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Transition times in the Landau-Zener model
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This paper presents analytic formulas for various transition times in the Landau-Zener model. Considerable
differences are found between the transition times in the diabatic and adiabatic bases, and between the jump
time (the time for which the transition probability rises to the region of its asymptotic yalue the relaxation
time (the characteristic damping time of the oscillations which appear in the transition probability after the
crossing. These transition times have been calculated by using the exact values of the transition probabilities
and their derivatives at the crossing point and approximations to the time evolutions of the transition prob-
abilities in the diabatic basis, derived earl[@. V. Vitanov and B. M. Garraway, Phys. Rev. 33, 4288
(1996], and similar results in the adiabatic basis, derived in the present p&1€50-294®©9)01002-]

PACS numbgs): 03.65.Ge, 32.80.Bx, 33.80.Be, 34.7@

I. INTRODUCTION probability is well defined, but there is no apparent time
scale at which the transition takes place. It looks consider-
The Landau-Zenefl.Z) model[1,2] has long ago become ably easier to determine the transition timgin the adia-
a standard notion in quantum physics. It provides the probbatic basis because there tlironadiabatir coupling is a
ability of transition between two quantum states coupled byLorentzian function of time with a width of @/82 and the
an external field of a constant amplitude and a time-energies of the two adiabatic states have an avoided crossing
dependent frequency which passes through resonance withith the same duration; hence, the transition time is expected
the transition frequency. Thigvel crossingseen in the di- to ber,~2/B2. This deceptively obvious conclusion turns
abatic basigthe basis of the two bare states—the eigenstatesut to be only partially correct. The problem here arises from
of the Hamiltonian in the absence of interachioappears as the fact that the nonadiabatic coupling vanishes too slowly
anavoided crossingn the adiabatic basighe basis compris- and also, the eigenenergy gap diverges too slowly.
ing the two eigenstates of the Hamiltonian in the presence of The scalingproperties of the LZ transition time; in the
interactior). Cases of level crossings and avoided crossingsliabatic basis have been studied by Mulletal. [3], who
can be met in a number of areas in physics, such as quantuhave found that for larg€), 74 is proportional toQ), while
optics, magnetic resonance, atomic collisions, solid-statéor small ), 74 is constant. These authors have used two
physics, atom-surface scattering, molecular physics, andifferent approaches—an “internal clock,” based on pertur-
nuclear physics. The Landau-Zener model is a reliable qualibative calculation of the transition probability time evolu-
tative (and often even quantativeool for describing and tion, and an “external clock,” based on identifying a char-

understanding such phenomena. acteristic frequency appearing in the response of the two-
Along with the transition probability, it is often necessary state system to a harmonic perturbation.
to know the time for which the transition occurs—ttran- In the present paper, | derive analytical estimates for the

sition time For example, in the case of multiple level cross-LZ transition times by using some exact and approximate
ings (or avoided crossingst is essential to know if the tran- results for the transition probability in the diabatic basis, de-
sition is completed before the next crossing. Moreover, evenived in[4], and similar results in the adiabatic basis derived
in the case of a single crossing the transition time is an imhere. Thus this paper provides not only the scaling properties
portant parameter because the actual coupling and detunirit also explicit formulas for the transition times in both the
never match the LZ ones exactly. For instance, the LZ fordiabatic and adiabatic bases. In view of the numerous exact
mula applies when the transitions take place in a narrow timand approximate results for the transition probabilities, it
interval around the crossing, provided the actual detuningurns out much easier to calculate the transition time than to
changes nearly linearly with time and the coupling is nearlydefine it. | distinguish two kinds of transition times. The
constant in the vicinity of the crossing. However, when tran-jump time7“™ is the time for which the transition probabil-
sitions can occur far from the crossing, where the actuaity rises to the region of its asymptotic val@=) (the exact
coupling usually is not constant and the detuning is not lineatefinition is given below The relaxation time®® is the
in time, the usage of the LZ formula may be incorrect. time for which the amplitude of the oscillations, which ap-
It is far from obvious what the transition time, is in the  pear in the transition probability after the crossing, is
diabatic basis because there the coupliigis constant and damped to a sufficiently small valueP (=) (e<1).
lasts from—o to +o. Since the detuning, being a linear  The paper is organized as follows. The basic equations
function of time, A=g%, diverges at+o, the transiton and definitions are given in Sec. Il. The transition times in
the diabatic basis are calculated in Sec. Il and those in the
adiabatic basis in Sec. IV. The conclusions are summarized
*Electronic address: vitanov@rock.helsinki.fi in Sec. V.
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. BASIC EQUATIONS AND DEFINITIONS The transition probabilityP,(7) between the two adia-
. . . batic states can be obtained from the relation between the
A. Diabatic ba - . . . . . .
. . ! ' SIS _ evolution matrices in the adiabatic and diabatic bases by us-
The time evolution of a coherently driven two-state quan-ing the exact diabatic evolution matrix given[i] and some

tum system is described by the Scollimyer equation(in properties ofD ,(z) [7]. The result is
unitsf=1) [5]

d ci(®)] [-AM) QW])[cud) W P.(7) =6 "D, o 7/25 ™) cosd(7)
difca(t)] | Q) AWM lea(t)]
2
where c,(t) and c,(t) are the probability amplitudes of —ﬂe*‘”"‘D,lez,z(r\/§e3i”’4)sin1f}(7-) )
statesy; and i,, Q(t) is the coupling(assumed realbe-
tween the two states, anil(t) is half of the difference be- @
tween the system transition frequency and the field fre-
quency. In the Landau-Zener model, we have In the figures below, both the diabatic and adiabatic tran-
O(t)=const, A(t)= g2, @ sition probabilities are calculated by the highly accurate nu-

merical method described in the Appendix, rather than from
Egs.(4) and (7). These equations are used for analytic deri-

where the coupling)(t) is supposed to last from— —« to vation of the transition tmes.

t— +o0. Without loss of generality the slop@® of the de-
tuning as well as the real constarfds and 8 are assumed

positive. BothQ) and 8 have the dimension of frequency. C. Some exact values of the transition probabilities
Following the notation of4], | introduce the scaled dimen-  For the calculation of the transition times, we need a few
sionless timer and couplingw, values of P4(7) and P,(7), easily obtained from Eqg4)
and (7). By taking the limit 7—o, we recover the well-
_ _ 9 known LZ probabilities
=B, o B 3
Py()=1-€"", ®

Provided the system has been initially in stdte the prob-

ability of transition to statey, at timer, Py4(7)=|c,(7)|?, is P.(x)=e m0? )
[4-6]
2 By using the power serig#,8,9 of D,(z) we can expand
Py(7)= 7e*”‘”2’4|D_1+iwz,2(r\/§e3‘”’4)|2, (4) P4(7) andP,4(7) in terms ofr, which enables us to find the

values ofP4(7) andP,(7) and their derivatives at=0. We

where D ,(z) is the parabolic cylinder functiofi7,8]. Here need the following values:

the subscript indicates theliabatic basis. P4(0)= %(1—e*”‘”2’2), (103
B. Adiabatic basis 2
Pi(0)=w\1—e " cosy, 10b)
The two adiabatic state&efined as the instantaneous (0= X (10by
eigenstates of the Hamiltoninare given b
& ltonigare given by P!(0) =20 ™2, (109
®1(7) = 1C0SH(7) — SNV ( 7),
and
®2(7) = 1SINT(7) + h,c08T( 7),
P,(0)=3(1-V1—e ™siny), (113
where the angle¥(7) is defined as
1 2
Q 4 — A mell2
tan 29(7)= MU _w (0<d(7)</2). (5) Pa(0)=5-¢ , (11b)
Alr) 7
The eigenvalues of states, and ¢, are given by—, and PN PR siny B
+Q,, respectively, and thénonadiabatigcoupling between Pa(0)=v1-e 2?2 OX | (119
them byd' (7)=d9(7)/d7, where
where the anglg(w) is defined by
Qo(t)=Vr?+w?, &'(rn=- . (6)
2(7%+ w?) _r 1 1; 2y —1i,2
x(w) 7 +argl’'(5s —ziw%)—argl'(1—ziw?). (12

The condition for adiabatic evolution i8}'|<Q,, which
requires thatw?> 1. Hence, the coupling= /B also plays It is a monotonically increasing function of. For small or
the role of the adiabaticity parameter. large w, x(w) behaves as
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0.005 -tom-bnsboop ooy oo "L'WI.O The time evolution ofPy4(7) before and after the crossing
0004_' ©=0.03 [ ] e=1 J '_08 is well approximated by the formuldd]
0.003 ﬂ . 0.6 P(7<0)~1+ T (143
1 = - J(T<0)~3+ ———,
0.002 - -0.4 S N P
0.001 - 0.2
_ 1 Fo 3 T
:/U 0 'I""I'%I' LA BB I 'I""I#I""I""I' 0 Pd(7->0)%%+(%_e_ﬂ-w2)—
Q.‘ Y I T T U W W U W O B O A P TSI U T U BT AN U AU U U O B W A T+w
Z 005 1.0 v
= 1 e=01 1 e=3 /_-
E 0047 ﬂ T 0.8 e o
s ] L L _ a—Tw 2 A~ Tw
£ 0.03] - 06 € 1-e S +wZCOS§(T),
I§ 0.02 1 F 0.4 (14b)
iz | L] L
0014 - Lo2  valid for 7+ w?=1. The phasé&(r) is given by
% OA'I""I'#I' "I""I'- A%Hl" ........-() w2 1
R e B e A R £(r) = — 2+ wlin| — (74 P+ D)
1 =03 I 1ie=10 =0 2 \/E
0.4 - -0.8
i [ ] [ a
0.3 “MHMI ] 06 + P+ ol+ g rargl(1-3i0?). (19
0.27 ’ - - 0.4
0.17 e [02 B. Jump time
0 A R A e O The attempt to define the jump time in a simple and un-

050 5 10 -0 -5 0 5 10 ambiguous manner quickly comes across some difficulties.
Time t Time 7 First of all, it is not obvious how to define thitial time of
FIG. 1. The time evolution of the diabatic transition probability the transition, becausy() is nonzero for any finite time.
P4(7) (thick curve for six values of the couplings—from w A reasonable choice seems to be the time when the rising
=0.03 (smal) to w=10 (large. In each figure, the horizontal transition probabilityPy(7) first equalssP4(), wheree is
dashed line shows the asymptotic vaRg«), Eq. (8) [for =3 a suitably chosen small positive number<1). It is even
and 10, it coincides with the axiB4(7)=1]. The two vertical less obvious how to define tHeal time of the jump in a
dashed lines display the jump region, whose beginning is defined bway that applies to both small and large coupling. One pos-
the crossing of the tangent ®y(7) at =0 (shown by a slanted sible choice, used by Lim and Berf§], is to take the time at
solid ling) with the zero line, whereas its end is defined by thewhich the upper envelope of the oscillatiojsbtained by
crossing of the tangent with th&,(«) line. The dimensionless time  setting cog(7)=—1 in Eq. (14b)] touches unity. However,
7is defined by Eq(3). this idea does not apply for smadl, because then the upper
envelope never touches unity. Another possibility is to take
the time at whichP4(7) crosses its asymptotic valu;(«)
2" 7“’2_ E“’%O(“’lo) (0*<1) (133 for the first time. However, this is appropriate for small
x(w)= only, because for large (when the oscillations are strongly
K S 10 (251 damped, the crossover takes place at exponentially large
2 202 3w° (o (0™>1), (13D times, althoughP4() comes very close t84(*) much ear-
lier. Alternatively, one can take the time whéhy(7) first
equals the value (2 )P4(°), which is reasonable and con-
where{(z) is Riemann’s zeta functiof8]. sistent with thee definition of the initial time discussed
above, but leads to a rather complicated expression. | pro-
lIl. TRANSITION TIMES IN THE DIABATIC BASIS pose here a more elegant and simple solution, which applies

to any o and provides similar results as tleapproach. |
A. Time evolution of the transition probability define the jump time as

7 In2 £(3)

The time evolution of the diabatic transition probability
P4(7) is shown in Fig. 1 for six values of the coupling Humpzw (16)
w—from 0.03(small) to 10(largg). The evolution shows two d PL(0)
characteristic time regions. The first one is around the cross-
ing (7=0), where Py(7) rises from zero to about its This definition is based upon the geometrical meaning of the
asymptotic valuePy(>); this region determines thimp  derivative as the slope of the function at the point of calcu-
time 7{™". This jump is followed by a region whey(7) lation. It provides good results when applied to the most
oscillates around the valuey(«) (for large w, these oscil- frequently used smooth functions that rise monotonically
lations becorlne invisible this region determines theslax- from 0 to 1, e.g., f(x)=3(1+tantkx) and f(x)=3(1

relax

ation time 7" +x/x?+1), typically providing the interval where the
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FIG. 2. The jump timg17) and the relaxation timél9) (for ¢
=0.1) of the diabatic transition probability, plotted against the di-
mensionless coupling=Q/g.

function rises from about 0.10-0.15 to about 0.85-0.90. By

using the exact values d?y4() and P;(0) from Egs.(8)
and(10b), we obtain

Vi—e ™

jump__ 1
d  cosy(w) (7
It follows from Eqgs.(138 and (13b) that
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FIG. 3. The adiabatic transition probability evolutid?,(7)
(solid curve plotted against the scaled timéw for the same six
values of the coupling as in Fig. 1—fromw=0.03 (smal) to w
=10 (large. The two vertical dashed lines in each figure display
the interval — o< < w, which provides approximately the jump
region foro=<1.

LANDAU-ZENER MODEL 991
e 27 (0P<1) (183
20 (w?>1). (18b)

In other words, the jump time is proportional éoat largew
while it is nearly constant for smaidb. Thus Eqs(183 and
(18b) confirm the scaling properties found [i8] for the ex-
treme cases of small and large

This behavior of the jump time for small and largecan
be explained from Eqs(14a and (14b), which provide
P4(7<0) andPy4(7>0), and from the Taylor expansion of
P4(7) aroundr=0, obtained by using the derivativ€s)). It
can easily be shown that for large P4(7) depends on the
ratio 7/w only which means that{""P« . For smallw, the
normalized transition probabilit 4(7)/P4() depends omr
only, which can indeed be seen in Fig. 1 = 0.03, 0.1,
and 0.3; hencery"™ must not depend om.

C. Relaxation time

As Eq. (14b shows, the amplitude of the oscillations in
P4(7>0) vanishes as~! at large positive times. | define
the relaxation timerf™®™ as the time it takes to damp the
oscillation amplitude to thésmal) value eP4(), where

e<1. By using Eq.(14b), we find

1

7_r-:-:lax~
2
e3(e™ 1)

w

(19

The square root is real only farw?<In(1/e?+1). This in-
equality imposes an upper limit @b, above which the os-
cillation amplitude is never larger thaaP4(«). For &
=0.1, this limit isw=<1.21.

The diabatic jump timé17) and the relaxation timél9)
(with £=0.1) are displayed in Fig. 2.

IV. TRANSITION TIMES IN THE ADIABATIC BASIS

A. Time evolution of the transition probability

The time evolution of the adiabatic transition probability
P.(7) is shown in Fig. 3 for the same six values of the
coupling w as in Fig. 1—from 0.03(smal) to 10 (large.
There are two distinct types of evolution. For smallP4( 7)
behaves as the diabatic transition probabiitty 7) in Fig. 1.

For largew, P,(7) rises from zero at-c0 to its maximum
near the crossing7=0) and then decreases to its exponen-
tially small asymptotic vaIuePa(<>o)=e"“”2 [10]. The
smallw case can be treated in the same manner as in the
diabatic basis, while the large-case requires a more careful
analysis.

The time evolution of the adiabatic transition probability
before and after the crossing is approximated by the formulas

2

P.(r<0)~ — 20
(<0 o (208
P.(r>0)~e ™ 4 (1—2e" 2)—“’2
~p O —2g T
a7 16(7'2-i-w2)3

+e~ 'n'w2/2, /1_ e T2

w .
2(72+ w2)3/2 Slng( T)'
(20b)
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valid for 7?4+ w?=1. The phas&(7) is given by Eq.(15).
Equations(20), which are new, can be derived from E@)
in the same manner as Edq$4) have been derived from Eq.

(4) in [4], but by keeping more terms in the large-argument-

and-large-order asymptotic expansigig] of the parabolic
cylinder functions in Eq(7).
B. Jump time
1. Smallw

For small w, the transition probability evolution re-

sembles that in the diabatic basis. Hence, | define the jum:

time 7" in the same way as E{16),
i Pa()
mp— 2 (21)
P.(0)
By using Eqs.(9) and (11b) we find that
AIP—2 e T2 (wP<l). (22)

Hence, for smalkw, the jump time in the adiabatic basis is
proportional tow, as expected.
2. Large o

For largew, | define the initial time of the transition as
the time 7' <0 at whichP,(7) =&P4(»), wheree is a
suitably chosen small number. It follows from EG0g that

© 1
16¢ w4) .

To define the final time of the jumpl“™>0, | first

AP~ — ( (23)
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FIG. 4. The time evolution of the adiabatic transition probability
P.(7) for =2 against the dimensionless timeThe upper figure
displays the region around the crossing=(0). The lower figure
gives an expanded view of the region after the crossing, which
shows the upper and lower envelopes of the oscillations and the
nonoscillatory part ofP,(7) (short-line dashed curviesThe hori-
zontal solid line depicts the asymptotic valBg(>), whereas the
two horizontal dashed lines above and below it show the values
(1+&)Py() and (1—-¢&)P,(«), respectively, withe=0.1. The

remark that as- increases after the crossing, the nonoscillatwo vertical dashed lines show the final time of the jurdp™"

tory part of the transition probability20b) approaches the
asymptotic valueP () from above[because foe™> 2,
i.e., for w=0.47, the second term in EOD) is positive.
Hence, | definel"™ as the time at which the nonoscillatory
part of P,(7) is equal to (H&)P,(). An illustration of

this definition is shown in Fig. 4. A simple calculation gives

or? 5| 13
7_jump,f% ® _— -1 24
a ( 16e w* ) 2
The total jump time is
rhmP= 7S — el s
For w?>1, we have
_ 16 .

Thus, for largew, the transition time in the adiabatic basis is

not proportional tow, but it rather increases exponentially.
This behavior can be explained by the fact that for lagge

P.() (:e*”“’z) is exponentially small and then the popu-

[defined by the crossing of the nonoscillatory parPgf 7) with the
(1+&)P4() line] and the relaxation time'®* [defined by the
time when the oscillation amplitude gets smaller tladh, () ].

C. Relaxation time

As Eq.(20b) shows, at large positive times the amplitude
of the oscillations, that appear B,(7) after the crossing,
vanishes as~ 2. The relaxation timer®® is defined in the
same way as in the diabatic basis—as the time it takes to
damp the oscillation amplitude to tliemal) valuee P ().

By using Eq.(20b), we find

SGEE
relax__
Ty W T —-1.
4de‘w

(27)

For small and largew, this equation reduces to

- 1/6
(—2) 0 (o’<1) (289
7_raelax% 4e
1 1/3
(2_) wlBem?l6 (02>1). (28b
e

lation changes in the slowly vanishing wings of the nonadia-

batic coupling?®’(7) [see Eq.(6)] are non-negligible com-
pared toP ().

A comparison of Eqs(19) and(28a shows that for small

o, TP¥ 8% This is explained by the fact that the oscil-
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PV} L B L L L L different dependence o@. The seemingly obvious conclu-
sion that 7, should be proportional taw (because the
nonadiabatic coupling is a Lorentzian function of time with a
width of 2w and the energies of the two adiabatic states have
an avoided crossing with the same duratiturns out to be
correct for smallw only, while for largew, 7™ increases

15

Adiabatic Transition Times
LIS I N e B S D S O I B
Lo by by T

10 exponentially.
The relaxation times in the two base£f™® and /¢,
also show rather different dependences«anThe diabatic
5 ) relaxation time7f{™ is a decreasing function ab and it
T vanishes above certain (~1.2), whereas the adiabatic re-
ok e laxation time7®®is an exponentially increasing function of
0 0.5 1.0 L5 2.0 w

Coupling ® It should be pointed out that the transition times obtained
in this work refer to thetransition probabilities B(7) and
FIG. 5. The jump and relaxation times of the adiabatic transitionpa(T)_ These may differ from the transition times for the
probability, |_o|otted_ agains@ the dimensionless_ c_oup_limgQ/,B. probabilities of no transition, 4 P4(7) and 1— P,(7), par-
The smallw jump time (22) is shown by the solid line in the range tjcjarly those times which are linked to the values of the
0<w=<1, whereas the large-jump time(25) is shown by the solid probabilities atr— o
curve foro=0.5. Note that the .Smaﬂ’ and "."‘rge“’ formulas agree The present paper has dealt with the transition times in the
well for 0.5< w<1. The relaxation timg27) is plotted by a dashed diabatic and adiabatic bases only, which are the most fre-
eunve. quently used bases in practical applications of the LZ model.
It has been shown by Lim and Berf§,12] in their supera-
y . diabatic treatment of quantum evolution that the transition
-1
;than that Ofpﬁ‘(T) "Lﬁ‘;ﬁh Yﬁa'lfhes ﬁ.sﬁh f IIT Con';rast, fr(])r time is shortest and the oscillations in the corresponding
arge o, we haver, > 74 —~0, which follows from the  ongition probability are minimal in the optimal superadia-
fact that the reference value in the diabatic basi® jé») batic basis
a2 : . i . '
=1-e "' ~1, Whlle2 the reference value in the adiabatic  In conclusion, the transition times obtained in this paper
basis isP,(*)=e """ <1. provide simple criteria for estimating the applicability of the
The adiabatic jump timel'™ and the relaxation time Landau-Zener model to various cases of level crossings and

7% (for £=0.1) are displayed in Fig. 5. Note that, as fol- avoided crossings.
lows from Egs.(26) and (28b), the ratio between the jump
and relaxation times at large is constant, 74" 75 APPENDIX: NUMERICAL INTEGRATION OF THE
~(168)1/6, i.e., they are almost equal fer=0.1. In the evo- LANDAU-ZENER PROBLEM
lution picture (Fig. 4), however, the relaxation ends later
than the jump, because the jump time is calculated from
= /M1 <0, while the relaxation time is calculated from the  Since in the LZ mode{2) the coupling does not vanish at
crossing ¢=0). infinity and the detuning approaches infinity very slowly, the
numerical integration of Eql) is not a trivial problem, par-
ticularly when high accuracy is required. The straightforward
way of integrating Eq(1) is to start at a certain large nega-
In the present paper | have calculated various transitiofive time and propagate the solution towards>. However,
times in the Landau-Zener model. | have emphasized thafinite initial time 7; generates spurious oscillations with an
differences between the transition times in the diabatic andmplitude proportional to ¢+ w?) ~*2 [4] and one has to
adiabatic bases, and between the jump time and the relaxake a very larger; in order to achieve a good accuracy in
ation time. Thgump timeis the time for which the transition Py(7), which is very expensive in terms of computation
probability rises to the region of its asymptotic val@éx). time. An alternative and much more efficient solution to this
The relaxation timeis the time for which the amplitude of problem has been proposed[#1, which is summarized here
the oscillations, which appear in the transition probabilityfor the reader’'s convenience. The transition probability is
after the crossing, is damped below tlismal) value derived from the equation for the population inversion
eP(») (e<1). These transition times have been calculatedvy(7)=2P4(7) — 1 (derived from the optical Bloch equa-
by using the exact values of the transition probabilities andions[5]),
their derivatives at the crossing point as well as approxima-
tions to the transition probability evolutions derived [i] Wy — W+ 47(0’+ 77)Wi— 40’ Wg=0, (A1)
and here. .
The results for the jump time in the diabatic basfs™  rather than from Eq(1). The integration starts at=0 and
confirm the scaling properties found by Mullenal. [3] in  the solution is propagated towards the desifpdsitive or
the limits of small and large coupling, i.e., for largew,  negativé time. The initial conditions are found by identify-
74" is proportional tow, whereas for smalb, 74" is con-  ing the terms in the Taylor expansion 8f(7) around 7
stant. The jump time in the adiabatic bas{"™ has a rather =0 [obtained by using the power series expansions of the

lation amplitude ofP,(7) vanishes as 3, i.e., much faster

1. Diabatic basis

V. SUMMARY OF THE RESULTS AND CONCLUSIONS
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parabolic cylinder functions in Ed4)] with the derivatives 7, as an independent variable. The equation for the popula-
of P4(7) at 7=0. The initial values needed to start a Runge-tion inversionW,[ 9(7)|=w,(7)=2P,(7) — 1 has the form

Kutta algorithm are
Wy +6 cot 20 W+ 4[ 4w’ (cof29+ 1)+ 1]W;

2

_ A Tw2
Wq(0)=—e ", (A2a) 124 ot 29 W,=0, (A3)
! — 777(4)2
Wy(0)=2wV1—e " cosy, (AZb)  \where a prime now meand/d9. The initial values of
, N W,(9) and its derivatives atb= /4 (i.e., at7=0) needed
wg(0)=40%e ™ (A2c)  to start a Runge-Kutta algorithm are
Wi (0)=4wV1—e " (siny—2w?cosy), (A2d) W, (m/d)=—V1—e ™siny, (A4a)
where is given by Eq.(12).
x(w) is given by Eq.(12) W, (mr/d)=— 272, (A4b)
2. Adiabatic basis
" _ _ — T2 _ 2
A similar numerical method, which is new and comple- Wa(m/4)=4V1-e " (siny—2w"cosy), (A4c)
ments the one described above for the diabatic Hd$isan )
be used to obtain the transition probabilRy(7) in the adia- WY (7/4)=8(4w*+1)e ™7, (A4d)

batic basis and it has similar advantages. It turns out conve-
nient to use the anglé=} arctanf/7), rather than the time with y(w) given by Eq.(12).
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