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Transition times in the Landau-Zener model

N. V. Vitanov*
Helsinki Institute of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Finland

~Received 2 September 1998!

This paper presents analytic formulas for various transition times in the Landau-Zener model. Considerable
differences are found between the transition times in the diabatic and adiabatic bases, and between the jump
time ~the time for which the transition probability rises to the region of its asymptotic value! and the relaxation
time ~the characteristic damping time of the oscillations which appear in the transition probability after the
crossing!. These transition times have been calculated by using the exact values of the transition probabilities
and their derivatives at the crossing point and approximations to the time evolutions of the transition prob-
abilities in the diabatic basis, derived earlier@N. V. Vitanov and B. M. Garraway, Phys. Rev. A53, 4288
~1996!#, and similar results in the adiabatic basis, derived in the present paper.@S1050-2947~99!01002-1#

PACS number~s!: 03.65.Ge, 32.80.Bx, 33.80.Be, 34.70.1e
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I. INTRODUCTION

The Landau-Zener~LZ! model@1,2# has long ago becom
a standard notion in quantum physics. It provides the pr
ability of transition between two quantum states coupled
an external field of a constant amplitude and a tim
dependent frequency which passes through resonance
the transition frequency. Thislevel crossing, seen in the di-
abatic basis~the basis of the two bare states—the eigensta
of the Hamiltonian in the absence of interaction!, appears as
anavoided crossingin the adiabatic basis~the basis compris-
ing the two eigenstates of the Hamiltonian in the presenc
interaction!. Cases of level crossings and avoided crossi
can be met in a number of areas in physics, such as quan
optics, magnetic resonance, atomic collisions, solid-s
physics, atom-surface scattering, molecular physics,
nuclear physics. The Landau-Zener model is a reliable qu
tative ~and often even quantative! tool for describing and
understanding such phenomena.

Along with the transition probability, it is often necessa
to know the time for which the transition occurs—thetran-
sition time. For example, in the case of multiple level cros
ings ~or avoided crossings! it is essential to know if the tran
sition is completed before the next crossing. Moreover, e
in the case of a single crossing the transition time is an
portant parameter because the actual coupling and detu
never match the LZ ones exactly. For instance, the LZ f
mula applies when the transitions take place in a narrow t
interval around the crossing, provided the actual detun
changes nearly linearly with time and the coupling is nea
constant in the vicinity of the crossing. However, when tra
sitions can occur far from the crossing, where the act
coupling usually is not constant and the detuning is not lin
in time, the usage of the LZ formula may be incorrect.

It is far from obvious what the transition timetd is in the
diabatic basis because there the couplingV is constant and
lasts from2` to 1`. Since the detuning, being a linea
function of time, D5b2t, diverges at6`, the transition
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probability is well defined, but there is no apparent tim
scale at which the transition takes place. It looks consid
ably easier to determine the transition timeta in the adia-
batic basis because there the~nonadiabatic! coupling is a
Lorentzian function of time with a width of 2V/b2 and the
energies of the two adiabatic states have an avoided cros
with the same duration; hence, the transition time is expec
to beta'2V/b2. This deceptively obvious conclusion turn
out to be only partially correct. The problem here arises fr
the fact that the nonadiabatic coupling vanishes too slo
and also, the eigenenergy gap diverges too slowly.

The scalingproperties of the LZ transition timetd in the
diabatic basis have been studied by Mullenet al. @3#, who
have found that for largeV, td is proportional toV, while
for small V, td is constant. These authors have used t
different approaches—an ‘‘internal clock,’’ based on pertu
bative calculation of the transition probability time evol
tion, and an ‘‘external clock,’’ based on identifying a cha
acteristic frequency appearing in the response of the t
state system to a harmonic perturbation.

In the present paper, I derive analytical estimates for
LZ transition times by using some exact and approxim
results for the transition probability in the diabatic basis, d
rived in @4#, and similar results in the adiabatic basis deriv
here. Thus this paper provides not only the scaling proper
but also explicit formulas for the transition times in both t
diabatic and adiabatic bases. In view of the numerous e
and approximate results for the transition probabilities,
turns out much easier to calculate the transition time than
define it. I distinguish two kinds of transition times. Th
jump timet jump is the time for which the transition probabi
ity rises to the region of its asymptotic valueP(`) ~the exact
definition is given below!. The relaxation timet relax is the
time for which the amplitude of the oscillations, which a
pear in the transition probability after the crossing,
damped to a sufficiently small value,«P(`) («!1).

The paper is organized as follows. The basic equati
and definitions are given in Sec. II. The transition times
the diabatic basis are calculated in Sec. III and those in
adiabatic basis in Sec. IV. The conclusions are summar
in Sec. V.
988 ©1999 The American Physical Society



n

f

fre

.
-

s

-
the
us-

an-
nu-
om
ri-

ew
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II. BASIC EQUATIONS AND DEFINITIONS

A. Diabatic basis

The time evolution of a coherently driven two-state qua
tum system is described by the Schro¨dinger equation~in
units \51) @5#

i
d

dtFc1~ t !

c2~ t !
G5F2D~ t ! V~ t !

V~ t ! D~ t !
GFc1~ t !

c2~ t !
G , ~1!

where c1(t) and c2(t) are the probability amplitudes o
statesc1 and c2 , V(t) is the coupling~assumed real! be-
tween the two states, andD(t) is half of the difference be-
tween the system transition frequency and the field
quency. In the Landau-Zener model, we have

V~ t !5const, D~ t !5b2t, ~2!

where the couplingV(t) is supposed to last fromt→2` to
t→1`. Without loss of generality the slopeb2 of the de-
tuning as well as the real constantsV and b are assumed
positive. BothV and b have the dimension of frequency
Following the notation of@4#, I introduce the scaled dimen
sionless timet and couplingv,

t5bt, v5
V

b
. ~3!

Provided the system has been initially in statec1 , the prob-
ability of transition to statec2 at timet, Pd(t)5uc2(t)u2, is
@4–6#

Pd~t!5
v2

2
e2pv2/4uD211 iv2/2~tA2e3ip/4!u2, ~4!

whereDn(z) is the parabolic cylinder function@7,8#. Here
the subscriptd indicates thediabatic basis.

B. Adiabatic basis

The two adiabatic states~defined as the instantaneou
eigenstates of the Hamiltonian! are given by

w1~t!5c1cosq~t!2c2sinq~t!,

w2~t!5c1sinq~t!1c2cosq~t!,

where the angleq(t) is defined as

tan 2q~t!5
V~t!

D~t!
5

v

t
~0<q~t!<p/2!. ~5!

The eigenvalues of statesw1 andw2 are given by2V0 and
1V0 , respectively, and the~nonadiabatic! coupling between
them byq8(t)[dq(t)/dt, where

V0~ t !5At21v2, q8~t!52
v

2~t21v2!
. ~6!

The condition for adiabatic evolution isuq8u!V0 , which
requires thatv2@1. Hence, the couplingv[V/b also plays
the role of the adiabaticity parameter.
-

-

The transition probabilityPa(t) between the two adia
batic states can be obtained from the relation between
evolution matrices in the adiabatic and diabatic bases by
ing the exact diabatic evolution matrix given in@4# and some
properties ofDn(z) @7#. The result is

Pa~t!5e2pv2/4UDiv2/2~tA2e3ip/4!cosq~t!

2
v

A2
e2 ip/4D211 iv2/2~tA2e3ip/4!sinq~t!U2

.

~7!

In the figures below, both the diabatic and adiabatic tr
sition probabilities are calculated by the highly accurate
merical method described in the Appendix, rather than fr
Eqs.~4! and ~7!. These equations are used for analytic de
vation of the transition times.

C. Some exact values of the transition probabilities

For the calculation of the transition times, we need a f
values ofPd(t) and Pa(t), easily obtained from Eqs.~4!
and ~7!. By taking the limit t→`, we recover the well-
known LZ probabilities

Pd~`!512e2pv2
, ~8!

Pa~`!5e2pv2
. ~9!

By using the power series@4,8,9# of Dn(z) we can expand
Pd(t) andPa(t) in terms oft, which enables us to find the
values ofPd(t) andPa(t) and their derivatives att50. We
need the following values:

Pd~0!5 1
2 ~12e2pv2/2!, ~10a!

Pd8~0!5vA12e2pv2
cosx, ~10b!

Pd9~0!52v2e2pv2/2, ~10c!

and

Pa~0!5 1
2 ~12A12e2pv2

sinx!, ~11a!

Pa8~0!5
1

2v
e2pv2/2, ~11b!

Pa9~0!5A12e2pv2S sinx

2v2
2cosx D , ~11c!

where the anglex(v) is defined by

x~v!5
p

4
1argG~ 1

2 2 1
4 iv2!2argG~12 1

4 iv2!. ~12!

It is a monotonically increasing function ofv. For small or
largev, x~v! behaves as
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x~v!55
p

4
1

ln2

2
v22

z~3!

32
v61O~v10! ~v2!1!

p

2
2

1

2v2
2

1

3v6
1O~v210! ~v2@1!,

~13a!

~13b!

wherez(z) is Riemann’s zeta function@8#.

III. TRANSITION TIMES IN THE DIABATIC BASIS

A. Time evolution of the transition probability

The time evolution of the diabatic transition probabili
Pd(t) is shown in Fig. 1 for six values of the couplin
v—from 0.03~small! to 10~large!. The evolution shows two
characteristic time regions. The first one is around the cro
ing (t50), where Pd(t) rises from zero to about its
asymptotic valuePd(`); this region determines thejump
time td

jump. This jump is followed by a region wherePd(t)
oscillates around the valuePd(`) ~for largev, these oscil-
lations become invisible!; this region determines therelax-
ation timetd

relax.

FIG. 1. The time evolution of the diabatic transition probabil
Pd(t) ~thick curve! for six values of the couplingv—from v
50.03 ~small! to v510 ~large!. In each figure, the horizonta
dashed line shows the asymptotic valuePd(`), Eq. ~8! @for v53
and 10, it coincides with the axisPd(t)51#. The two vertical
dashed lines display the jump region, whose beginning is define
the crossing of the tangent toPd(t) at t50 ~shown by a slanted
solid line! with the zero line, whereas its end is defined by t
crossing of the tangent with thePd(`) line. The dimensionless time
t is defined by Eq.~3!.
s-

The time evolution ofPd(t) before and after the crossin
is well approximated by the formulas@4#

Pd~t,0!' 1
2 1

t

2At21v2
, ~14a!

Pd~t.0!' 1
2 1~ 1

2 2e2pv2
!

t

At21v2

2e2pv2/2A12e2pv2 v

At21v2
cosj~t!,

~14b!

valid for t21v2*1. The phasej(t) is given by

j~t!52
v2

2
1v2lnF 1

A2
~t1At21v2!G

1tAt21v21
p

4
1argG~12 1

2 iv2!. ~15!

B. Jump time

The attempt to define the jump time in a simple and u
ambiguous manner quickly comes across some difficult
First of all, it is not obvious how to define theinitial time of
the transition, becausePd(t) is nonzero for any finite time.
A reasonable choice seems to be the time when the ri
transition probabilityPd(t) first equals«Pd(`), where« is
a suitably chosen small positive number («!1). It is even
less obvious how to define thefinal time of the jump in a
way that applies to both small and large coupling. One p
sible choice, used by Lim and Berry@6#, is to take the time at
which the upper envelope of the oscillations@obtained by
setting cosj(t)521 in Eq. ~14b!# touches unity. However
this idea does not apply for smallv, because then the uppe
envelope never touches unity. Another possibility is to ta
the time at whichPd(t) crosses its asymptotic valuePd(`)
for the first time. However, this is appropriate for smallv
only, because for largev ~when the oscillations are strongl
damped!, the crossover takes place at exponentially la
times, althoughPd(t) comes very close toPd(`) much ear-
lier. Alternatively, one can take the time whenPd(t) first
equals the value (12«)Pd(`), which is reasonable and con
sistent with the« definition of the initial time discussed
above, but leads to a rather complicated expression. I
pose here a more elegant and simple solution, which app
to any v and provides similar results as the« approach. I
define the jump time as

td
jump5

Pd~`!

Pd8~0!
. ~16!

This definition is based upon the geometrical meaning of
derivative as the slope of the function at the point of calc
lation. It provides good results when applied to the m
frequently used smooth functions that rise monotonica
from 0 to 1, e.g., f (x)5 1

2 (11tanhx) and f (x)5 1
2 (1

1x/Ax211), typically providing the interval where the

by
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PRA 59 991TRANSITION TIMES IN THE LANDAU-ZENER MODEL
function rises from about 0.10–0.15 to about 0.85–0.90.
using the exact values ofPd(`) and Pd8(0) from Eqs.~8!
and ~10b!, we obtain

td
jump5

A12e2pv2

v cosx~v!
. ~17!

It follows from Eqs.~13a! and ~13b! that

FIG. 2. The jump time~17! and the relaxation time~19! ~for «
50.1) of the diabatic transition probability, plotted against the
mensionless couplingv[V/b.

FIG. 3. The adiabatic transition probability evolutionPa(t)
~solid curve! plotted against the scaled timet/v for the same six
values of the couplingv as in Fig. 1—fromv50.03 ~small! to v
510 ~large!. The two vertical dashed lines in each figure displ
the interval2v<t<v, which provides approximately the jum
region forv&1.
y

td
jump'HA2p ~v2!1!

2v ~v2@1!.

~18a!

~18b!

In other words, the jump time is proportional tov at largev
while it is nearly constant for smallv. Thus Eqs.~18a! and
~18b! confirm the scaling properties found in@3# for the ex-
treme cases of small and largev.

This behavior of the jump time for small and largev can
be explained from Eqs.~14a! and ~14b!, which provide
Pd(t,0) andPd(t.0), and from the Taylor expansion o
Pd(t) aroundt50, obtained by using the derivatives~10!. It
can easily be shown that for largev, Pd(t) depends on the
ratio t/v only which means thattd

jump}v. For smallv, the
normalized transition probabilityPd(t)/Pd(`) depends ont
only, which can indeed be seen in Fig. 1 forv50.03, 0.1,
and 0.3; hence,td

jump must not depend onv.

C. Relaxation time

As Eq. ~14b! shows, the amplitude of the oscillations
Pd(t.0) vanishes ast21 at large positive times. I define
the relaxation timetd

relax as the time it takes to damp th
oscillation amplitude to the~small! value «Pd(`), where
«!1. By using Eq.~14b!, we find

td
relax'vA 1

«2~epv2
21!

21. ~19!

The square root is real only forpv2< ln(1/«211). This in-
equality imposes an upper limit ofv, above which the os-
cillation amplitude is never larger than«Pd(`). For «
50.1, this limit isv&1.21.

The diabatic jump time~17! and the relaxation time~19!
~with «50.1) are displayed in Fig. 2.

IV. TRANSITION TIMES IN THE ADIABATIC BASIS

A. Time evolution of the transition probability

The time evolution of the adiabatic transition probabili
Pa(t) is shown in Fig. 3 for the same six values of th
coupling v as in Fig. 1—from 0.03~small! to 10 ~large!.
There are two distinct types of evolution. For smallv, Pa(t)
behaves as the diabatic transition probabilityPd(t) in Fig. 1.
For largev, Pa(t) rises from zero at2` to its maximum
near the crossing (t50) and then decreases to its expone
tially small asymptotic valuePa(`)5e2pv2

@10#. The
small-v case can be treated in the same manner as in
diabatic basis, while the large-v case requires a more caref
analysis.

The time evolution of the adiabatic transition probabili
before and after the crossing is approximated by the formu

Pa~t,0!'
v2

16~t21v2!3
, ~20a!

Pa~t.0!'e2pv2
1~122e2pv2

!
v2

16~t21v2!3

1e2pv2/2A12e2pv2 v

2~t21v2!3/2
sinj~t!,

~20b!

-
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992 PRA 59N. V. VITANOV
valid for t21v2*1. The phasej(t) is given by Eq.~15!.
Equations~20!, which are new, can be derived from Eq.~7!
in the same manner as Eqs.~14! have been derived from Eq
~4! in @4#, but by keeping more terms in the large-argume
and-large-order asymptotic expansions@11# of the parabolic
cylinder functions in Eq.~7!.

B. Jump time

1. Small v

For small v, the transition probability evolution re
sembles that in the diabatic basis. Hence, I define the ju
time ta

jump in the same way as Eq.~16!,

ta
jump5

Pa~`!

Pa8~0!
. ~21!

By using Eqs.~9! and ~11b! we find that

ta
jump52ve2pv2/2'2v ~v2!1!. ~22!

Hence, for smallv, the jump time in the adiabatic basis
proportional tov, as expected.

2. Large v

For largev, I define the initial time of the transition a
the timeta

jump,i,0 at whichPa(t)5«Pa(`), where« is a
suitably chosen small number. It follows from Eq.~20a! that

ta
jump,i'2vAS epv2

16«v4D 1/3

21. ~23!

To define the final time of the jumpta
jump,f.0, I first

remark that ast increases after the crossing, the nonosci
tory part of the transition probability~20b! approaches the
asymptotic valuePa(`) from above@because forepv2

.2,
i.e., for v*0.47, the second term in Eq.~20b! is positive#.
Hence, I defineta

jump,f as the time at which the nonoscillator
part of Pa(t) is equal to (11«)Pa(`). An illustration of
this definition is shown in Fig. 4. A simple calculation give

ta
jump,f'vAS epv2

22

16«v4 D 1/3

21. ~24!

The total jump time is

ta
jump5ta

jump,f2ta
jump,i . ~25!

For v2@1, we have

ta
jump'S 4

« D 1/6

v1/3epv2/6 ~v2@1!. ~26!

Thus, for largev, the transition time in the adiabatic basis
not proportional tov, but it rather increases exponentiall
This behavior can be explained by the fact that for largev,
Pa(`) (5e2pv2

) is exponentially small and then the pop
lation changes in the slowly vanishing wings of the nonad
batic couplingq8(t) @see Eq.~6!# are non-negligible com-
pared toPa(`).
-

p

-

-

C. Relaxation time

As Eq. ~20b! shows, at large positive times the amplitud
of the oscillations, that appear inPa(t) after the crossing,
vanishes ast23. The relaxation timeta

relax is defined in the
same way as in the diabatic basis—as the time it take
damp the oscillation amplitude to the~small! value«Pa(`).
By using Eq.~20b!, we find

ta
relax'vAS epv2

21

4«2v4 D 1/3

21. ~27!

For small and largev, this equation reduces to

ta
relax'5 S p

4«2D 1/6

v2/3 ~v2!1!

S 1

2« D 1/3

v1/3epv2/6 ~v2@1!.

~28a!

~28b!

A comparison of Eqs.~19! and~28a! shows that for small
v, td

relax@ta
relax. This is explained by the fact that the osc

FIG. 4. The time evolution of the adiabatic transition probabil
Pa(t) for v52 against the dimensionless timet. The upper figure
displays the region around the crossing (t50). The lower figure
gives an expanded view of the region after the crossing, wh
shows the upper and lower envelopes of the oscillations and
nonoscillatory part ofPa(t) ~short-line dashed curves!. The hori-
zontal solid line depicts the asymptotic valuePa(`), whereas the
two horizontal dashed lines above and below it show the val
(11«)Pa(`) and (12«)Pa(`), respectively, with«50.1. The
two vertical dashed lines show the final time of the jumpta

jump,f

@defined by the crossing of the nonoscillatory part ofPa(t) with the
(11«)Pa(`) line# and the relaxation timeta

relax @defined by the
time when the oscillation amplitude gets smaller than«Pa(`)#.
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PRA 59 993TRANSITION TIMES IN THE LANDAU-ZENER MODEL
lation amplitude ofPa(t) vanishes ast23, i.e., much faster
than that ofPd(t) which vanishes ast21. In contrast, for
large v, we haveta

relax@td
relax'0, which follows from the

fact that the reference value in the diabatic basis isPd(`)
512e2pv2

'1, while the reference value in the adiaba
basis isPa(`)5e2pv2

!1.
The adiabatic jump timeta

jump and the relaxation time
ta

relax ~for «50.1) are displayed in Fig. 5. Note that, as fo
lows from Eqs.~26! and ~28b!, the ratio between the jump
and relaxation times at largev is constant,ta

jump/ta
relax

'(16«)1/6, i.e., they are almost equal for«50.1. In the evo-
lution picture ~Fig. 4!, however, the relaxation ends lat
than the jump, because the jump time is calculated fromt
5ta

jump,i,0, while the relaxation time is calculated from th
crossing (t50).

V. SUMMARY OF THE RESULTS AND CONCLUSIONS

In the present paper I have calculated various transi
times in the Landau-Zener model. I have emphasized
differences between the transition times in the diabatic
adiabatic bases, and between the jump time and the re
ation time. Thejump timeis the time for which the transition
probability rises to the region of its asymptotic valueP(`).
The relaxation timeis the time for which the amplitude o
the oscillations, which appear in the transition probabil
after the crossing, is damped below the~small! value
«P(`) («!1). These transition times have been calcula
by using the exact values of the transition probabilities a
their derivatives at the crossing point as well as approxim
tions to the transition probability evolutions derived in@4#
and here.

The results for the jump time in the diabatic basistd
jump

confirm the scaling properties found by Mullenet al. @3# in
the limits of small and large couplingv, i.e., for largev,
td

jump is proportional tov, whereas for smallv, td
jump is con-

stant. The jump time in the adiabatic basista
jump has a rather

FIG. 5. The jump and relaxation times of the adiabatic transit
probability, plotted against the dimensionless couplingv[V/b.
The small-v jump time~22! is shown by the solid line in the rang
0<v<1, whereas the large-v jump time~25! is shown by the solid
curve forv>0.5. Note that the small-v and large-v formulas agree
well for 0.5,v,1. The relaxation time~27! is plotted by a dashed
curve.
n
e
d
x-

d
d
-

different dependence onv. The seemingly obvious conclu
sion that ta

jump should be proportional tov ~because the
nonadiabatic coupling is a Lorentzian function of time with
width of 2v and the energies of the two adiabatic states h
an avoided crossing with the same duration! turns out to be
correct for smallv only, while for largev, ta

jump increases
exponentially.

The relaxation times in the two bases,td
relax and ta

relax,
also show rather different dependences onv. The diabatic
relaxation timetd

relax is a decreasing function ofv and it
vanishes above certainv ('1.2), whereas the adiabatic re
laxation timeta

relax is an exponentially increasing function o
v.

It should be pointed out that the transition times obtain
in this work refer to thetransition probabilities Pd(t) and
Pa(t). These may differ from the transition times for th
probabilities of no transition, 12Pd(t) and 12Pa(t), par-
ticularly those times which are linked to the values of t
probabilities att→`.

The present paper has dealt with the transition times in
diabatic and adiabatic bases only, which are the most
quently used bases in practical applications of the LZ mod
It has been shown by Lim and Berry@6,12# in their supera-
diabatic treatment of quantum evolution that the transit
time is shortest and the oscillations in the correspond
transition probability are minimal in the optimal superad
batic basis.

In conclusion, the transition times obtained in this pap
provide simple criteria for estimating the applicability of th
Landau-Zener model to various cases of level crossings
avoided crossings.

APPENDIX: NUMERICAL INTEGRATION OF THE
LANDAU-ZENER PROBLEM

1. Diabatic basis

Since in the LZ model~2! the coupling does not vanish a
infinity and the detuning approaches infinity very slowly, t
numerical integration of Eq.~1! is not a trivial problem, par-
ticularly when high accuracy is required. The straightforwa
way of integrating Eq.~1! is to start at a certain large nega
tive time and propagate the solution towards1`. However,
a finite initial time t i generates spurious oscillations with a
amplitude proportional to (t i

21v2)21/2 @4# and one has to
take a very larget i in order to achieve a good accuracy
Pd(t), which is very expensive in terms of computatio
time. An alternative and much more efficient solution to th
problem has been proposed in@4#, which is summarized here
for the reader’s convenience. The transition probability
derived from the equation for the population inversi
wd(t)[2Pd(t)21 ~derived from the optical Bloch equa
tions @5#!,

twd-2wd914t~v21t2!wd824v2wd50, ~A1!

rather than from Eq.~1!. The integration starts att50 and
the solution is propagated towards the desired~positive or
negative! time. The initial conditions are found by identify
ing the terms in the Taylor expansion ofPd(t) aroundt
50 @obtained by using the power series expansions of

n
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parabolic cylinder functions in Eq.~4!# with the derivatives
of Pd(t) at t50. The initial values needed to start a Rung
Kutta algorithm are

wd~0!52e2pv2/2, ~A2a!

wd8~0!52vA12e2pv2
cosx, ~A2b!

wd9~0!54v2e2pv2/2, ~A2c!

wd-~0!54vA12e2pv2
~sinx22v2cosx!, ~A2d!

wherex(v) is given by Eq.~12!.

2. Adiabatic basis

A similar numerical method, which is new and compl
ments the one described above for the diabatic basis@4#, can
be used to obtain the transition probabilityPa(t) in the adia-
batic basis and it has similar advantages. It turns out con
nient to use the angleq[ 1

2 arctan(v/t), rather than the time
e

n

i,
-

e-

t, as an independent variable. The equation for the pop
tion inversionWa@q(t)#5wa(t)[2Pa(t)21 has the form

Wa-16 cot 2q Wa914@4v4~cot22q11!311#Wa8

124 cot 2q Wa50, ~A3!

where a prime now meansd/dq. The initial values of
Wa(q) and its derivatives atq5p/4 ~i.e., att50) needed
to start a Runge-Kutta algorithm are

Wa~p/4!52A12e2pv2
sinx, ~A4a!

Wa8~p/4!522e2pv2/2, ~A4b!

Wa9~p/4!54A12e2pv2
~sinx22v2cosx!, ~A4c!

Wa-~p/4!58~4v411!e2pv2/2, ~A4d!

with x(v) given by Eq.~12!.
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@7# A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricom

Higher Transcendental Functions~McGraw-Hill, New York,
1953!, Vol. II.
v.

@8# Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun~Dover, New York, 1964!.

@9# K. M. Abadir, J. Phys. A26, 4059~1993!.
@10# This behavior can be deduced more rigorously from Eqs.~9!

and ~11a!, which show that for v2@1, Pa(0)/Pa(`)

'epv2
/(16v4)@1, and from Eqs.~11b!, ~11c!, and ~13b!,

which give Pa8(0)'0 andPa9(0),0, which indicates a maxi-
mum of Pa(t) neart50.

@11# F. W. J. Olver, J. Res. Natl. Bur. Stand., Sect. B63B, 131
~1959!.

@12# M. V. Berry, Proc. R. Soc. London, Ser. A429, 61 ~1990!.


