(E) or departs from it
through a tangent point. For the second source, owing to the
modified Sturm-Liouville theoremil6), a pair of particle and
antiparticle bound states will be created or annihilated at the
same time, bulN(\) remains invariant. That is, the differ-
IIl. NUMBER OF BOUND STATES enceN,(\) can change only when a point of intersection

In our previous works, Levinson theorems for nonrelativ-MOVes in or out aE=*M. _ _ _
istic and relativistic particles were set up under the help of NOw we discuss the properties when a point of intersec-
the Sturm-Liouville theorem. For the Sturm-Liouville prob- tion moves in or out aE=*M. First we discuss the situa-
lem, the fundamental trick is the definition of a phase angldion that A increases across the critical valug where
which is monotonic with respect to the enef@7]. Due to  Am(M,A1) =Bny(M)=(—m+1/2)/rq. There are two cases
the factor €% +E—2V) in Eq. (10), the Sturm-Liouville @t the critical value
theorem has to be modified for the Klein-Gordon equation.

All scattering states with the positive energg$¥M) de-
scribe particles, and those with negative energy<(~M)
describe antiparticles.

In other words, as shown in EqL6), for the Klein-Gordon " A(E\p) _ " B,.(E)
equation only the difference of the logarithmic derivatives at g™ ™ ! e g™ " Eeum
two sides ofrg,An(E,N\)—B,(E), is monotonic with re- - B
spect to the energy for the particleg>0) and for the anti- where 0<n’<n,
particle (eg<0), respectively. )
From Eq.(14), we obtain 0]
B ()= o)’ 1o oL aEa| BB
K Hiy(ikro) ZE oE" E=M JE" E=M
=(—m+1/2)/rq when |E|<sM. (22 o' n’
o —AWEN)|  =—Bn(E)
The logarithmic derivativé,,(E) does not depend ax. On JE eem 9E E—M
the other hand, when=0 we obtain, from Eq(12)
where 0=n’'<n,
ikdr(icrg) 1 .
A, (E,0) 3 (inte) 2r0>Am(_M,O) (ii)
_ " n
_(m+1/2)/r0 when |E|$M (22) (_1)naEnAm(Ev)\l) <(_l)naEan(E) ,
It is evident from Eqs(21) and (22) that bothB,,(E) and E=M E=M

Am(E,0) are continuous curves with respect to the energyyheren is a positive integer. This means that, for the energy
which do not intersect with each other exceptifior0, i.e.,  E<M but very neaM,

the matching conditior{11) is not satisfied if E|<M and
A=0. No bound state appears when there is no potential An(E,N)>B(E) forcasgi), (249
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An(EN))<B,(E) for case(ii). (24b) An(EN2)>B(E) for case(i), (253
If An(M,\) decreases ak increases across the critical An(E,No)<B.(E) forcase(ii). (25b)

value\ 1, a point of intersection moves in <M for case

(i) and moves out fromE<M for case(ii), and simulta- If A(—M,\) decreases as increases across the critical
neously, owing to the modified Sturm-Liouville theorem 5 e \,, & point of intersection moves in B>—M for

(16),_ a scattering state Wlth' a positive energy becomes Rase(i), and moves out fronE>—M for case(ii), and si-
particle bound state for cag¢) and an antiparticle bound mjtaneously, owing to the modified Sturm-Liouville theo-
state becomes a scattering state with a positive energy fopm (16), a scattering state with a negative energy becomes
case(ii). For both caseBln(\) increases by 1. Conversely, if 44 antiparticle bound state for ca§g and a particle bound
Am(M,)\) increases aa increases across the critical value siate becomes a scattering state with a negative energy for

N1,N(N) decreases by 1 for both cases.

Second, we discuss the situation thaincreases across
the critical valuex, whereA (=M, \5) =B (—M)=(—m
+1/2)/ry. There are also two cases at the critical valie:

n’ n’
_rAm(E:)\Z) :_er(E)
n n
JE e--m 9E E=-M
where 0=n’'<n,
n n
SAREND)| > Ba(E)
E=-M E=—M
and (ii)
n’ an’
—Am(EiN2) =—Bm(E)
E=—M E=-M
where 0=sn’<n,
n n
SAREN)| < Bu(E)
E=—-M E=M

This means that, for an energy>—M but very near
-M,

é’nm(E!)\)

case (ii). For both caseN,(\) decreases by one. Con-
versely, ifA,,(M,\) increases ak increases across the criti-
cal value\,, N,(\) increases by one for both cases.

Now, as\ increases from zero to one, we denote by
n,(£M) the times thatA,(=M,\) decreases across the
valueB(=M)=(—m+1/2)/ry, and subtract by the times
that A,,(=M,\) increases across the valBg,(+=M). Thus
we have

Nin=Nm(1) =Np(M) = Ngo( — M). (26)
Recall that from Eq(23) N,,(\) is the difference between
the numbers of particle and antiparticle bound states:

Np=Nm(1)=np(1)—ng(L=ns—n,.  (27)

IV. PHASE SHIFTS

Now we turn to the scattering states. The solutions in the
region[rgy,) for the scattering states have been given in Eq.
(13). The phase shifty,,(=M,\) is the limit of the phase
shift »,(E,\) ask tends to zero. Hence what we are inter-
ested in is the phase shif,(E,\) at a sufficiently small
momentunk, k<1/r,. Through the matching conditidid 1),
the phase shifty,(E,\) at a sufficiently small momentut
can be calculated by Eq17) and convention(19).

First, we obtain from Eq(17) that

—8r,coS 7m(E,\)

IALEN)

= g0.
kn T2 Am(E,N)Niy(krg) — 2KrgN/(Krg) = Np(Krg)}2

(28)

This shows that the phase shijt,(E,\) at a sufficiently small momenturk is monotonic with respect to the logarithmic

derivative A (E,\) as\ increases.
Second, we discuss the noncritical case where

A(EMD#B(=M)=(—m+1/2)/r,.

For the small momenturmk(-0) we obtain, from Eq(17),

[ —w(krg)®™ An(=M,N)—(m+1/2)/r,

(29

2°"m! (m—1)!

tann,(E,N)~{ -

An(=M,N)—ck?—(2ry)  X(1—(krg)?)

An(=M,N)—B (M)

(30

2 In(krg)

Am(tM,)\)—ckz—(Zro)l(

1+ ——

2 when m=0.
In(krg)
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It can be seen from Eq30) that tary,(E,\) tends to zero as In the critical case, the following solution with eneriyy or
k goes to zero, i.e., thay,,(=M,\) is always equal to the —M in the region [rg,0) will match A,(M,1) or
multiple of r. In other words, if the phase shift,(E,\) for A, (—M,1) atrg

a sufficiently smallk is expressed as a positive or negative

acute angle plugir, its limit ,(=M,\) is equal tonr, Ren(r)=r"""12  E=M and/or —M. (34
wheren is an integer. This means that,(=M,\) changes
discontinuously. It is a bound state whem=2, but called a half-bound state

If A(E,\) decreases as increasesy,(E,\) increases. whenm=1 and 0. A half-bound state is not a bound state,
Each time A,(*xM,\) decreases across the valuebecause its wave function is finite but not square integrable.
Bm(i M), tannm(E')\) changes from positive to negative, From the modified Sturm-Liouville theored6) we ob-
and the phase shif,,(=M,\) increases byr. Conversely, tain for the critical case,
if An(E,\) increases a3 increases,n,(E,\) decreases. q
Each time A,(x=M,\) increases across the value el _ __ 2
B, (=M), tany,(E,\) changes from negative to positive, dE{Am(E D= Bm(B)}=~C%e,
and the phase shify,(=M,\) decreases byr.

We should pay some attention to the casé&afave (m E=Mor —M, (35
=0). We included the next leading terms ®mwave in Eqg.

(30). Since the next leading terms in the numerator and thavherec?>0. It is easy to see from Eg13) that form=2
denominator of Eq.(30) are dlifferent, asAy(=M,N) de- J g

creases across the valuer (P *=By(=M), the numerator ,

changes from positive to negative first, and then the denomi- d_EBm(E): d_E{kNm(krO)/Nm(kr0)+ U(2ro)}. (36)
nator changes from positive to negative. It is in the second

step that tamy(E,\) changes from positive to negative, and Therefore, the denominator in Eq4.7) and (30) for m=2
the phase shiftyjo(=M,\) increases byr. Similarly, each becomes

time Ag(=M,\) increases across the valdg(+=M), and

the phase shiftyo(=M,\) decreases byr. An(M,1)—Bp(M)—c?eyk?/(2M?), m=2, (373

For \=0 andm=0, the numerator in Eq30) is equal to
zero, the denominator is positive, and the phase shift when Eq.(3339 holds, and
(£M,0) is defined to be zero. Ky(+=M,\) decreases as
increases from zero, the numerator becomes negative first, Amn(—M,1)—Bn(—M)+c%e_yk?#(2M?), m=2,
and then the denominator changes sign from positive to (37b
negative, such that the phase shjff( = M) jumps by# and
simultaneously a new bound state appears. Note that this is"#en Eq.(33b) holds. N
particle bound state fdE nearM, and an antiparticle bound For definiteness we discuss the critical case where Eq.
state forE near— M. If Ay(+M,\) increases ak increases (338 holds. IfAn(M,)\) decreaseso the valueB,(M) asi
from zero, the numerator becomes positive, and the remairidcreases to 1, the denominator in H0) changes from
ing factor keeps negative, such that the phase shifPositive to negative forey>0, and stays positive foey
70(=M) keeps to be zero, and no bound state appears. <0. That s, the phase shift,,(M) increases an additional

In Sec. Ill, we denoted byn,(+M) the times that for ey>0, and does not increase fef;<0. On the other
A (=M,\) decreases across the val@g,(+M)=(—m hand, a scattering state with a positive energy becomes a
+1/2)/ry as\ increases from zero to 1, and subtracted theParticle bound state of enerdy for €y>0, and the energy
times that Am(t M ')\) increases across the value of an antlpal’tlcle bound state increasedtdor €M<O. That

B (=M). Now n,(=M) is nothing but the phase shift iS: Ny increases by an additional 1 fef,>0, andN, does

7m(=M,1) divided by not increase fok)y <0. In both cases the Levinson theorem
(32) still holds form=2.
(=M= 5( =M, 1) =np( = M) 7. (31) Conversely, ifA,(M,\) increasedo the valueB,(M) as

\ increases to 1, the denominator in E§0) remains nega-
tive for €y,>0, and changes from negative to positive for
en<0. That is, the phase shiff, (M) does not decrease for
ey>0, and decreases an additioralfor €);,<0. Simulta-
neously, the energy of a particle bound state increas#4 to
for €y,>0, and a scattering state of a positive energy be-
comes an antiparticle bound state of eneMyfor ey, <O0.
That is,N,, does not decrease fag,>0, andN,,, decreases
by an additional 1 forey;<0. In both cases the Levinson
theorem(32) also holds fom=2.
An(M,1)=Bn(M)=(—m+1/2)/r, (333 Through a similar discussion, we conclude that the
Levinson theorent32) also holds for the critical case where
and/or Eq. (33b) holds andm=2.
For m=1 and 0, Eq.(36) no longer holds. Fortunately,
An(—M,1)=B(—M)=(—m+1/2)/ry. (33 the denominator in Eq.30) becomes

Thus we draw a conclusion from Eq&6) and (31) that for
the noncritical case$29), the Levinson theorem for the
Klein-Gordon equation in two dimensions is

N7 = 7m(M) = 7m(—M). (32

Finally, we discuss the critical cases that when 1,
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A(EM,N)—ck2+(2rg) "Y1+ 2(krg)2In(krg)}

Ag(=M,\)—cok®—(2ry) 1

where the next leading term with kig) dominates for the
critical case.

On the other hand, substituting EG4) into Eq.(15b), we
find for m=1 and O that wherE<M and E tends toM,
dB,(E)/dE tends to positive infinity, and whee>—-M
andE tends to— M, dB,,(E)/dE tends to negative infinity.
Since dA,(E,1)/dE at E=*=M s finite for the critical
cases, we conclude thaf,>0 ande_,,<0 for the critical
cases whem=1 and O.

Now we discuss the critical case where E233g holds. If
An(M,\) decreaseso the valueB,,(M) asA\ increases to 1,
the denominator in Eq:30) changes from positive to nega-
tive for m=1, and remains positive fan=0. That is, the
phase shifty,(M) increases an additionat for m=1, and
does not increase fan=0. On the other hand, both fon
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for m=1, (38a
1+In(kr0)] for m=0, (38b

hand, both form=1 and form=0, a particle bound state
disappears, namel\N,, decreases by an additional 1 rs
reaches to 1.

Now, we discuss the critical case where E8@b) holds.
If A,(—M,\) decreasedo the valueB,(—M) as\ in-
creases to 1, the denominator in E80) changes from posi-
tive to negative form=1, and remains positive fam=0.
That is, the phase shify,,(—M) increases an additionat
for m=1, and does not increase fior=0. On the other hand,
both form=1 and 0, a scattering state with a negative en-
ergy becomes a half-bound stdtet a bound stajei.e., N,
does not decrease asreaches 1.

Conversely, ifAn(—M,\) increasesto the valueB,,
(—M) as\ increases to 1, the denominator in Eg0) re-
mains negative fom= 1, and changes from negative to posi-

=1 and 0, a scattering state with a positive energy becomesve for m=0. That is, the phase shify,,(—M) does not

a half-bound staténot a bound stajei.e., N, does not in-
crease aa reaches to 1.

Conversely, ifA,(M,\) increasedo the valueB,,(M) as
\ increases to 1, the denominator in E§0) remains nega-
tive for m=1, and changes from negative to positive for
=0. That is, the phase shify,(M) does not decrease for
m=1, and decreases an additionafor m=0. On the other

decrease fom=1, and decreases an additional for m
=0. On the other hand, both fon=1 and 0, an antiparticle
bound state disappears, thathg, increases an additional 1
as\ reaches 1.

In summary, the Levinson theore@?2) for the Klein-
Gordon equation in two dimensions has to be modified for
the critical cases whem=1:

(Np+1)m when a half-bound state occurseatM  for m=1
(M) = p(—=M)=1{ (Np—1)7 when a half-bound state occurseat —M  for m=1 (39
N the remaining cases.
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