
PHYSICAL REVIEW A FEBRUARY 1999VOLUME 59, NUMBER 2
Levinson’s theorem for the Klein-Gordon equation in two dimensions
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In terms of the modified Sturm-Liouville theorem, the two-dimensional Levinson theorem for the Klein-
Gordon equation with a cylindrically symmetric potentialV(r ) is established for an angular momentumm as
a relation between the numbersnm

6 of the particle and antiparticle bound states and the phase shifts
hm(6M ):

hm~M!2hm~2M!5H~nm
12nm

211!p when a half-bound state occurs atE5M for m51

~nm
12nm

221!p when a half-bound state occurs atE52M for m51

~nm
12nm

2!p the remaining cases.

A solution of the Klein-Gordon equation with the energyM or 2M is called a half-bound state if it is finite but
does not decay fast enough at infinity to be square integrable.@S1050-2947~99!01702-3#

PACS number~s!: 03.65.Ge, 11.80.2m, 73.50.Bk
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I. INTRODUCTION

The Levinson theorem@1#, an important theorem in sca
tering theory, established the relation between the total n
ber of bound states and the phase shift at zero momen
During the past half-century, the Levinson theorem has b
proved by several authors with different methods, and g
eralized to different fields@1–24#. Roughly speaking, there
are three main methods for proving the Levinson theore
One @1# is based on the elaborate analysis of the Jost fu
tion. The second relies on the Green-function method@5#.
The third method is used to demonstrate the Levinson th
rem by the Sturm-Liouville theorem@6–8#. This simple, in-
tuitive method is readily generalized, and has been applie
many physical problems@6–9,23,24#. Some obstacles an
ambiguities, which may occur in the other two methods, d
appear in the third method. However, the Sturm-Liouvi
theorem has to be modified in proving the Levinson theor
for the Klein-Gordon equation@9#.

The Klein-Gordon equation, which describes the mot
of a relativistic scalar particle, is a second-order differen
equation with respect to both space and time. When th
exists a potential as the time component of a vector field,
energy eigenvalues it is not necessary for the Klein-Gor
equation to be real, and the eigenfunctions satisfy the
thogonal relations with a weight factor@25,26# such that a
parametere, which is not always real, appears in the norm

*Electronic address: DONGSH@BEPC4.IHEP.AC.CN
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ized relation with a weight factor. As pointed out in Ref
@25,26#, after Bose quantization those amplitudes with re
and positivee describe particles, and those with real a
negativee antiparticles.

Recall that, in three-dimensional spaces, two meth
were used to set up the Levinson theorem for the Kle
Gordon equation. One relied on the Green-function meth
@5,22#, where some formulas are valid only for the cas
without complex energies. The other was based on a m
fied Sturm-Liouville theorem@9#, by which the Levinson
theorem for the Klein-Gordon equation was established
cases even with complex energies.

The reasons we present this paper are as follows. On
one hand, the Levinson theorem in two dimensions has b
studied numerically@18# as well as in theory@19–24#, in
virtue of the wide interest in lower-dimensional field the
ries. On the other hand, the Levinson theorem for the Kle
Gordon equation in two dimensions has never appeare
the literature, to our knowledge. In our previous wor
@23,24#, Levinson theorems in two dimensions for nonre
tivistic and relativistic particles, as well as those with a no
local interaction, were established by the Sturm-Liouvi
theorem. Now we attempt to set up the Levinson theorem
the Klein-Gordon equation in two dimensions for comple
ness.

This paper is organized as follows. In Sec. II, we revie
the properties of the Klein-Gordon equation, especially th
related to the parametere. In Sec. III, it is proved that the
difference between the number of bound states of a par
and an antiparticle relies only on the changes of the logar
995 ©1999 The American Physical Society
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mic derivatives of the wave functions atE56M , as the
potentialV(r ) changes from zero to the given value. In Se
IV, it turns out that these changes are connected with
phase shifts atE56M , which then results in the establish
ment of the two-dimensional Levinson theorem for t
Klein-Gordon equation.

II. KLEIN-GORDON EQUATION

Throughout this paper the natural units\5c51 are em-
ployed. Consider a relativistic scalar particle satisfying
Klein-Gordon equation

~2¹21M2!c~x!5$E2V~x!%2c~x!, ~1!

where the potentialV(x) is the time component of a vecto
field, andM and E denote the mass and the energy of t
particle, respectively. Assume that the potential is static
cylindrically symmetric,

V~x!5V~r !, ~2!

and satisfies the asymptotic conditions

r uV~r !u→0 when r→0, ~3a!

and

V~r !50 when r>r 0 . ~3b!

Equation~3a! is required to make the wave function sing
value at the origin, and Eq.~3b!, called the condition of the
cutoff potential, is, for the sake of simplicity of discussio
vanishing beyond a sufficiently large radiusr 0 . Following
the method given in Refs.@22,23#, the results obtained in th
present paper also hold if the potential vanishes faster
r 22 at infinity.

Introduce a parameterl for the potentialV(r ),

V~r ,l!5lV~r !, ~4!

which shows that the potentialV(r ,l) changes from zero to
the given potentialV(r ) whenl increases from zero to 1.

Let

c~x,l!5r 21/2REm~r ,l!e6 imw, m50,1,2, . . . , ~5!

where the radial wave equationREm(r ,l) satisfies the radia
equation
.
e

e

d

an

]2REm~r ,l!

]r 2
1H ~E22M2!2~2EV2V2!2

m221/4

r 2 J
3REm~r ,l!50. ~6!

Denote byRE1m(r ,l) the solution to Eq.~6! for the energy

E1

]2RE1m~r ,l!

]r 2
1H ~E1

22M2!2~2E1V2V2!2
m221/4

r 2 J
3RE1m~r ,l!50. ~7!

Multiplying Eqs. ~6! and ~7! by RE1m(r ,l) and REm(r ,l),
respectively, and calculating their difference, we have

]

]r
$REm~r ,l!RE1m8* ~r ,l!2RE1m* ~r ,l!REm8 ~r ,l!%

52~E1* 2E!RE1m* ~r ,l!~E1* 1E22V!REm~r ,l!,

~8!

where the prime denotes the derivative of the radial funct
with respect to the variabler. It is well known @25,26# that,
due to the so-called Klein paradox, the energy eigenval
are not necessarily real for some potentialV(r ). Integrating
Eq. ~8! over the whole space and noting th
REm(r ,l)RE1m8* (r ,l)2RE1m* (r ,l)REm8 (r ,l) vanishes both at

the origin and at infinity for the physically admissible sol
tions with the different energiesE and E1 , we obtain the
weighted orthogonality relation for the radial wave functio

~E1* 2E!E
0

`

RE1m* ~r ,l!~E1* 1E22V!REm~r ,l!dr50.

~9!

As a matter of fact, we are always able to obtain thereal
solutions for thereal energies. However, it is easy to se
from Eq. ~9! that the normalized relation for the solution
with real energies are not always positive on account of
weight factor (E11E22V):
r

s
perator
or
E
0

`

RE1m~r ,l!~E11E22V!REm~r ,l!dr5H eEd~E12E!~E22M2!1/2/uEu when uEu.M

eEdE1E when uEu,M .
~10!

The parametereE , which depends on the particular radial wave functionREm(r ,l), may be either positive, negative, o
vanishing. Normalized factors of the solutions cannot change the sign ofeE . Generally speaking, ifREm(r ,l) is a complex
solution of Eq.~6! with a complex energyE, thenREm* is also a solution with a complex energyE* , and a complexeE appears
for a pair of the complex solutions. It is evident after Bose quantization that thoseREm(r ,l) with positive eE describe
particles, and those with negativeeE describe antiparticles. The solution with zeroeE can be dealt with as a pair of solution
with infinitesimal6ueEu, which describe a pair of particle and antiparticle bound states. The Hamiltonian and charge o
cannot be written as the diagonal forms for the solutions with complexeE ; therefore, they describe neither particles n
antiparticles. In the present paper, we only count the number of bound states with the realeE , which are called particle and
antiparticle bound states, respectively.
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Since we are always able to obtain thereal solution for thereal energy, we now solve Eq.~6! in two regions and match two
real solutions atr 0 . Only one matching condition atr 0 is needed, which is the condition for the logarithmic derivative of
radial wave function

Am~E,l![H 1

REm~r ,l!

]REm~r ,l!

]r J
r 5r 02

5H 1

REm~r !

]REm~r !

]r J
r 5r 01

[Bm~E!. ~11!

Actually, solutions in the region@0,r 0# with REm(0,l)50 can be obtained in principle. Only one solution is convergen
the origin because of the condition~3a!. For example, for the free particle (l50), the solution to Eq.~6! at the region@0,r 0#
is proportional to the Bessel functionJm(x),

REm~r ,0!55A
pkr

2
Jm~kr ! when uEu.M and k5AE22M2

e2 imp/2Apkr

2
Jm~ ikr ! when uEu<M and k5AM22E2.

~12!

The solutionREm(r ,0) given in Eq.~12! is a real function. A constant factor in front of the radial wave functionREm(r ,0) is
not important.

In the region@r 0 ,`), we haveV(r ,l)50. ForuEu.M , there are two oscillatory solutions to Eq.~6!. Their combination can
always satisfy the matching condition~11!, so that there is a continuous spectrum foruEu.M .

REm~r ,l!5Apkr

2
$coshm~E,l!Jm~kr !2sinhm~E,l!Nm~kr !%;cosS kr2

mp

2
2

p

4
1hm~E,l! D when r→`, ~13!

whereNm(kr) is the Neumann function. It is through the matching condition~11! that the radial functionREm(r ,l) as well as
the phase shifthm(E,l) depend on the parameterl.

On the other hand, there is only one convergent solution in the region@r 0 ,`) for uEu<M , so that the matching condition
~11! is not always satisfied,

REm~r !5ei ~m11!p/2Apkr

2
Hm

~1!~ ikr !;e2kr when r→`, ~14!

whereHm
(1)(x) is the Hankel function of the first kind. When condition~11! is satisfied, a bound state appears at this ene

This means that there is a discrete spectrum foruEu<M .
For the case with areal energy, integrating Eq.~8! in two regions@0,r 0# and @r 0 ,`), respectively, and taking the limi

E1→E, we obtain the following equations in terms of the boundary condition thatREm(0)50 andREm(`)50 for uEu,M :

]Am~E,l!

]E
[

]

]ES 1

REm~r ,l!

]REm~r ,l!

]r D
r 5r 02

522REm~r 0 ,l!22E
0

r 0
REm~r ,l!2@E2V~r !#dr ~15a!

and

dBm~E!

dE
[

d

dES 1

REm~r !

dREm~r !

dr D
r 5r 01

52REm~r 0!22E
r 0

`

REm~r !2E dr. ~15b!

It is demonstrated from Eq.~15! thatAm(E,l) is no longer monotonic with respect to the energy, butBm(E) is still monotonic
with respect to the energy if the energy does not change sign. Furthermore, their difference,Bm(E)2Am(E,l), is monotonic
with respect to the energy for the particle (eE.0) and for the antiparticle (eE,0), respectively:

]

]E
$Am~E,l!2Bm~E!%52REm~r 0 ,l!22eE . ~16!

Equation~16! is called the modified Sturm-Liouville theorem. It is owing to the modified Sturm-Liouville theorem th
bound state can be identified as a particle (eE.0) or an antiparticle one (eE,0) by whetherAm(E,l)2Bm(E) decreases or
increases as the energyE increases.

From the matching condition~11! we have

tanhm~E,l!5
Jm~kr0!

Nm~kr0!

Am~E,l!2kJm8 ~kr0!/Jm~kr0!21/~2r 0!

Am~E,l!2kNm8 ~kr0!/Nm~kr0!21/~2r 0!
, ~17!
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hm~E![hm~E,1!, ~18!

where the prime denotes the derivative of the Bessel fu
tion, the Neumann function, and later, the Hankel funct
with respect to their argument.

The phase shifthm(E,l) is determined from Eq.~17! up
to a multiple ofp due to the period of the tangent functio
Following our previous papers@6,7,22–24#, we use the con-
vention for determining the phase shift absolutely that
phase shifthm(E,0) for the free particle (l50) is defined to
be zero,

hm~E,0!50 where l50. ~19!

As shown in Eq.~10!, the scattering statesuEu.M are
normalized as the Diracd function, where the main contri
bution to the integration comes from the radial wave fun
tions in the region far away from the origin. Therefore, w
may change the integral region in Eq.~10! to @r 0 ,`) where
there is no potential. Substituting Eq.~13! into Eq. ~10!, we
obtain

eE5pE when uEu.M . ~20!

All scattering states with the positive energy (E.M ) de-
scribe particles, and those with negative energy (E,2M )
describe antiparticles.

III. NUMBER OF BOUND STATES

In our previous works, Levinson theorems for nonrelat
istic and relativistic particles were set up under the help
the Sturm-Liouville theorem. For the Sturm-Liouville prob
lem, the fundamental trick is the definition of a phase an
which is monotonic with respect to the energy@27#. Due to
the factor (E1* 1E22V) in Eq. ~10!, the Sturm-Liouville
theorem has to be modified for the Klein-Gordon equati
In other words, as shown in Eq.~16!, for the Klein-Gordon
equation only the difference of the logarithmic derivatives
two sides ofr 0 ,Am(E,l)2Bm(E), is monotonic with re-
spect to the energy for the particle (eE.0) and for the anti-
particle (eE,0), respectively.

From Eq.~14!, we obtain

Bm~E!5
ikHm

~1!~ ikr 0!8

Hm
~1!~ ikr 0!

2
1

2r 0
<Bm~6M !

5~2m11/2!/r 0 when uEu<M . ~21!

The logarithmic derivativeBm(E) does not depend onl. On
the other hand, whenl50 we obtain, from Eq.~12!

Am~E,0!5
ikJm8 ~ ikr 0!

Jm~ ikr 0!
2

1

2r 0
>Am~6M ,0!

5~m11/2!/r 0 when uEu<M . ~22!

It is evident from Eqs.~21! and ~22! that bothBm(E) and
Am(E,0) are continuous curves with respect to the ene
which do not intersect with each other except form50, i.e.,
the matching condition~11! is not satisfied ifuEu<M and
l50. No bound state appears when there is no poten
c-
n

e

-

-
f

e

.

t

y

al

except form50, where there is a half-bound state atE5
6M , which will be discussed later.

As l changes from zero to the given potential,Bm(E)
does not change, butAm(E,l) changes continuously excep
for the points whereREm(r 0)50 andAm(E,l) tends to in-
finity. Generally speaking,Am(E,l) is continuous except for
those finite points, and intersects with the curveBm(E) sev-
eral times foruEu<M . The bound state will appear only if
point of intersection occurs. The number of points of inte
section is the same as the number of bound states. It is sh
from Eq. ~16! that the relative slope with respect to the e
ergy at the point of intersection decides whether the bo
state describes a particle or an antiparticle.

Denote bynm
1(l) the number of particle bound states, a

by nm
2(l) the number of antiparticle bound states. Their d

ference is denoted byNm(l),

Nm~l!5nm
1~l!2nm

2~l!. ~23!

When the potentialV(r ,l) changes withl, the number of
points of intersection in the regionuEu<M may change only
for the following two reasons. First, the points of intersecti
move inward or outward atE56M . Second, the curve
Am(E,l) intersects with the curveBm(E) or departs from it
through a tangent point. For the second source, owing to
modified Sturm-Liouville theorem~16!, a pair of particle and
antiparticle bound states will be created or annihilated at
same time, butNm(l) remains invariant. That is, the differ
enceNm(l) can change only when a point of intersectio
moves in or out atE56M .

Now we discuss the properties when a point of inters
tion moves in or out atE56M . First we discuss the situa
tion that l increases across the critical valuel1 where
Am(M ,l1)5Bm(M )5(2m11/2)/r 0 . There are two case
at the critical value

]n8

]En8
Am~E,l1!U

E5M

5
]n8

]En8
Bm~E!U

E5M

where 0<n8,n,

~i!

~21!n
]n

]En
Am~E,l1!U

E5M

.~21!n
]n

]En
Bm~E!U

E5M

,

]n8

]En8
Am~E,l1!U

E5M

5
]n8

]En8
Bm~E!U

E5M

where 0<n8,n,

~ii !

~21!n
]n

]En
Am~E,l1!U

E5M

,~21!n
]n

]En
Bm~E!U

E5M

,

wheren is a positive integer. This means that, for the ene
E,M but very nearM,

Am~E,l1!.Bm~E! for case~ i!, ~24a!
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Am~E,l1!,Bm~E! for case~ ii !. ~24b!

If Am(M ,l) decreases asl increases across the critic
valuel1 , a point of intersection moves in toE,M for case
~i! and moves out fromE,M for case~ii !, and simulta-
neously, owing to the modified Sturm-Liouville theore
~16!, a scattering state with a positive energy become
particle bound state for case~i! and an antiparticle bound
state becomes a scattering state with a positive energy
case~ii !. For both casesNm(l) increases by 1. Conversely,
Am(M ,l) increases asl increases across the critical valu
l1 ,Nm(l) decreases by 1 for both cases.

Second, we discuss the situation thatl increases acros
the critical valuel2 whereAm(2M ,l2)5Bm(2M )5(2m
11/2)/r 0 . There are also two cases at the critical value:~i!

]n8

]En8
Am~E,l2!U

E52M

5
]n8

]En8
Bm~E!U

E52M

where 0<n8,n,

]n

]En
Am~E,l2!U

E52M

.
]n

]En
Bm~E!U

E52M

and ~ii !

]n8

]En8
Am~E,l2!U

E52M

5
]n8

]En8
Bm~E!U

E52M

where 0<n8,n,

]n

]En
Am~E,l2!U

E52M

,
]n

]En
Bm~E!U

E5M

.

This means that, for an energyE.2M but very near
2M ,
a

for

Am~E,l2!.Bm~E! for case~ i!, ~25a!

Am~E,l2!,Bm~E! for case~ ii !. ~25b!

If Am(2M ,l) decreases asl increases across the critica
value l2, a point of intersection moves in toE.2M for
case~i!, and moves out fromE.2M for case~ii !, and si-
multaneously, owing to the modified Sturm-Liouville the
rem ~16!, a scattering state with a negative energy becom
an antiparticle bound state for case~i! and a particle bound
state becomes a scattering state with a negative energ
case ~ii !. For both casesNm(l) decreases by one. Con
versely, ifAm(M ,l) increases asl increases across the crit
cal valuel2 , Nm(l) increases by one for both cases.

Now, as l increases from zero to one, we denote
nm(6M ) the times thatAm(6M ,l) decreases across th
valueBm(6M )5(2m11/2)/r 0 , and subtract by the time
that Am(6M ,l) increases across the valueBm(6M ). Thus
we have

Nm[Nm~1!5nm~M !2nm~2M !. ~26!

Recall that from Eq.~23! Nm(l) is the difference between
the numbers of particle and antiparticle bound states:

Nm5Nm~1!5nm
1~1!2nm

2~1![nm
12nm

2 . ~27!

IV. PHASE SHIFTS

Now we turn to the scattering states. The solutions in
region@r 0 ,`) for the scattering states have been given in E
~13!. The phase shifthm(6M ,l) is the limit of the phase
shift hm(E,l) ask tends to zero. Hence what we are inte
ested in is the phase shifthm(E,l) at a sufficiently small
momentumk, k!1/r 0 . Through the matching condition~11!,
the phase shifthm(E,l) at a sufficiently small momentumk
can be calculated by Eq.~17! and convention~19!.

First, we obtain from Eq.~17! that
ic
]hm~E,l!

]Am~E,l!
U

k,l

5
28r 0cos2hm~E,l!

p$2r 0Am~E,l!Nm~kr0!22kr0Nm8 ~kr0!2Nm~kr0!%2
<0. ~28!

This shows that the phase shifthm(E,l) at a sufficiently small momentumk is monotonic with respect to the logarithm
derivativeAm(E,l) asl increases.

Second, we discuss the noncritical case where

Am~6M ,1!ÞBm~6M !5~2m11/2!/r 0 . ~29!

For the small momentum (k;0) we obtain, from Eq.~17!,

tanhm~E,l!;5
2p~kr0!2m

22mm! ~m21!!

Am~6M ,l!2~m11/2!/r 0

Am~6M ,l!2Bm~6M !
when m>1

p

2 ln~kr0!

Am~6M ,l!2ck22~2r 0!21~12~kr0!2!

Am~6M ,l!2ck22~2r 0!21S 11
2

ln~kr0! D when m50.

~30!
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It can be seen from Eq.~30! that tanhm(E,l) tends to zero as
k goes to zero, i.e., thathm(6M ,l) is always equal to the
multiple of p. In other words, if the phase shifthm(E,l) for
a sufficiently smallk is expressed as a positive or negati
acute angle plusnp, its limit hm(6M ,l) is equal tonp,
wheren is an integer. This means thathm(6M ,l) changes
discontinuously.

If Am(E,l) decreases asl increases,hm(E,l) increases.
Each time Am(6M ,l) decreases across the val
Bm(6M ), tanhm(E,l) changes from positive to negative
and the phase shifthm(6M ,l) increases byp. Conversely,
if Am(E,l) increases asl increases,hm(E,l) decreases
Each time Am(6M ,l) increases across the valu
Bm(6M ), tanhm(E,l) changes from negative to positive
and the phase shifthm(6M ,l) decreases byp.

We should pay some attention to the case ofS wave (m
50). We included the next leading terms forS wave in Eq.
~30!. Since the next leading terms in the numerator and
denominator of Eq.~30! are different, asA0(6M ,l) de-
creases across the value (2r 0)215B0(6M ), the numerator
changes from positive to negative first, and then the deno
nator changes from positive to negative. It is in the seco
step that tanh0(E,l) changes from positive to negative, an
the phase shifth0(6M ,l) increases byp. Similarly, each
time A0(6M ,l) increases across the valueB0(6M ), and
the phase shifth0(6M ,l) decreases byp.

For l50 andm50, the numerator in Eq.~30! is equal to
zero, the denominator is positive, and the phase shifth0
(6M ,0) is defined to be zero. IfA0(6M ,l) decreases asl
increases from zero, the numerator becomes negative
and then the denominator changes sign from positive
negative, such that the phase shifth0(6M ) jumps byp and
simultaneously a new bound state appears. Note that this
particle bound state forE nearM, and an antiparticle bound
state forE near2M . If A0(6M ,l) increases asl increases
from zero, the numerator becomes positive, and the rem
ing factor keeps negative, such that the phase s
h0(6M ) keeps to be zero, and no bound state appears.

In Sec. III, we denoted bynm(6M ) the times that
Am(6M ,l) decreases across the valueBm(6M )5(2m
11/2)/r 0 as l increases from zero to 1, and subtracted
times that Am(6M ,l) increases across the valu
Bm(6M ). Now nm(6M ) is nothing but the phase shi
hm(6M ,1) divided byp

hm~6M ![hm~6M ,1!5nm~6M !p. ~31!

Thus we draw a conclusion from Eqs.~26! and~31! that for
the noncritical cases~29!, the Levinson theorem for the
Klein-Gordon equation in two dimensions is

Nmp5hm~M !2hm~2M !. ~32!

Finally, we discuss the critical cases that whenl51,

Am~M ,1!5Bm~M !5~2m11/2!/r 0 , ~33a!

and/or

Am~2M ,1!5Bm~2M !5~2m11/2!/r 0 . ~33b!
e

i-
d

st,
to

s a

n-
ift

e

In the critical case, the following solution with energyM or
2M in the region @r 0 ,`) will match Am(M ,1) or
Am(2M ,1) at r 0

REm~r !5r 2m11/2, E5M and/or 2M . ~34!

It is a bound state whenm>2, but called a half-bound stat
when m51 and 0. A half-bound state is not a bound sta
because its wave function is finite but not square integra

From the modified Sturm-Liouville theorem~16! we ob-
tain for the critical case,

d

dE
$Am~E,1!2Bm~E!%52c2eE ,

E5M or 2M , ~35!

wherec2.0. It is easy to see from Eq.~13! that for m>2

d

dE
Bm~E!5

d

dE
$kNm8 ~kr0!/Nm~kr0!11/~2r 0!%. ~36!

Therefore, the denominator in Eqs.~17! and ~30! for m>2
becomes

Am~M ,1!2Bm~M !2c2eMk2/~2M2!, m>2, ~37a!

when Eq.~33a! holds, and

Am~2M ,1!2Bm~2M !1c2e2Mk2/~2M2!, m>2,
~37b!

when Eq.~33b! holds.
For definiteness we discuss the critical case where

~33a! holds. IfAm(M ,l) decreasesto the valueBm(M ) asl
increases to 1, the denominator in Eq.~30! changes from
positive to negative foreM.0, and stays positive foreM
,0. That is, the phase shifthm(M ) increases an additionalp
for eM.0, and does not increase foreM,0. On the other
hand, a scattering state with a positive energy become
particle bound state of energyM for eM.0, and the energy
of an antiparticle bound state increases toM for eM,0. That
is, Nm increases by an additional 1 foreM.0, andNm does
not increase foreM,0. In both cases the Levinson theore
~32! still holds for m>2.

Conversely, ifAm(M ,l) increasesto the valueBm(M ) as
l increases to 1, the denominator in Eq.~30! remains nega-
tive for eM.0, and changes from negative to positive f
eM,0. That is, the phase shifthm(M ) does not decrease fo
eM.0, and decreases an additionalp for eM,0. Simulta-
neously, the energy of a particle bound state increases tM
for eM.0, and a scattering state of a positive energy
comes an antiparticle bound state of energyM for eM,0.
That is,Nm does not decrease foreM.0, andNm decreases
by an additional 1 foreM,0. In both cases the Levinso
theorem~32! also holds form>2.

Through a similar discussion, we conclude that t
Levinson theorem~32! also holds for the critical case wher
Eq. ~33b! holds andm>2.

For m51 and 0, Eq.~36! no longer holds. Fortunately
the denominator in Eq.~30! becomes
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A1~6M ,l!2c1k21~2r 0!21$112~kr0!2ln~kr0!% for m51, ~38a!

A0~6M ,l!2c0k22~2r 0!21H 11
2

ln~kr0!J for m50, ~38b!
-

m

r

,
n-

i-

1

for
where the next leading term with ln(kr0) dominates for the
critical case.

On the other hand, substituting Eq.~14! into Eq.~15b!, we
find for m51 and 0 that whenE,M and E tends toM,
dBm(E)/dE tends to positive infinity, and whenE.2M
andE tends to2M , dBm(E)/dE tends to negative infinity.
Since dAm(E,1)/dE at E56M is finite for the critical
cases, we conclude thateM.0 ande2M,0 for the critical
cases whenm51 and 0.

Now we discuss the critical case where Eq.~33a! holds. If
Am(M ,l) decreasesto the valueBm(M ) asl increases to 1,
the denominator in Eq.~30! changes from positive to nega
tive for m51, and remains positive form50. That is, the
phase shifthm(M ) increases an additionalp for m51, and
does not increase form50. On the other hand, both form
51 and 0, a scattering state with a positive energy beco
a half-bound state~not a bound state!, i.e., Nm does not in-
crease asl reaches to 1.

Conversely, ifAm(M ,l) increasesto the valueBm(M ) as
l increases to 1, the denominator in Eq.~30! remains nega-
tive for m51, and changes from negative to positive form
50. That is, the phase shifthm(M ) does not decrease fo
m51, and decreases an additionalp for m50. On the other
s

es

hand, both form51 and for m50, a particle bound state
disappears, namely,Nm decreases by an additional 1 asl
reaches to 1.

Now, we discuss the critical case where Eq.~33b! holds.
If Am(2M ,l) decreasesto the valueBm(2M ) as l in-
creases to 1, the denominator in Eq.~30! changes from posi-
tive to negative form51, and remains positive form50.
That is, the phase shifthm(2M ) increases an additionalp
for m51, and does not increase form50. On the other hand
both for m51 and 0, a scattering state with a negative e
ergy becomes a half-bound state~not a bound state!, i.e.,Nm
does not decrease asl reaches 1.

Conversely, if Am(2M ,l) increasesto the valueBm
(2M ) as l increases to 1, the denominator in Eq.~30! re-
mains negative form51, and changes from negative to pos
tive for m50. That is, the phase shifthm(2M ) does not
decrease form51, and decreases an additionalp for m
50. On the other hand, both form51 and 0, an antiparticle
bound state disappears, that is,Nm increases an additional
asl reaches 1.

In summary, the Levinson theorem~32! for the Klein-
Gordon equation in two dimensions has to be modified
the critical cases whenm51:
m the
hm~M !2hm~2M !5H ~Nm11!p when a half-bound state occurs atE5M for m51

~Nm21!p when a half-bound state occurs atE52M for m51

Nmp the remaining cases.

~39!
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