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Phase-space formulation of quantum mechanics and quantum-state reconstruction
for physical systems with Lie-group symmetries

C. Brif* and A. Mann†

Department of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel
~Received 16 July 1998!

We present a detailed discussion of a general theory of phase-space distributions, introduced recently by the
authors@J. Phys. A31, L9 ~1998!#. This theory provides a unified phase-space formulation of quantum
mechanics for physical systems possessing Lie-group symmetries. The concept of generalized coherent states
and the method of harmonic analysis are used to construct explicitly a family of phase-space functions which
are postulated to satisfy the Stratonovich-Weyl correspondence with a generalized tracing condition. The
symbol calculus for the phase-space functions is given by means of the generalized twisted product. The
phase-space formalism is used to study the problem of the reconstruction of quantum states. In particular, we
consider the reconstruction method based on measurements of displaced projectors, which comprises a number
of recently proposed quantum-optical schemes and is also related to the standard methods of signal processing.
A general group-theoretic description of this method is developed using the technique of harmonic expansions
on the phase space.@S1050-2947~99!00702-7#

PACS number~s!: 03.65.Bz, 03.65.Fd
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I. INTRODUCTION

The phase-space formulation of quantum mechanics h
long history. In 1932 Wigner@1# introduced his famous func
tion which has found numerous applications in many area
physics and electronics. In 1949 Moyal@2# discovered that
the Weyl correspondence rule@3# can be inverted by the
Wigner transform from an operator on the Hilbert space t
function on the phase space. As a result, the quantum ex
tation value of an operator can be represented by
statistical-like average of the corresponding phase-sp
function with the statistical density given by the Wign
function associated with the density matrix of the quant
state. In this way quantum mechanics can be formally rep
sented as a statistical theory on classical phase spac
should be emphasized that this phase-space formalism
not replace quantum mechanics by a classical or semicla
cal theory. In fact, the phase-space formulation of quan
mechanics~also known as the Moyal quantization! is in prin-
ciple equivalent to conventional formulations due to Heis
berg, Schro¨dinger, and Feynman. However, the formal r
semblance of quantum mechanics in the Moyal formulat
to classical statistical mechanics can yield deeper un
standing of differences between the quantum and class
theories. Extensive lists of the literature on this subject
be found in reviews and books@4–9#.

The ideas of Moyal were further developed in the la
sixties in the works of Cahill and Glauber@10# and Agarwal
and Wolf @11#. As mentioned, the Wigner function is relate
to the Weyl ~symmetric! ordering of the position and mo
mentum operatorsq and p or, equivalently, of the bosonic
annihilation and creation operatorsa anda†. However, there
exist other possibilities of ordering. In particular, it wa
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shown@10# that the Glauber-SudarshanP function @12,13# is
associated with the normal ordering and the HusimiQ func-
tion @14# with the antinormal ordering ofa and a†. More-
over, a whole family ofs-parametrized functions can be d
fined on the complex plane which is equivalent to theq-p flat
phase space. The indexs is related to the corresponding o
dering procedure ofa anda†; the values11, 0, and21 of s
correspond to theP, W, andQ functions, respectively. Thes
phase-space functions are referred to as quasiprobability
tributions ~QPDs!, as they play in the Moyal formulation o
quantum mechanics a role similar to that of genuine pr
ability distributions in classical statistical mechanics. Va
ous QPDs have been extensively used in many quant
optical applications@15,16#. Most recently, there is grea
interest in thes-parametrized distributions because of th
role in modern schemes for measuring the quantum stat
the radiation field@17#.

The mathematical framework and the conceptual ba
ground of the Moyal quantization have been essentially
larged and generalized in two important papers by Ba
et al. @18#. Specifically, it was shown that noncommutativ
deformations of the algebra of classical phase-space fu
tions ~defined by the ordinary multiplication! give rise to
operator algebras of quantum mechanics. This fact me
that introducing noncommutative symbol calculus based
the so-called twisted product~also known as the star o
Moyal product!, one obtains a completely autonomous refo
mulation of quantum mechanics in terms of phase-sp
functions instead of Hilbert-space states and operators.
program of ‘‘quantization by deformation’’ has been deve
oped in a number of works@19–23#.

For a long time applications of the Moyal formulatio
were restricted to description of systems like a spinless n
relativistic quantum particle or a mode of the quantized
diation field ~modeled by a quantum harmonic oscillato!,
i.e., to the case of the flat phase space. Therefore an im
tant problem is the generalization of the standard Mo
quantization for quantum systems possessing an intri
971 ©1999 The American Physical Society
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972 PRA 59C. BRIF AND A. MANN
group of symmetries, with the phase space being a hom
neous manifold on which the group of transformations a
transitively@20,24#. It has been recently understood that th
problem can be solved using the Stratonovich-Weyl~SW!
correspondence. The idea of the SW correspondence is
the linear bijective mapping between operators on the Hilb
space and functions on the phase space can be implem
by a kernel which satisfies a number of physically sens
postulates, with covariance and tracing being the two m
important ones. This idea first appeared in a paper by S
tonovich @25# in 1956, but it was almost forgotten for de
cades. The SW correspondence, which has been res
some years ago by Gracia-Bondı´a and Várilly @26,27#, has
given a new impulse to the phase-space formulation of qu
tum theory. The SW method of the Moyal quantization h
been applied to a number of important situations: a nonr
tivistic free particle with spin, using the extended Gali
group @26#; a relativistic free particle with spin, using th
Poincare´ group @28#; the spin, using the SU~2! group @27#;
compact semisimple Lie groups@29#; one- and two-
dimensional kinematical groups@30–33#; the two-
dimensional Euclidean group@30,34#; and systems of identi
cal quantum particles@35#. For a review of basic results se
Ref. @8#.

Notwithstanding the success of the SW method in
Moyal quantization of many important physical systems,
theory suffered from a serious problem. Specifically, it w
the absence of a simple and effective method for the c
struction of the SW kernel which should implement the ma
ping between Hilbert-space operators and phase-space
tions. The construction procedures for the SW kern
considered during the last decade~see, e.g., Ref.@8#!, did not
guarantee that the kernel will satisfy all the SW postulat
Only very recently was a general algorithm for construct
the SW kernel for quantum systems possessing Lie-gr
symmetries proposed@36#. It has been shown that the con
structed kernel explicitly satisfies all the desired proper
~the SW postulates! and that in the particular cases of th
Heisenberg-Weyl group and SU~2! our general expressio
reduces to the known results.

In the present paper we essentially extend the result
Ref. @36# and present a self-consistent theory of the S
method for the phase-space formulation of quantum mech
ics. This theory makes use of the concept of generali
coherent states and of some basic ideas of harmonic ana
Like the Cahill-Glauber formalism for the Heisenberg-We
group, we construct thes-parametrized family of functions
on the phase space of a quantum system whose dynam
symmetry group is an arbitrary~finite-dimensional! Lie
group. Accordingly, we introduces-generalized versions o
the tracing condition and the twisted product. The develo
phase-space formulation is used for a general group-theo
description of the quantum-state reconstruction method. T
description can be useful not only for measurements of qu
tum states but also in the field of signal processing.

II. BASICS OF MOYAL QUANTIZATION

A. Generalized coherent states and the definition
of quantum phase space

Given a specific physical system, the first thing one ne
to do for the Moyal quantization~i.e., for constructing phase
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space functions! is to determine what the related phase spa
is. This can often be done by analogy with the correspond
classical problem, thereby providing a direct route for t
quantum-classical correspondence. From the technical p
of view, the phase space can be conveniently determi
using the concept of coherent states@37#. The coherent-state
approach is not just a convenient mathematical tool, bu
also helps to understand how physical properties of the
tem are reflected by the geometrical structure of the rela
phase space. It is possible to say that the concept of cohe
states constitutes a bridge between the Moyal phase-s
quantization and the Berezin geometric quantization@38#.

Let G be a Lie group~connected and simply connecte
with finite dimensionn!, which is the dynamical symmetry
group of a given quantum system. LetT be a unitary irreduc-
ible representation ofG acting on the Hilbert spaceH. By
choosing a fixed normalized reference stateuc0&PH, one
can define the system of coherent states$ucg&%:

ucg&5T~g!uc0&, gPG. ~2.1!

The isotropy subgroupH,G consists of all the group ele
mentsh that leave the reference state invariant up to a ph
factor,

T~h!uc0&5eif~h!uc0&, ueif~h!u51, hPH. ~2.2!

For every elementgPG, there is a decomposition ofg into
a product of two group elements, one inH and the other in
the coset spaceX5G/H,

g5Vh, gPG, hPH, VPX. ~2.3!

It is clear that group elementsg andg8 with different h and
h8 but with the sameV produce coherent states which diffe
only by a phase factor:ucg&5eiducg8&, where d5f(h)
2f(h8). Therefore a coherent stateuV&[ucV& is deter-
mined by a pointV5V(g) in the coset spaceX. A very
important property is the identity resolution in terms of t
coherent states:

E
X
dm~V!uV&^Vu5I , ~2.4!

wheredm(V) is the invariant integration measure onX, the
integration is over the whole manifoldX, andI is the identity
operator onH. The natural action ofG on X will be denoted
by g–V.

An important class of coherent-state systems correspo
to the coset spacesX5G/H which are homogeneous Ka¨hl-
erian manifolds. ThenX can be considered as the pha
space of a classical dynamical system, and the mapp
V→uV&^Vu is the geometric quantization for this syste
@38#. The standard~or maximum-symmetry! systems of the
coherent states correspond to the cases when an ‘‘extre
state of the representation Hilbert space~e.g., the vacuum
state of an oscillator or the lowest/highest spin state! is
chosen as the reference state. This choice of the refer
state leads to systems consisting of states with prope
‘‘closest to those of classical states’’@37,39#. In what follows
we will consider the coherent states of maximum symme
and assume that the phase space of the quantum system
homogeneous Ka¨hlerian manifoldX5G/H, each point of
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PRA 59 973PHASE-SPACE FORMULATION OF QUANTUM . . .
which corresponds to a coherent stateuV&. In particular, the
Glauber coherent states of the Heisenberg-Weyl groupH3
are defined on the complex planeC5H3 /U(1), and thespin
coherent states are defined on the unit sphereS2

5SU(2)/U(1). In themore rigorous mathematical languag
of Kirillov’s theory @40#, the phase spaceX is defined as the
coadjoint orbit associated with the unitary irreducible rep
sentationT of the groupG on the Hilbert spaceH.

B. The Stratonovich-Weyl correspondence

Once the phase space of a quantum system is determ
the Moyal quantization proceeds in the following way. LetA
be an operator onH. ThenA can be mapped by a family o
functionsFA(V;s) onto the phase spaceX ~the indexs labels
functions in the family!. If A is the density matrixr of a
quantum system, the corresponding phase-space func
Fr(V;s)[P(V;s) are called QPDs. Of course, the phas
space formulation of the quantum theory for a given phys
system can be successful only if the functionsFA(V;s) pos-
sess some physically motivated properties. These prope
were formulated by Stratonovich@25# and are referred to a
the SW correspondence.

~0! Linearity: A→FA(V;s) is one-to-one linear map.
~i! Reality:

FA†~V;s!5@FA~V;s!#* . ~2.5a!

~ii ! Standardization:

E
X
dm~V!FA~V;s!5Tr A. ~2.5b!

~iii ! Covariance:

FA~g!~V;s!5FA~g–V;s!, ~2.5c!

whereA(g)[T(g21)AT(g).
~iv! Tracing:

E
X
dm~V!FA~V;s!FB~V;2s!5Tr~AB!. ~2.5d!

If the functionFA(V;s) satisfies the SW correspondence,
is called the SW symbol of the operatorA.

The above conditions have a clear physical meaning.
linearity and the tracing conditions are related to the stat
cal interpretation of the theory. IfB is the density matrix~the
state operator! of a system, then the tracing condition~2.5d!
assures that the statistical average of the phase-space d
bution FA coincides with the quantum expectation value
the operatorA. O’Connell and Wigner@41# have shown that
the tracing condition for density matrices of a spinless qu
tum particle~there it appears as an overlap relation! is nec-
essary for the uniqueness of the definition of the Wig
function. It has also been shown@29# that the tracing condi-
tion is necessary for the uniqueness of the definition of
symbol calculus~twisted or ‘‘star’’ products! of the phase-
space functions and for the validity of the related nonco
mutative Fourier analysis. Equation~2.5d! is actually a gen-
eralization of the usual tracing condition@25,27,29#, as it
holds for anys and not only for the Wigner cases50. The
-
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reality condition~2.5a! means that ifA is self-adjoint, then
FA(V;s) is real. The condition~2.5b! is a natural normaliza-
tion, which means that the image of the identity operatorI is
the constant function 1. The covariance condition~2.5c!
means that the phase-space formulation must explicitly
press the symmetry of the system.

The linearity is taken into account if we implement th
mapA→FA(V;s) by the generalized Weyl rule

FA~V;s!5Tr@AD~V;s!#, ~2.6!

where $D(V;s)% is a family ~labeled by s! of operator-
valued functions on the phase spaceX. These operators ar
referred to as the SW kernels. The generalized tracing c
dition ~2.5d! is taken into account if we define the inverse
the generalized Weyl rule~2.6! as

A5E
X
dm~V!FA~V;s!D~V;2s!. ~2.7!

Now, the conditions~2.5a!–~2.5c! of the SW correspondenc
for FA(V;s) can be translated into the following condition
on the SW kernelD(V;s):

~i! D~V;s!5@D~V;s!#† ;VPX. ~2.8a!

~ii ! E
X
dm~V!D~V;s!5I . ~2.8b!

~iii ! D~g–V;s!5T~g!D~V;s!T~g21!.
~2.8c!

Substituting the inverted maps~2.7! for A andB into the
generalized tracing condition~2.5d!, we obtain the relation
between functions with different values of the indexs:

FA~V;s!5E
X
dm~V8!Ks,s8~V,V8!FA~V8;s8!, ~2.9!

Ks,s8~V,V8![Tr@D~V;s!D~V8;2s8!#. ~2.10!

If we takes5s8 in Eq. ~2.9! and take into account the arb
trariness ofA, we obtain the relation

D~V;s!5E
X
dm~V8!K~V,V8!D~V8;s!, ~2.11!

where the function

K~V,V8!5Tr@D~V;s!D~V8;2s!# ~2.12!

behaves like thed function on the manifoldX.

III. CONSTRUCTION OF THE STRATONOVICH-WEYL
KERNEL

It is clear that the Moyal quantization for a physical sy
tem is accomplished by constructing the SW kernelD(V;s)
that satisfies the SW postulates. Although the form of
SW kernel has been known for many systems, a gen
construction method was not known. A procedure that w
applied in many works@8,30–32# is as follows. An arbitrary
point V0PX is fixed and then an ansatz is made for a se
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974 PRA 59C. BRIF AND A. MANN
adjoint operatorD(V0) ~usually only the cases50 was con-
sidered! that satisfies the standardization condition~2.8b!
and the following property:

D~V0!5T~g!D~V0!T~g21! ;gPHV0
, ~3.1!

where HV0
5$gPGug–V05V0% is the isotropy subgroup

for V0 . For anyVPX there existsgPG such thatg–V0
5V, and then the SW kernel is defined by

D~V!5D~g–V0!5T~g!D~V0!T~g21!. ~3.2!

This kernel automatically satisfies the covariance condit
~2.8c!, but the problem is that the tracing is not guarante
Of course, in the described procedure the form of the ke
depends on the ansatz and often no kernel satisfying the
ing condition is found.

We propose here a simple and general algorithm for c
structing the SW kernels~the wholes-parametrized family!
which explicitly satisfy all the SW postulates, including bo
the covariance and the tracing. Our method makes us
Perelomov’s concept of coherent states and of only so
basic ideas from harmonic analysis. Hopefully, the simplic
and generality of our method will draw more attention to t
ideas of the phase-space quantization.

A. Necessary instruments: harmonic functions, invariant
coefficients, and tensor operators

Our problem is to find the explicit form of the SW kern
D(V;s) that satisfies the conditions~2.8a!–~2.8c! and~2.11!.
In order to accomplish this task, we need three basic ing
dients: harmonic functions, invariant coefficients, and ten
operators. The coherent states serve here as the glue
binds them together.

We start by considering the Hilbert spaceL2(X,m) of
square-integrable functionsu(V) on X with the invariant
measuredm. The representationT of the Lie groupG on
L2(X,m) is defined as

T~g!u~V!5u~g21
–V!. ~3.3!

The eigenfunctionsYn(V) of the Laplace-Beltrami operato
@42# form a complete orthonormal basis inL2(X,m):

(
n

Yn* ~V!Yn~V8!5d~V2V8!, ~3.4a!

E
X
dm~V!Yn* ~V!Yn8~V!5dnn8 . ~3.4b!

The functionsYn(V) are called the harmonic functions, an
d(V2V8) is the delta function inX with respect to the
measuredm. Note that the indexn is multiple; it has one
discrete part, while the other part is discrete for comp
manifolds and continuous for noncompact manifolds. In
latter case the summation overn includes an integration with
the Plancherel measuredr(n) and the symboldnn8 includes
some Dirac delta functions~for more details see Ref.@42#!.
For conciseness, we omit these details in our formulas.
n
.

el
c-

-

of
e

e-
r
hat

t
e

e

harmonic functionsYn(V) are linear combinations of matrix
elementsTnn8(g). Therefore the transformation rule for th
harmonic functions is@42#

T~g!Yn~V!5Yn~g21
•V!5(

n8
Tn8n~g!Yn8~V!.

~3.5!

It should be understood that the summation in Eq.~3.5! is
only on the part ofn that labels functions within an irreduc
ible subspace.

Next, we once again use the coherent states, in orde
introduce the concept of invariant coefficients. The positiv
valued functionz^VuV8& z2 is symmetric inV andV8. There-
fore its expansion in the orthonormal basis must be of
form

z^VuV8& z25(
n

tnYn* ~V!Yn~V8!5(
n

tnYn* ~V8!Yn~V!,

~3.6!

wheretn are real positive coefficients. Using the invarian
^VuV8&5^g–Vug–V8& and the unitarity of the representa
tion T, we obtain

z^VuV8& z25(
n

tnYn* ~g–V!Yn~g–V8!

5(
n8

Yn8
* ~V!(

n
tnTnn8~g!Yn~g–V8!.

~3.7!

In order to satisfy this equality, the coefficientstn must be
invariant under the index transformation of Eq.~3.5!: tn

5tn8 . This means thattn do not depend on the part ofn
which labels functions within an irreducible subspace. Sin
the Laplace-Beltrami operator is self-adjoint, one finds th

Yn* ~V!5eif~n!Yñ~V!, ~3.8!

whereYñ(V) is another harmonic function, with the sam
eigenvalue asYn(V). Since z^VuV8& z2 is real, the coeffi-
cientstn must be invariant under the index transformation
Eq. ~3.8!: tn5tñ .

Next we use the coherent states, harmonic functions,
invariant coefficients for defining the set of operators$Dn%
onH:

Dn[tn
21/2E

X
dm~V!Yn~V!uV&^Vu. ~3.9!

Using the expression~3.6! and the orthonormality relation
~3.4b! for the harmonic functions, we obtain the orthono
mality condition for the operatorsDn :

Tr~DnDn8
†

!5dnn8 . ~3.10!

Note that the factortn
21/2 in front of the integral in Eq.~3.9!

serves just for the proper normalization. Using Eq.~3.6!, we
also obtain the relation

tn
21/2^VuDnuV&5Yn~V!. ~3.11!
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The invariance of the coefficientstn implies thatDn are the
tensor operators whose transformation rule is the same a
the harmonic functionsYn(V):

T~g!DnT~g21!5(
n8

Tn8n~g!Dn8 . ~3.12!

A useful property of the tensor operators is that any oper
A onH can be expanded in the orthonormal basis$Dn%:

A5(
n

Tr ~ADn
†!Dn . ~3.13!

B. Explicit form of the kernel

Using the above preliminary results, we are able to fi
the SW kernelD(V;s) with all the desired properties. Spe
cifically, let us define

D~V;s![(
n

f ~s;tn!Yn* ~V!Dn . ~3.14!

We will show that the construction of the generalized ker
~3.14! satisfies the SW correspondence. In Eq.~3.14! f (s;tn)
is a function oftn and of the indexs. We assume thatf
possesses the invariance properties oftn .

Using the invariance oftn under the index transformatio
of Eq. ~3.8!, we see that the reality condition~2.8a! is satis-
fied if f (s;tn) is a real-valued function. Therefore we ca
consider only real values of the indexs.

Next we consider the standardization condition~2.8b!.
Using the definition~3.14!, we obtain

E
X
dm~V!D~V;s!5(

n
f ~s;tn!DnE

X
dm~V!Yn* ~V!,

~3.15!

while Eq. ~3.13! can be used to write

I 5(
n

Tr~Dn
†!Dn5(

n
tn

21/2DnE
X
dm~V!Yn* ~V!.

~3.16!

The standardization condition is satisfied if the expressi
~3.15! and ~3.16! are equal. Using the identity resolutio
~2.4! and Eq.~3.6!, we can write

15^VuV&5E
X
dm~V8!z^VuV8& z2

5(
n

tnYn* ~V!E
X
dm~V8!Yn~V8!. ~3.17!

Multiplying the left and right sides of this equation b
Yn8(V) and integrating overdm(V), we obtain

E
X
dm~V!Yn~V!5tnE

X
dm~V!Yn~V!. ~3.18!

Since tn is not identically 1, this relation can be satisfie
only if there exists somen0 such thattn0

51 and
for

or

d

l

s

E
X
dm~V!Yn~V!}dnn0

. ~3.19!

~As was already mentioned, for noncompact manifolds
symboldnn8 actually includes some Dirac delta functions.! It
can be easily seen from Eqs.~3.15!, ~3.16!, and ~3.19! that
the standardization condition is satisfied iff (s;tn0

)5tn0

21/2,

i.e.,

f ~s;1!51 ;s. ~3.20!

The covariance condition~2.8c! can be rewritten as

(
n

f ~s;tn!DnYn* ~g–V!

5(
n

f ~s;tn!T~g!DnT~g21!Yn* ~V!. ~3.21!

Using the transformation rules~3.5! and ~3.12!, Eq. ~3.21!
can be transformed into

(
n

(
n8

f ~s;tn!DnTnn8~g!Yn8
* ~V!

5(
n

(
n8

f ~s;tn!Tn8n~g!Dn8Yn* ~V!. ~3.22!

Changing the summation indexesn↔n8 on either side of Eq.
~3.22!, we immediately see that the covariance condition
satisfied by virtue of the invariance oftn under the index
transformation of Eqs.~3.5! and ~3.12!.

In order to satisfy the relation~2.11!, the function
K(V,V8) of Eq. ~2.12! must be thed function in X with
respect to the measuredm,

K~V,V8!5(
n

Yn* ~V!Yn~V8!5d~V2V8!. ~3.23!

This result is valid if

f ~s;tn! f ~2s;tn!51. ~3.24!

This property is satisfied only by the exponential function
s, i.e.,

f ~s;tn!5@ f ~tn!#s. ~3.25!

Note that the standardization condition~3.20! then reads
f (1)51.

The exact form of the functionf (tn) can be determined if
we define@43# for s521

D~V;21![uV&^Vu. ~3.26!

Then we obtain

uV&^Vu5(
n

@ f ~tn!#21Yn* ~V!Dn . ~3.27!
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976 PRA 59C. BRIF AND A. MANN
Multiplying both sides of this equation byYn8(V) and inte-
grating overdm(V), we find f (tn)5tn

21/2, i.e.,

f ~s;tn!5tn
2s/2 . ~3.28!

Obviously, the standardization conditionf (1)51 is satisfied.
Finally, we obtain

D~V;s!5(
n

tn
2s/2Yn* ~V!Dn5(

n
tn

2s/2Yn~V!Dn
† .

~3.29!

It is evident that this kernel is completely determined by
harmonic functions on the corresponding manifold and
the coherent states which form this manifold. We will s
that the SW kernel~3.29! is a generalization of the Cahill
Glauber kernel for a harmonic oscillator@10,11# and of the
Agarwal kernel for spin@44#.

IV. PHASE-SPACE FUNCTIONS
AND THE SYMBOL CALCULUS

A. Types of phase-space function

As the explicit form of the SW kernels is known, we ca
write the SW symbols on the phase space as

FA~V;s!5(
n

tn
2s/2AnYn~V!5(

n
tn

2s/2ÃnYn* ~V!,

~4.1!

where we have defined

An[Tr~ADn
†!, Ãn[Tr~ADn!. ~4.2!

For a self-adjoint operatorA, we get Ãn5An* . It can be
easily verified that substituting expressions~4.1! and ~3.29!
into the inverse Weyl rule~2.7!, one indeed obtainsA
5(nAnDn . We also note that the functionKs,s8(V,V8) of
Eq. ~2.10! is given by

Ks,s8~V,V8!5(
n

tn
2~s2s8!/2Yn~V!Yn* ~V8!, ~4.3!

and it clearly satisfies Eq.~2.9! which connects the function
with different values of the indexs. In general, letF(V) and
H(V) be two phase-space functions such that

F~V!5(
n

FnYn~V!, ~4.4!

H~V!5(
n

HnYn~V!. ~4.5!

Then they are related through the transformation

F~V!5E
X
dm~V8!KFH~V,V8!H~V8!, ~4.6!

KFH~V,V8!5(
n

Fn

Hn
Yn~V!Yn* ~V8!. ~4.7!
e
y

Let $ufn&% be a complete orthonormal basis in the Hilbe
spaceH. Using the generalized Weyl rule~2.6! for the op-
eratorA5ufn&^fmu, we obtain

FA~V;s!5^fmuD~V;s!ufn&[Dmn~V;s!. ~4.8!

Using Eq.~3.29!, we find

Dmn~V;s!5(
n

tn
2s/2^fmuDn

†ufn&Yn~V!. ~4.9!

The standardization and tracing conditions~2.5b! and ~2.5d!
can be used to show that

E
X
dm~V!Dmn~V;s!5dmn , ~4.10!

E
X
dm~V!Dmn~V;s!Dkl~V;2s!5dmldnk . ~4.11!

The functionsDmn(V;s) form a useful orthonormal basis i
L2(X,m).

The SW symbols obtained for some special values ofs are
frequently used in numerous applications. In particular,
s521, we obtain theQ function ~Berezin’s covariant sym-
bol @38#!:

QA~V![FA~V;21!5^VuAuV&. ~4.12!

Equation~4.12! can be easily obtained by recalling@see Eqs.
~3.26! and ~3.27!# that

D~V;21!5uV&^Vu5(
n

tn
1/2Yn* ~V!Dn . ~4.13!

For s51, we obtain theP function ~Berezin’s contravariant
symbol @38#!:

PA~V![FA~V;1!5(
n

tn
21/2AnYn~V!, ~4.14!

whose defining property is

A5E
X
dm~V!PA~V!uV&^Vu. ~4.15!

The functionsP andQ are counterparts in the tracing cond
tion ~2.5d!. Perhaps the most important SW symbol cor
sponds tos50, because this function is ‘‘self-conjugate’’ i
the sense that it is the counterpart of itself in the trac
condition ~2.5d!. It is natural to call the function withs50
the generalized Wigner function:

WA~V![FA~V;0!5(
n
AnYn~V!. ~4.16!

The corresponding SW kernel is

D~V;0![DW~V!5(
n

Yn* ~V!Dn . ~4.17!
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B. The generalized twisted product

The phase-space formulation of quantum mechanics
be made completely autonomous if one introduces a sym
calculus for the functions on the phase space, which repla
the usual manipulations with operators on the Hilbert spa
This symbol calculus is based on the so-called twisted pr
uct ~or Moyal product! which corresponds to the usual pro
uct of operators@18,26,27#.

Let us first consider the case of the Wigner functi
(s50). The twisted product of two functions is denoted
WA* WB and is determined by the condition

WA~V!* WB~V!5WAB~V! ~4.18!

for any two operatorsA andB. Note that the condition~4.18!
assures the associativity of the twisted product. On the o
hand, this product is, in general, noncommutative. In t
way the algebra of operators is mapped onto the algebr
phase-space functions. If one starts from a classical ph
space description, the introduction of the twisted product
be viewed as the quantization realized by a deformation
the algebra of functions@18#.

Using the Weyl rule~2.6! and its inverse~2.7!, we obtain

WAB~V!5Tr@DW~V!AB#

5TrFDW~V!E
X
dm~V8!WA~V8!DW~V8!

3E
X
dm~V9!WB~V9!DW~V9!G . ~4.19!

Introducing the function~trikernel!

L~V,V8,V9!5Tr@DW~V!DW~V8!DW~V9!#, ~4.20!

we obtain the following definition of the twisted product:

~WA* WB!~V![E
X
E

X
dm~V8!dm~V9!L~V,V8,V9!

3WA~V8!WB~V9!. ~4.21!

The so-called Moyal bracket is defined as

@WA ,WB#M52 i ~WA* WB2WB* WA!. ~4.22!

The twisted product can be easily generalized for
bitrary values of s. The s-parametrized twisted produc
(FA* FB)(V;s) of any two functions FA(V;s8) and
FB(V;s9) is once again determined by the condition

FA~V;s8!* FB~V;s9!5FAB~V;s!. ~4.23!

Analogously to the Wigner function case, this leads to
definition

~FA* FB!~V;s![E
X
E

X
dm~V8!dm~V9!Ls,s8,s9~V,V8,V9!

3FA~V8;s8!FB~V9;s9!, ~4.24!

where the generalized trikernel is given by
an
ol
es
e.
d-

er
s
of
e-
n
f

-

e

Ls,s8,s9~V,V8,V9!5Tr@D~V;s!D~V8;2s8!D~V9;2s9!#

5 (
m,n,k

Dmn~V;s!Dnk~V8;2s8!

3Dkm~V9;2s9!. ~4.25!

Using the standardization condition~2.8b! and the defini-
tion ~2.10!, we obtain

E
X
dm~V!Ls,s8,s9~V,V8,V9!5Tr@D~V8;2s8!D~V9;2s9!#

5K2s8,s9~V8,V9!. ~4.26!

This result together with the relation~2.9! can be used to
obtain the so-called tracial identity for the generaliz
twisted product,

E
X
dm~V!~FA* FB!~V;s!5E

X
dm~V!FA~V;s8!

3FB~V;2s8!, ~4.27!

which holds for anys ands8. Equation~4.27! is the phase-
space version of the tracial identity for the operators,

Tr~AB!5(
n

AnB̃n . ~4.28!

Using the covariance condition~2.8c! and the definition
~4.25!, we find the invariance property of the trikernel

Ls,s8,s9~g–V,g–V8,g–V9!5Ls,s8,s9~V,V8,V9!.
~4.29!

This property implies the equivariance of the twisted pro
uct:

~FA* FB!g~V;s!5FA
g~V;s8!* FB

g~V;s9!, ~4.30!

where

FA
g~V;s![FA~g21

–V;s!. ~4.31!

V. EXAMPLES

The general formalism presented above can be unders
much better by illustrating it with a number of simple e
amples. We will consider two simple physical systems
~nonrelativistic! spinless quantum particle and spin, who
dynamical symmetry groups are the Heisenberg-Weyl gr
H3 and SU~2!, respectively. It should be emphasized that t
SW kernels for these basic systems have been known f
long time@45#, so the novelty here is not the result itself b
the method of derivation. Our aim is to demonstrate how
general algorithm works by applying it to a number of re
tively simple and well-known problems. We will show tha
by identifying harmonic functions, invariant coefficients, a
tensor operators for a given system, one can readily de
the explicit form of the SW kernel.
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A. The Heisenberg-Weyl group

First, we consider the Heisenberg-Weyl groupH3 which
is the dynamical symmetry group for a spinless quant
particle and for a mode of the quantized radiation field~mod-
eled by a quantum harmonic oscillator!. The Wigner function
@1# and the Moyal quantization@2# were originally intro-
duced for such systems. The kernel implementing the m
ping between Hilbert-space operators ands-parametrized
families of phase-space functions~the SW kernel in our no-
tation! for H3 was introduced by Cahill and Glauber@10#.
The generalization of the formalism to the many-dimensio
case is straightforward~see, e.g., Ref.@8#!.

The nilpotent Lie algebra ofH3 is spanned by the basi
$a,a†,I %, where a and a† are the boson annihilation an
creation operators, satisfying the canonical commutation
lation, @a,a†#5I . Group elements can be parametrized in
following way:

g5g~g,w!, T~g!5ega†2g* aeiwI , ~5.1!

wheregPC andwPR.
The phase space is the complex planeC5H3 /U(1), and

the ~Glauber! coherent states are

uV&[ua&5D~a!u0&, aPC ~5.2!

where

D~a!5exp~aa†2a* a! ~5.3!

is the displacement operator. The invariant measure is

dm~V![p21d2a, ~5.4!

and the correspondingd function is

d~V2V8![pd~2!~a2a8!. ~5.5!

The harmonic functions onC are the exponentials:

Yn~V![Yj~a![Y~j,a!5exp~ja* 2j* a!. ~5.6!

Heren[jPC with the Plancherel measure given bydr(n)
[p21d2j and with dn,n8[pd (2)(j2j8). Note that for the
Heisenberg-Weyl group both the phase-space coordinatV
[a and the indexn[j are complex numbers, and th
Plancherel measure is similar to the invariant measure oC.

The invariant coefficientstn[t(j) can be found in the
following way. In the present context Eq.~3.6! takes the
form

z^a za8&u25e2ua2a8u25E
C

d2j

p
t~j!ej* ~a2a8!2j~a2a8!* .

Taking into account that the Fourier transform of a Gauss
function is once again a Gaussian, it is not difficult to obta

t~j!5exp~2uju2!. ~5.7!

Then we deduce that the tensor operator

Dn[D~j!5euju2/2E
C

d2a

p
eja* 2j* aua&^au ~5.8!
p-

l

e-
e

n

is just the displacement operatorD(j)5eja†2j* a. The natu-
ral orthonormal basis in the Hilbert space is the Fock ba
$un&%, a†aun&5nun& (n50,1,2, . . . ). Thematrix elements
of the tensor operator are given by@37#

^muD~j!un&

5H An!/m!e2uju2/2jm2nLn
m2n~ uju2!, m>n

Am!/n! e2uju2/2~2j* !n2mLm
n2m~ uju2!, m<n

whereLn
p(x) are the associated Laguerre polynomials. Us

the parametrization~5.1! of group elements, one can easi
find the transformation rule

T~g!D~j!T~g21!5D~g!D~j!D~2g!

5exp~gj* 2g* j!D~j!. ~5.9!

Therefore the indexj does not change under the group tran
formation, asD(j) and Y(j,a) are just multiplied by a
phase factor. Correspondingly, there is no index transfor
tion, induced by the action of group elements, to whicht(j)
should be invariant. On the other hand,Y* (j,a)
5 Y(2j,a), andt(j) is obviously invariant under the in
dex transformationj↔2j.

Finally, the harmonic functionsY(j,a), the invariant co-
efficientst~j!, and the tensor operatorsD(j) can be substi-
tuted into the general formula~3.29!. Then one obtains the
SW kernel for the Heisenberg-Weyl group:

D~a;s!5E
C

d2j

p
esuju2/2ej* a2ja* eja†2j* a, ~5.10!

which is exactly the kernel introduced by Cahill and Glaub
@10#.

B. The SU„2… group

As another example, we consider SU~2! which is the dy-
namical symmetry group for the angular momentum or s
and for many other systems, for example, a collection
two-level atoms, the Stokes operators describing the po
ization of the quantized light field, two light modes with
fixed total photon number, etc. A number of authors ha
used different approaches to the construction of the Wig
function for spin @20,23,27,38,44,46–52#. The explicit ex-
pressions for theQ, W, and P functions for arbitrary spin
were obtained by Agarwal@44#, who used the spin coheren
state representation@37,53,54# and the Fano multipole opera
tors @55#. Várilly and Gracia-Bondı´a @27# have shown that
the spin coherent-state approach is equivalent to the form
ism based on the SW correspondence.

The simple Lie algebra of SU~2! is spanned by the basi
$Jx ,Jy ,Jz%,

@Jp ,Jr #5 i eprtJt . ~5.11!

The unitary irreducible representations are labeled by the
dex j ( j 50,1/2,1, . . . ), and theHilbert spaceHj is spanned
by the orthonormal basisu j ,m& (m5 j , j 21, . . . ,2 j ). Group
elements can be parametrized using the Euler anglesa,b,g:
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g5g~a,b,g!5eiaJzeibJyeigJz. ~5.12!

The phase space is the unit sphereS25SU(2)/U(1), and
each coherent state is characterized by the unit vector

n5~sin u cosf,sin u sin f,cosu!. ~5.13!

Specifically, the coherent statesuV&[u j ;n& are given by the
action of the group element

g~V!5g~u,f!5e2 ifJze2 iuJy ~5.14!

on the highest-weight stateu j , j &:

u j ;n&5u j ;u,f&5g~u,f!u j , j &

5 (
m52 j

j S 2 j
j 1m D 1/2

cosj 1m~u/2!

3sinj 2m~u/2!e2 imfu j ,m&. ~5.15!

The invariant measure is

dm~V![
2 j 11

4p
dn5

2 j 11

4p
sin udu df, ~5.16!

and the corresponding delta function is

d~V2V8![
4p

2 j 11
d~n2n8!

5
4p

2 j 11
d~cosu2cosu8!d~f2f8!. ~5.17!

The harmonic functions onS2 are the familiar spherica
harmonics:

Yn~V![A 4p

2 j 11
Ylm~u,f!. ~5.18!

In this contextn is the double discrete index$ l ,m% with
l 50,1,2, . . . and m5 l ,l 21, . . . ,2 l . The transformation
rule for the spherical harmonics reads

g~a,b,g!Ylm~u,f!5 (
m852 l

l

Dm8m
~ l !

~a,b,g!Ylm8~u,f!,

~5.19!

where

Dm8m
~ l !

~a,b,g!5^ l ,m8ug~a,b,g!u l ,m& ~5.20!

is the matrix representation of SU~2! elements andg(a,b,g)
is given by Eq.~5.12!. Another property of the spherica
harmonics is

Ylm* ~u,f!5~21!mYl ,2m~u,f!. ~5.21!

The invariant coefficients can be found using the follo
ing expansion@27#:
-

z^ j ,nu j ,n8& z25S 11n–n8

2 D 2 j

5(
l 50

2 j
2l 11

2 j 11
^ j , j ; l ,0u j , j &2Pl~n–n8!,

~5.22!

wherePl(x) are the Legendre polynomials and

^ j 1 ,m1 ; j 2 ,m2u j ,m&[Cm1m2m
j 1 j 2 j

~5.23!

are the Clebsch-Gordan coefficients. Using the addition
mula for the spherical harmonics,

2l 11

4p
Pl~n–n8!5 (

m52 l

l

Ylm* ~n!Ylm~n8!, ~5.24!

Eq. ~5.22! can be rewritten as

z^ j ,nu j ,n8& z25
4p

2 j 11 (
l 50

2 j

(
m52 l

l

^ j , j ; l ,0u j , j &2

3Ylm* ~n!Ylm~n8!. ~5.25!

Comparing this result with the general formula~3.6!, we
readily find that the invariant coefficients are given by

tn[t l5^ j , j ; l ,0u j , j &25
~2 j 11!@~2 j !! #2

~2 j 1 l 11!! ~2 j 2 l !!
.

~5.26!

Note thatt l50 for l .2 j . The invariance oft l is ensured by
the fact that they are independent ofm.

The tensor operators for spin are the well-known Fa
multipole operators@55#, which can be written in the form

Dlm5A2l 11

2 j 11 (
k,q52 j

j

^ j ,k; l ,mu j ,q&u j ,q&^ j ,ku.

~5.27!

Substituting expressions~5.18!, ~5.26!, and ~5.27! into the
general formula~3.29!, we find that the SW kernel for spin i
given by

D~u,f;s!5A 4p

2 j 11 (
l 50

2 j

^ j , j ; l ,0u j , j &2s

3 (
m52 l

l

DlmYlm* ~u,f!, ~5.28!

which coincides fors50,61 with the results by Agarwa
@44# and by Várilly and Gracia-Bondı´a @27#.

VI. RECONSTRUCTION OF QUANTUM STATES

A. Basic systems and methods

A great amount of work has been devoted in the last f
years to the problem of determining the quantum state fr
information obtained by a set of measurements performed
an ensemble of identically prepared systems. The task i
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reconstruct the density matrixr which, according to the prin-
ciples of quantum physics, contains all available informat
about the state of a system. Of course, the question arise
to which set of measurements provides information suffici
for the state reconstruction. This question first appeare
early works by Fano@56# and Pauli@57# and was discusse
in a number of papers@58–63#.

Recently, significant theoretical and experimen
progress has been achieved in the reconstruction of quan
states of the light field~see, e.g., a recent book@17#!. One of
the most successful reconstruction methods in this conte
the optical homodyne tomography. A tomographic appro
to the Wigner function was discussed by Bertrand and B
trand @64# and a quantum-optical scheme was proposed
Vogel and Risken@65#. The reconstruction of quantum stat
of the light field by means of homodyne tomography w
realized in a series of intriguing experiments@66,67#. Vari-
ous methods for data analysis in optical homodyne tomo
phy measurements were recently discussed@68–72#. The to-
mographic schemes were also generalized for
reconstruction of the joint density matrix for two-mode a
multimode optical fields@73–77#. Among other approache
to the reconstruction of quantum states of light we wo
like to mention the symplectic tomography@78# and the pho-
ton counting methods@79–81# ~also known as the photo
number tomography@82#!.

In the case of a single-mode microwave field inside
high-Q cavity, a direct measurement on the system itsel
impossible. Instead, one can probe the state of the intraca
field via the detection of atoms after their interaction with t
field mode@83–85#. Similar ideas were also applied to th
reconstruction of the quantum motional state of a las
cooled ion trapped in a harmonic potential@84,86–90#, in-
cluding a beautiful experimental realization@91#.

State reconstruction procedures were proposed for var
quantum systems, for example, one-dimensional wave p
ets @92,93#, harmonic and anharmonic molecular vibratio
@94,95#, motional states of atom beams@96#, Bose-Einstein
condensates@97#, cyclotron states of a trapped electron@98#,
atomic Rydberg wave functions@99#, etc. State reconstruc
tion methods for systems with a finite-dimensional st
space ~e.g., for spin! were also discusse
@51,52,59,60,100,101#. Experimental reconstructions wer
also reported for electronic angular-momentum states of
drogen @102# and for vibrational quantum states of a d
atomic molecule@103#.

B. Displaced projectors

It turns out that the majority of schemes used for t
reconstruction of quantum states are related to the ph
space formalism. Frequently, theQ function, the Wigner
function, or other phase-space QPDs representing the de
matrix r of the system can be either measured directly
deduced in some way from measured data. In particular
many proposed and realized schemes the measured qu
is the expectation value

pu~l!5^Gu~l!&5Tr@rGu~l!# ~6.1!

of a self-adjoint operator
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Gu~l!5U~l!uu&^uuU†~l!, ~6.2!

which is a transformed projector on a quantum stateuu&. The
unitary operatorU(l) represents the corresponding transfo
mation, and the measurements are made for a range of va
of the transformation parameterl.

We will distinguish here between two possibilities.
U(l)5T(V) is the phase-space displacement opera
which represents an element ofX5G/H, with G being the
dynamical symmetry group of a given quantum system,
will call the observableGu(l)5Gu(V) the properly trans-
formed projector ~or the displaced projector!. Otherwise
Gu(l) will be called the improperly transformed projector

In order to illustrate these definitions, let us conside
quantum harmonic oscillator which is the model system fo
single mode of the quantized radiation field, a laser-coo
ion moving in a harmonic trap, or a harmonic vibration
mode of a diatomic molecule. The corresponding symme
group is the Heisenberg-Weyl groupH3 , and the phase
space is the complex planeC5H3 /U(1) ~see Sec. V A!. In
this contextU(l)5D(a) is the Glauber displacement oper
tor, and the expectation value of the displaced projector,

pu~a!5Tr@rGu~a!#5Tr@rD~a!ruD†~a!#, ~6.3!

is called the operational phase-space probability distribu
@104–106#. Here,r is the density matrix of the quantum sta
of the system andru is the density matrix~given by the
projectoruu&^uu for a pure state! of the so-called ‘‘quantum
ruler’’ state which characterizes the measurement device.
example, displacing the state of the oscillator,

r→r~a!5D†~a!rD~a!, aPC, ~6.4!

and measuring the probability of finding it in the Fock sta
un&, one obtains the operational phase-space probability
tribution,

pn~a!5^nur~a!un&5Tr@rGn~a!#. ~6.5!

The displaced projector

Gn~a!5D~a!un&^nuD†~a! ~6.6!

is obtained foruu&5un& being the Fock state. In particula
measuring the probability of finding the displaced oscilla
in the ground stateu0&, one obtains the Husimi function
Q(a)5^aurua&. On the other hand, if one knows the fun
tions pn(a) for all values ofn, then the Wigner function can
be built as@10#

W~a!52(
n50

`

~21!npn~a!. ~6.7!

This formula can be generalized for QPDs with other valu
of s @107#:

Fr~a;s![P~a;s!5
2

12s (
n50

` S s11

s21D n

pn~a!. ~6.8!

These methods for determining the Husimi function a
the Wigner function~and thus reconstructing the quantu
state of the system! were discussed by Royer@92# in 1985.
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Recently, such a scheme for measuring theQ function was
proposed in the context of trapped ions@87#. Another method
for the reconstruction of the motional state of a trapped i
proposed and experimentally realized by the NIST gro
@91#, employs the interaction between the vibrational mo
of the ion and its internal electronic levels. The initial m
tional state is displaced in the phase space, as in Eq.~6.4!,
and then the interaction with the two-level internal su
system is induced for a timet. The populationP↓(t,a) of the
lower internal stateu↓& is measured for different values o
displacement amplitudea and timet ~this measurement ca
be made with great accuracy by monitoring the fluoresce
produced in driving a resonant dipole transition!. If u↓& is the
internal state att50, the signal averaged over many me
surements is

P↓~ t,a!5
1

2F11 (
n50

`

pn~a!cos~2Vn,n11t !e2gntG ,

~6.9!

whereVn,n11 are the Rabi frequencies andgn are the ex-
perimentally determined decay constants. This relation
lows one to determine the populationspn(a) of the displaced
motional eigenstates. As one can see from Eq.~6.8!, the
functions pn(a) in their turn can be used to calculate th
QPDsP(a;s) ~e.g., the Wigner function!. Alternatively, the
density matrix in the Fock representation can be dedu
directly from pn(a).

In the optical domain, the functionpn(a) can be deter-
mined in principle as the probability of recordingn counts
with an ideal photodetector exposed to the displaced l
field. In practice, one could use the unbalanced homodyn
detection@79–82#, in which the signal field is mixed in a
beam splitter with the local oscillator of coherent amplitu
b and the photon statistics of the superimposed field is t
counted by a photodetector of quantum efficiencyz. The
resulting counting statistics is denoted bypn(a,h), where
a52Rb/T is the effective displacement amplitude~T andR
are the transmission and reflection coefficients of the be
splitter! and h5zuTu2 is the overall quantum efficiency. In
this realistic situation formula~6.8! should be replaced by
the following result@80#:

P~a;s!5
2

12s (
n50

` F21h~s21!

h~s21! Gn

pn~a,h!. ~6.10!

This method of state reconstruction is sometimes called
photon number tomography.

As an example of measurements with improperly tra
formed projectors, we mention the optical homodyne tom
raphy @65,66# in which one measures the probability dist
bution P(x,u) for the rotated field quadrature

xu5x cosu1p sin u5U~u!xU†~u!. ~6.11!

The field quadraturesx and p can be viewed as the scale
position and momentum operators of the harmonic oscilla
with a5221/2(x1 ip), andU(u)5exp(iua†a) is the rotation
operator~known in optics as the phase shifter! on the phase
plane.U(u) represents an element of the SO~2!;U~1! sub-
,
p
e

-

e

-

l-

d

t
g

n

m

e

-
-

r,

group of the oscillator groupH4 whose algebra is spanned b
$I ,a,a†,a†a%. The improperly transformed projector is give
by

Gx~u!5U~u!ux&^xuU†~u!, ~6.12!

whereux& are the position eigenstates. The measured dis
bution P(x,u) can be used for determining the Wigner fun
tion via the inverse Radon transform@64–66#. Alternatively,
the density matrix in some basis~e.g., in the Fock basis! can
be deduced directly fromP(x,u) by averaging a set of pat
tern functions@68–71#. Another example of measuremen
with improperly transformed projectors is the symplectic
mography@78#, in which the phase-space rotation is acco
panied by the squeezing transformation.

In the case of measurements with improperly transform
projectors, a general group-theoretic approach is probl
atic, because the number of possible transformations is v
large and one should consider each situation separately
the other hand, the method of properly transformed proj
tors works uniformly for physical systems with differen
symmetry groups. For example, in the case of the SU~2!
symmetry ~e.g., spin, two-level atoms, etc.!, proposals ap-
peared@100,101# for measuring theQ function,

Q~n!5^ j ,nuru j ,n&5Tr~ru j ,n&^ j ,nu!, ~6.13!

or, more generally, for measuring the probability

pm~n!5Tr@rGm~n!#, ~6.14!

Gm~n!5g~n!u j ,m&^ j ,mug21~n! ~6.15!

of finding the displaced system

r~n!5g21~n!rg~n!, nPS2 ~6.16!

in the stateu j ,m&. These ideas for spin are conceptually ve
similar to the proposals in the context of optical fields
trapped ions. Therefore it seems natural to apply the ph
space formalism developed above to the general gro
theoretic description of the state reconstruction method ba
on the measurement of displaced projectors.

C. General reconstruction formalism

From the practical point of view, the reconstruction pr
cedure consists of two steps. First, the system describe
the density matrixr is displaced in the phase space:

r→r~V!5T21~V!rT~V!, VPX. ~6.17!

The second step is the measurement of the probability to
the ~displaced! system in a quantum stateuu&,

pu~V!5^uur~V!uu&. ~6.18!

Repeating this procedure for a large number of phase-sp
points V, one can, in principle, determine the functio
pu(V).
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1. More about displaced projectors

The information contained in the functionpu(V) is
enough for the reconstruction of the density matrix. It
convenient to analyze this problem with the help of the d
placed projector,

Gu~V!5T~V!uu&^uuT21~V!, ~6.19!

whose expectation value gives the measured functionpu(V),
as in Eq.~6.1!. The displaced projector satisfies a number
useful properties.

~i! It is a self-adjoint operator,

Gu
†~V!5Gu~V! ;VPX. ~6.20!

Sincepu(V) is not only real but also non-negative~this is
a probability!, Gu(V) is also a non-negatively defined oper
tor.

~ii ! Provided that the stateuu& is normalized,Gu(V) is a
trace-class operator of trace one, and the following stand
ization condition holds:

E
X
dm~V!Gu~V!5I . ~6.21!

This implies the normalization ofpu(V),

E
X
dm~V!pu~V!51. ~6.22!

~iii ! The displaced projector is manifestly covariant,

T~g!Gu~V!T~g21!5Gu~g–V!. ~6.23!

Consequently, ifpu(V) corresponds to the initial densit
matrix r, the functionpu(g–V) will correspond to the trans
formed density matrixr(g)5T(g21)rT(g).

Denoting the density matrix of the quantum ruler state
ru ~which is uu&^uu for a pure state!, the operational phase
space probability distribution reads

pu~V!5Tr@rT~V!ruT21~V!#. ~6.24!

Using the inverse Weyl rule~2.7! for the density matrixr,
we obtain

pu~V!5E
X
dm~V8!P~V8;s!Tr@T21~V!

3D~V8;2s!T~V!ru#,

whereP(V;s)[Fr(V;s) is the SW symbol ofr. Now, the
covariance property~2.8c! can be used to obtain the follow
ing expression:

pu~V!5E
X
dm~V8!P~V–V8;s!Pu~V8;2s!, ~6.25!

wherePu(V;s) is the SW symbol ofru . Therefore the op-
erational phase-space probability distributionpu(V) is given
by a convolution of the two QPDs representing the quant
state of the system and the quantum ruler state of the m
surement apparatus. In the particular case of the Heisenb
-

f

d-

y

a-
rg-

Weyl group and fors50, the general expression~6.25! re-
duces to the known result@105#

pu~a!5E
C

d2a8

p
W~a1a8!Wu~a8!. ~6.26!

If the quantum ruler stateuu&5uc0& is the reference state
of the coherent-state basis, then

Gc0
~V!5uV&^Vu5D~V;21! ~6.27!

is the SW kernel withs521, and

pc0
~V!5^VuruV&5Qr~V! ~6.28!

is theQ function. However, except for this coincidence, th
displaced projectors are not the SW kernels, as they do
satisfy the tracing condition. On the other hand, the functio
pu(V) differ from the majority of QPDs, as they are positiv
on the whole phase space~which reflects the fact that the
are measurable probabilities!. Usually the stateuu& is chosen
to belong to some complete orthonormal basis$ufn&% which
consists of energy eigenstates of a natural Hamiltonian of
physical system~e.g., the Fock basis for a harmonic oscill
tor or Jz eigenstates for spin!. Then there exists the relatio

(
n

pfn
~V!51, ~6.29!

which follows from the completeness of the basis.

2. Entropy

A useful quantity for analyzing statistical properties of t
system~in particular, the amount of noise! is the entropy. A
phase-space version of the entropy can be introduced in
following way:

Su52E
X
dm~V!pu~V!lnpu~V!. ~6.30!

For uu&5uc0&, Eq. ~6.30! gives

S52E
X
dm~V!Qr~V!lnQr~V!, ~6.31!

which is a generalization of the Wehrl entropy@108# that was
defined originally on the flat phase space of the We
Heisenberg group. The entropy~6.30! can be useful in the
reconstruction procedure, as it is a sensitive measure of
noise added to the system during the displacement and
tection processes. A similar situation exists also in the fi
of signal processing@109#. Thereuu& represents the test sig
nal andpu(V) is a distribution on the time-frequency spac
One can produce various test signalsuu& and compute the
corresponding entropiesSu . Choosinguu& that minimizes
the entropy, one obtains the optimal form of pattern analy
~in particular, this method allows one to achieve data co
pression!.
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3. Harmonic expansions

A useful expression forpu(V) can be derived in the fol-
lowing way. Using the expansion

r5(
n
RnDn , Rn[Tr~rDn

†!, ~6.32!

we obtain

pu~V!5(
n
Rn^uuT21~V!DnT~V!uu&

5(
n
Rn(

n8
Tn8n

21
~V!^uuDn8uu&. ~6.33!

Expandingpu(V) in the basis of harmonic functions,

pu~V!5(
n

kn
~u!RnYn~V!, ~6.34!

we identify the coefficientskn
(u) by means of the relation

kn
~u!Yn~V!5^uuT~V21!DnT~V!uu&. ~6.35!

Formally, we can write

kn
~u!5tn

21/2E
X
E

X
dm~V!dm~V8!Yn* ~V!

3Yn~V–V8!u^uuV8&u2, ~6.36!

but actually Eq.~6.35! is more convenient for calculating th
coefficientskn

(u) .
Equation~6.34! for the functionspu(V) corresponds to

the expansion

Gu~V!5(
n

kn
~u!Yn* ~V!Dn5(

n
kn

~u!Yn~V!Dn
†

~6.37!

for the displaced projectors. It follows from the properties
Gu(V) that the coefficientskn

(u) are positive and possess th
same invariance properties astn . Using the general resul
~4.6!, we obtain the relation between the functionspu(V)
and pv(V), corresponding to different quantum ruler stat
uu& and uv&,

pu~V!5E
X
dm~V8!Kuv~V,V8!pv~V8!, ~6.38!

Kuv~V,V8!5(
n

kn
~u!

kn
~v !

Yn~V!Yn* ~V8!. ~6.39!

4. Deducing the density matrix and quasiprobabilities

Knowledge of the phase-space functionpu(V) allows us
to reconstruct the density matrix in a simple way:

Rn5@kn
~u!#21E

X
dm~V!pu~V!Yn* ~V!. ~6.40!
f

s

Formally, we can also represent the density matrix by me
of an integral transform of the displaced projector:

r5E
X
dm~V!r u~V!Gu~V!. ~6.41!

This relation gives the density matrix in terms of a pha
space functionr u(V), and in this sense it is the inverse o
Eq. ~6.1!. The function r u(V) is defined by its harmonic
expansion,

r u~V!5(
n

@kn
~u!#21RnYn~V!. ~6.42!

We also obtain the following relation between the functio
r u(V) andpu(V),

pu~V!5E
X
dm~V8!r u~V8!Tr@Gu~V!Gu~V8!#,

~6.43!

where

Tr @Gu~V!Gv~V8!#5 z^uuT21~V!T~V8!uv& z2

5(
n

kn
~u!kn

~v !Yn~V!Yn* ~V8!.

~6.44!

Certainly, the most convenient way for deducing the dens
matrix from the measured functionspu(V) is by calculating
the coefficientsRn via Eq. ~6.40!.

The measured functionspu(V) can be used also for th
reconstruction of various QPDs which represent the den
matrix in the phase-space formulation. According to the g
eral expression~4.1!, the QPDs for the density matrixr are
given by the harmonic expansion

Fr~V;s![P~V;s!5(
n

tn
2s/2RnYn~V!. ~6.45!

Therefore one can just use the coefficientsRn calculated via
Eq. ~6.40!. On the other hand, Eq.~4.6! can be used to obtain
the relation between the QPDsP(V;s) and the measured
functionspu(V):

P~V;s!5E
X
dm~V8!Kus

2 ~V,V8!pu~V8!, ~6.46!

pu~V!5E
X
dm~V8!Kus

1 ~V,V8!P~V8;s!, ~6.47!

where the transformation kernels are

Kus
6 ~V,V8!5(

n
@kn

~u!tn
s/2#61Yn~V!Yn* ~V8!. ~6.48!

It can be easily shown thatKus
1 (V,V8)5Pu(V21

–V8;2s)
wherePu(V;s) is the SW symbol ofuu&^uu, so Eq.~6.47! is
consistent with the relation~6.25!.
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984 PRA 59C. BRIF AND A. MANN
As was already mentioned, if the stateuu& is the reference
state uc0& of the coherent-state basis, thenGc0

(V)

5uV&^Vu and the measured functionpc0
(V) coincides with

the functionQr(V)5P(V;21). Comparing the harmonic
expansions~6.34! and~6.45! for the caseuu&5uc0&, we find
the following relation:

kn
~c0!

5tn
1/2. ~6.49!

In this case we also obtain that the functionr c0
(V) of Eq.

~6.42! is just theP function,

r c0
~V!5Pr~V!5P~V;1!. ~6.50!

Note that in the case of the Heisenberg-Weyl group one
also calculate the QPDs using the formula~6.8!.

5. Examples

We see that the mathematical procedure of the recons
tion of the density matrixr and its QPDsP(V;s) from the
measured probabilitypu(V) actually consists of the simpl
transformation~6.40!. The mathematical tools one needs f
this procedure are the harmonic functionsYn(V) and the
invariant coefficientstn andkn

(u) . In what follows we com-
pute the explicit form ofkn

(u) for simple but instructive ex-
amples of the Heisenberg-Weyl group~with uu& being a Fock
state! and the SU~2! group ~with uu& being aJz eigenstate!.

In the case of the Heisenberg-Weyl group, we consi
the probabilitypn(a) to find the displaced initial state in th
Fock stateun& (n50,1,2, . . . ). Then Eq.~6.35! can be re-
written in the form

k~n!~j !Y~j,a!5^nuD~2a!D~j!D~a!un&. ~6.51!

Using Eq.~5.9!, we obtain

D~2a!D~j!D~a!5Y~j,a!D~j!. ~6.52!

Therefore thek coefficients are given by

k~n!~j !5^nuD~j!un&5exp~2 1
2 uju2!Ln~ uju2!. ~6.53!

Of course, forn50 one getsk (0)(j)5@t(j)#1/2.
In the case of the SU~2! group, we consider the probabi

ity pm(u,f) to find the displaced initial state in theJz eigen-
stateu j ,m& (m5 j , j 21, . . . ,2 j ). Then Eq.~6.35! takes the
form

k lm
~m!Ylm~u,f!5A2 j 11

4p
^ j ,mug21~u,f!Dlmg~u,f!u j ,m&.

~6.54!

Using the parametrization~5.14! for g(u,f) and the trans-
formation rule~5.19!, we can write

g21~u,f!Dlmg~u,f!5 (
m852 l

l

Dm8m
~ l !

~0,u,f!Dlm8 .

~6.55!

Since the matrix element of the tensor operator,
n

c-

r

^ j ,muDlm8u j ,m&5A2l 11

2 j 11
^ j ,m; l ,m8u j ,m&, ~6.56!

vanishes unlessm850, Eq. ~6.54! reads

k lm
~m!Ylm~u,f!5A2l 11

4p
D 0m

~ l ! ~0,u,f!^ j ,m; l ,0u j ,m&.

Taking into account the fact that

D 0m
~ l ! ~a,b,g!5A 4p

2l 11
Ylm~b,g!, ~6.57!

we finally obtain that thek coefficients are independent o
the indexm:

k l
~m!5^ j ,m; l ,0u j ,m&. ~6.58!

For m5 j , one findsk l
( j )5t l

1/2. Indeed, according to the
definition ~5.15! of the SU~2! coherent states, the functio
Q(u,f)5^ j ,nuru j ,n& coincides with the probability
pj (u,f) to find the displaced system in the highest spin st
u j , j &. It is not difficult to see that the probabilityp2 j (u,f)
to find the displaced system in the lowest spin stateu j ,2 j & is
equal to Q(u1p,f). As an application of the relation
~6.46!, we also obtain the following expression for the SU~2!
Wigner function in terms of the measured probabilitypm(n),

W~n!5(
l 50

2 j
~4p!21~2l 11!

^ j ,m; l ,0u j ,m& E
X
dn8Pl~n–n8!pm~n8!,

~6.59!

wherePl(x) are the Legendre polynomials.

D. Informational completeness and unsharp measurements

When the question of the state reconstruction arises,
understood that the set of measurements one makes o
ensemble of identically prepared systems should give c
plete information about the quantum state. In particular
one measures expectation values of some observables,
natural to ask how many such observables are neede
characterize completely the state of the system. In this se
a set of observables, whose expectation values are suffic
to reconstruct the quantum state~or, equivalently, to distin-
guish between different states!, can be considered as infor
mationally complete. A formal definition is as follows@61#:
A set of bounded operatorsA5$A% onH is said to be infor-
mationally complete if for density matricesr,r8 the equality
of expectation values,

Tr~rA!5Tr~r8A! ;APA, ~6.60!

implies r5r8.
The informational completeness of positive operat

valued measures covariant with respect to Heisenberg-W
affine, and Galilei groups was recently discussed in R
@63#. This subject was shown@63# to be of importance not
only in quantum mechanics but also in signal process
where a problem exists of extracting information from no
stationary signals and images. Another interesting featur
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that both in quantum mechanics and in signal processing
phase-space formulation is of great importance for approa
ing this kind of problems.

It would be interesting to analyze the results of the pres
paper from the point of view of informational completene
First, it is evident from the expansion

r5(
n

Tr~rDn
†!Dn ~6.61!

that the orthonormal set$Dn% of the tensor operators is in
formationally complete. Correspondingly, the s
$D(V;s)uVPX% of the SW kernels for eachs is also infor-
mationally complete. This fact is reflected by the inver
Weyl rule written as

r5E
X
dm~V!Tr@rD~V;s!#D~V;2s!. ~6.62!

In other words, the density matrix can be uniquely reco
structed from its s-parametrized QPD P(V;s)
5Tr @rD(V;s)#. From the practical point of view, the im
portant thing is the informational completeness of the
$Gu(V)uVPX% of the displaced projectors for anyuu&PH.
This fact was formally proved in Ref.@63#. Here, we pre-
sented a simple algorithm~based on the method of harmon
expansion! for the reconstruction of the density matrix fro
the measurable probabilitiespu(V)5Tr@rGu(V)#. This re-
construction procedure clearly implies the information
completeness of the set$Gu(V)uVPX%.

One of the useful features of the method of displac
projectors is the ability to take into account in a simple w
the unsharpness of a realistic measurement. Of course,
impossible in practice to make a completely accurate
placement to a specified pointV on the phase space. Fo
example, one should take into account the phase and in
sity fluctuations of a classical microwave source that d
places the quantum state of the radiation field in a cavity
instabilities of a classical driving field that displaces the m
tional state of a trapped ion. Similarly, the so-called coa
graining problem arises in radar analysis due to freque
instabilities of the test signal or uncertainties in timing
signal initiation. As a result, the probabilitiespu(V) should
be integrated over the variation range. This yields the exp
tation value of the localization operator defined by@63#

Zu~ f !5E
X
dm~V! f ~V!Gu~V!, ~6.63!

where f (V) is a localization function.Zu( f ) has a purely
discrete spectrum, is bounded whenf PLk(X,m), k>1, and
he
h-

nt
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is self-adjoint whenf is real. In particular, letB be a region
~more specifically, a Borel set! in X, with the characteristic
function xB(V) that equals 1 forVPB and 0 otherwise.
Taking f (V)5xB(V), one obtains

Zu~B!5E
B
dm~V!Gu~V!. ~6.64!

It is not difficult to see that the informational completene
of the set$Gu(V)uVPX% of displaced projectors implies th
informational completeness of the set$Zu(B)uB
PBorel sets ofX% of localization operators. Therefore, in th
case of realistic unsharp measurements, the localization
erators may be conveniently used for analysis and rec
struction of quantum states or electronic signals and ima

VII. CONCLUSIONS

In the present paper we propose a simple algorithm
constructing the SW kernels which implement the line
bijective mapping between Hilbert-space operators a
phase-space functions for physical systems possessing
group symmetries. The constructed kernels are manife
covariant under the action of the corresponding dynam
symmetry group and satisfy the tracing condition which e
sures that quantum expectations can be represented
statistical-like averages over the phase space. Adding
noncommutative twisted product that equips phase-sp
functions with the algebraic structure of quantum operato
an autonomous phase-space formulation of quantum
chanics is developed.

It turns out that the concept of phase space natur
emerges in the majority of schemes proposed for the rec
struction of quantum states as well as in the standard m
ods of signal analysis. In particular, we focus on the meth
based on measurements of displaced projectors and dev
its general group-theoretic description. We do so by apply
the same technique of harmonic expansions on the ph
space that was used for the construction of the SW kern
The problem of the state reconstruction is also approac
using the concept of informational completeness, and
role of localization operators in describing realistic measu
ments is discussed.

ACKNOWLEDGMENTS

This work was supported by the Fund for Promotion
Research at the Technion, by the Technion VPR Fun
Promotion of Sponsored Research, and by the Technion V
Fund—The Harry Werksman Fund.
,

m

@1# E. Wigner, Phys. Rev.40, 749 ~1932!.
@2# J. E. Moyal, Proc. Cambridge Philos. Soc.45, 99 ~1949!.
@3# H. Weyl, Z. Phys.46, 1 ~1927!; The Theory of Groups and

Quantum Mechanics~Dover, New York, 1950!.
@4# P. Carruthers and F. Zachariasen, Rev. Mod. Phys.55, 245

~1983!.
@5# M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner
Phys. Rep.106, 121 ~1984!.

@6# Y. S. Kim and M. E. Noz,Phase Space Picture of Quantu
Mechanics~World Scientific, Singapore, 1991!.

@7# H.-W. Lee, Phys. Rep.259, 147 ~1995!.
@8# M. Gadella, Fortschr. Phys.43, 229 ~1995!.



ti-

D.

r,

ar

iza

h.

n

ns

s

g

-

ge
for
he

8
,

ev.

s,

h.

i,

d

986 PRA 59C. BRIF AND A. MANN
@9# F. E. Schroek, Jr.,Quantum Mechanics on Phase Space~Klu-
wer, Dordrecht, 1996!.

@10# K. E. Cahill and R. J. Glauber, Phys. Rev.177, 1857~1969!;
177, 1882~1969!.

@11# G. S. Agarwal and E. Wolf, Phys. Rev. D2, 2161~1970!; 2,
2187 ~1970!; 2, 2206~1970!.

@12# R. J. Glauber, Phys. Rev.131, 2766~1963!.
@13# E. C. G. Sudarshan, Phys. Rev. Lett.10, 277 ~1963!.
@14# K. Husimi, Proc. Phys. Math. Soc. Jpn.22, 264 ~1940!. See

also Y. J. Kano, J. Math. Phys.6, 1913~1965!; C. L. Mehta
and E. C. G. Sudarshan, Phys. Rev.138, B274 ~1965!.

@15# C. W. Gardiner,Handbook of Stochastic Methods, 2nd ed.
~Springer, Berlin, 1985!; Quantum Noise~Springer, Berlin,
1991!.

@16# J. Perˇina, Quantum Statistics of Linear and Non-linear Op
cal Phenomena, 2nd ed.~Kluwer, Dordrecht, 1991!.

@17# U. Leonhardt,Measuring the Quantum State of Light~Cam-
bridge University Press, Cambridge, England, 1997!.

@18# F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and
Sternheimer, Ann. Phys.~N.Y.! 111, 61 ~1978!; 111, 111
~1978!.

@19# C. Fronsdal, J. Math. Phys.20, 2226~1979!.
@20# C. Fronsdal, Rep. Math. Phys.15, 111 ~1979!.
@21# T. V. Huynh, Lett. Math. Phys.4, 201~1980!; J. Math. Phys.

23, 1082~1982!.
@22# H. Basart, M. Flato, A. Lichnerowicz, and D. Sternheime

Lett. Math. Phys.8, 483 ~1984!.
@23# C. Moreno and P. Ortega-Navarro, Ann. Inst. Henri Poinc´

Phys. Theor.38, 215~1983!; Lett. Math. Phys.7, 181~1983!;
C. Moreno,ibid. 12, 217 ~1986!; 13, 245 ~1987!.

@24# For a recent group-theoretic approach to the Moyal quant
tion, see F. Antonsen, Int. J. Theor. Phys.37, 697 ~1998!.

@25# R. L. Stratonovich, Zh. Eksp. Teor. Fiz.31, 1012 ~1956!
@Sov. Phys. JETP4, 891 ~1957!#.

@26# J. M. Gracia-Bondı´a and J. C. Va´rilly, J. Phys. A18, L879
~1988!.

@27# J. C. Várilly and J. M. Gracia-Bondı´a, Ann. Phys.~N.Y.! 190,
107 ~1989!.
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Ivanović, J. Math. Phys.24, 1199~1983!.

@60# W. K. Wootters, Found. Phys.16, 391 ~1986!; W. K. Woot-
ters and B. D. Fields, Ann. Phys.~N.Y.! 191, 363 ~1989!.

@61# E. Prugovecˇki, Int. J. Theor. Phys.16, 321 ~1977!.
@62# P. Busch, Int. J. Theor. Phys.30, 1217~1991!.
@63# D. M. Healy, Jr. and F. E. Schroeck, Jr., J. Math. Phys.36,

453 ~1995!.
@64# J. Bertrand and P. Bertrand, Found. Phys.17, 397 ~1987!.
@65# K. Vogel and H. Risken, Phys. Rev. A40, 2847~1989!.
@66# D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridan

Phys. Rev. Lett.70, 1244~1993!; D. T. Smithey, M. Beck, J.
Cooper, M. G. Raymer, and A. Faridani, Phys. Scr.T48, 35
~1993!; M. Munroe, D. Boggavarapu, M. E. Anderson, an
M. G. Raymer, Phys. Rev. A52, R924~1995!.

@67# S. Schiller, G. Breitenbach, S. F. Pereira, T. Mu¨ller, and J.
Mlynek, Phys. Rev. Lett.77, 2933 ~1996!; G. Breitenbach



s.

.

s.

.

i-

J.

tt.

.

er

at

ch

.

.

B:
r,
.

.

.

ze-

PRA 59 987PHASE-SPACE FORMULATION OF QUANTUM . . .
and S. Schiller, J. Mod. Opt.44, 2207 ~1997!; G. Breiten-
bach, S. Schiller, and J. Mlynek, Nature~London! 387, 471
~1997!.

@68# G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, Phy
Lett. A 195, 31 ~1994!; Phys. Rev. A50, 4298~1994!.
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