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Phase-space formulation of quantum mechanics and quantum-state reconstruction
for physical systems with Lie-group symmetries
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We present a detailed discussion of a general theory of phase-space distributions, introduced recently by the
authors[J. Phys. A31, L9 (1998]. This theory provides a unified phase-space formulation of quantum
mechanics for physical systems possessing Lie-group symmetries. The concept of generalized coherent states
and the method of harmonic analysis are used to construct explicitly a family of phase-space functions which
are postulated to satisfy the Stratonovich-Weyl correspondence with a generalized tracing condition. The
symbol calculus for the phase-space functions is given by means of the generalized twisted product. The
phase-space formalism is used to study the problem of the reconstruction of quantum states. In particular, we
consider the reconstruction method based on measurements of displaced projectors, which comprises a number
of recently proposed quantum-optical schemes and is also related to the standard methods of signal processing.
A general group-theoretic description of this method is developed using the technique of harmonic expansions
on the phase spacE51050-294{@9)00702-1

PACS numbg(s): 03.65.Bz, 03.65.Fd

[. INTRODUCTION shown[10] that the Glauber-Sudarsh&function[12,13 is
associated with the normal ordering and the Husghfunc-
The phase-space formulation of quantum mechanics hast&®n [14] with the antinormal ordering o& anda'. More-
long history. In 1932 Wignefr1] introduced his famous func- over, a whole family ofs-parametrized functions can be de-
tion which has found numerous applications in many areas dined on the complex plane which is equivalent to ¢heflat
physics and electronics. In 1949 Moyd] discovered that Phase space. The lndexsTreIated to the corresponding or-
the Weyl correspondence ru[@] can be inverted by the dering procedure adanda’; the valuest1, 0, and—1 of s
Wigner transform from an operator on the Hilbert space to £orrespond to th®, W, andQ functions, respectively. These
function on the phase space. As a result, the quantum expeebase—space functions are refgrred to as quaS|probqb|I|ty dis-
tation value of an operator can be represented by th#iPutions(QPDs, as they play in the Moyal formulation of
statistical-like average of the corresponding phase—spac%g_a_mu”_1 ”!ec*?a”'C? a role_3|m|Iar _to_that of genuine pro_b-
function with the statistical density given by the Wignera ility distributions in classical statistical mechanics. Vari-
. X . . . ous QPDs have been extensively used in many quantum-
function associated with the density matrix of the quantum_ . . .
state. In this way quantum mechanics can be formally re rec_)ptlcal applications{ 15,16, Most recently, there is great
' y qu . Y TePIhterest in thes-parametrized distributions because of their
sented as a statistical theory on classical phase space.

role in modern schemes for measuring the quantum state of
should be emphasized that this phase-space formalism dogs, adiation field 17]. g g

not replace quantum mechanics by a classical or semiclassi- The mathematical framework and the conceptual back-
cal theory. In fact, the phase-space formulation of quantunyround of the Moyal quantization have been essentially en-
mechanicgalso known as the Moyal quantizatiois in prin-  |arged and generalized in two important papers by Bayen
ciple equivalent to conventional formulations due to Heisenwt a|. [18]. Specifically, it was shown that noncommutative
berg, Schrdinger, and Feynman. However, the formal re-deformations of the algebra of classical phase-space func-
semblance of quantum mechanics in the Moyal formulatiortions (defined by the ordinary multiplicationgive rise to
to classical statistical mechanics can yield deeper undebperator algebras of quantum mechanics. This fact means
standing of differences between the quantum and classic@hat introducing noncommutative symbol calculus based on
theories. Extensive lists of the literature on this subject canhe so-called twisted produdilso known as the star or
be found in reviews and bookg-9]. Moyal produc}, one obtains a completely autonomous refor-
The ideas of Moyal were further developed in the latemulation of quantum mechanics in terms of phase-space
sixties in the works of Cahill and GlaubgtO] and Agarwal  functions instead of Hilbert-space states and operators. This
and Wolf[11]. As mentioned, the Wigner function is related program of “quantization by deformation” has been devel-
to the Weyl (symmetrig ordering of the position and mo- oped in a number of workgl9—23.
mentum operators| and p or, equivalently, of the bosonic  For a long time applications of the Moyal formulation
annihilation and creation operataxsanda’. However, there  were restricted to description of systems like a spinless non-
exist other possibilities of ordering. In particular, it was relativistic quantum particle or a mode of the quantized ra-
diation field (modeled by a quantum harmonic oscillator
i.e., to the case of the flat phase space. Therefore an impor-
*Electronic address: costya@physics.technion.ac.il tant problem is the generalization of the standard Moyal
"Electronic address: ady@physics.technion.ac.il gquantization for quantum systems possessing an intrinsic
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group of symmetries, with the phase space being a homogespace functionsis to determine what the related phase space
neous manifold on which the group of transformations actss. This can often be done by analogy with the corresponding
transitively[20,24]. It has been recently understood that thisclassical problem, thereby providing a direct route for the
problem can be solved using the Stratonovich-WEW)  quantum-classical correspondence. From the technical point
correspondence. The idea of the SW correspondence is thgf view, the phase space can be conveniently determined
the linear bijective mapping between operators on the Hilber{sing the concept of coherent staf83]. The coherent-state
space and functions on the phase space can be implementgghroach is not just a convenient mathematical tool, but it
by a kernel which satisfies a number of physically sensibleyis, helps to understand how physical properties of the sys-
postulates, with covariance and tracing being the two MOSery are reflected by the geometrical structure of the related
important ones. This idea first appeared in a paper by Stras,aqe space. It is possible to say that the concept of coherent

tonovich [25] in 1956, but it was almost forgotten for de- giates constitutes a bridge between the Moyal phase-space
cades. The SW correspondence, which has been restata antization and the Berezin geometric quantizafe.

some years ago by Gracia-Boadand Vailly [26,27), has Let G be a Lie group(connected and simply connected,

given a new impulse to the phase-space formulation of quang;i finjte dimensionn), which is the dynamical symmetry
tum theory. The SW method .of the Moygl ql_Jant|zat|on hasgroup of a given quantum system. LEbe a unitary irreduc-
t_Je_en applied to a number of important situations: a nonrel_awe representation o6 acting on the Hilbert spac#l. By
tivistic freg part|clg'w!th spin, ‘using th'e extgndeq Galilei choosing a fixed normalized reference sthtg) € H, one
grqup[?6], a relativistic fre_:e pa_rtlcle with spin, using the .. define the system of coherent stdief,)}:
Poincaregroup[28]; the spin, using the S@@) group [27];
cpmpaqt semisjmple _Lie group$29]; one- and two- |<//g>=T(g)|z//o), geG. (2.2
dimensional kinematical groups[30-33; the two-
dimensional Euclidean grou30,34); and systems of identi- The isotropy subgroupl CG consists of all the group ele-
cal quantum particleE35]. For a review of basic results see mentsh that leave the reference state invariant up to a phase
Ref.[8]. factor,

Notwithstanding the success of the SW method in the 4
Moyal quantization of many important physical systems, the T(h)] o) =€ ™),
theory suffered from a serious problem. Specifically, it Wasc o every element here i mposition ofin
the alpsence of a simple anq effective _method for the conéoprgdﬁ(% (E)Bfetwgrgroi éleemeenstsa,l gﬁg(l?ihapr?; ';[hoe o?[we:()in
struction of the SW kernel which should implement the Map o coset spack=G/H
ping between Hilbert-space operators and phase-space func- '
tions. The construction procedures for the SW kernels, g=Qh, geG, heH, QeX (2.3
considered during the last decadee, e.g., Ref8]), did not
guarantee that the kernel will satisfy all the SW postulateslt is clear that group elementsandg’ with differenth and
Only very recently was a general algorithm for constructingh’ but with the samé) produce coherent states which differ
the SW kernel for quantum systems possessing Lie-groupnly by a phase factor}y,)=¢€'%y,/), where 5= ¢(h)
symmetries proposefB6]. It has been shown that the con- —¢(h’). Therefore a coherent stat€)=|y) is deter-
structed kernel explicitly satisfies all the desired propertiesnined by a pointQ)=€(g) in the coset spacX. A very
(the SW postulatgsand that in the particular cases of the important property is the identity resolution in terms of the
Heisenberg-Weyl group and $2) our general expression coherent states:
reduces to the known results.

In the present paper we essent?ally extend the results of f du(Q)|QXQ|=1, 2.4
Ref. [36] and present a self-consistent theory of the SW X
method for the phase-space formulation of quantum mechan- ) ) . )
ics. This theory makes use of the concept of generalizeheredu(Q) is the invariant integration measure ¥nthe
coherent states and of some basic ideas of harmonic analysigtegration is over the whole manifokd andl is the identity
Like the Cahill-Glauber formalism for the Heisenberg-Weyl Operator or#{. The natural action o& on X will be denoted
group, we construct the-parametrized family of functions by 99
on the phase space of a quantum system whose dynamical An important class of coherent-state systems cor[esponds
symmetry group is an arbitraryfinite-dimensional Lie  to the coset spacés=G/H which are homogeneous Ka
group. Accordingly, we introduce-generalized versions of €fian manifolds. TherX can be considered as the phase
the tracing condition and the twisted product. The developegPace of a classical dynamical system, and the mapping
phase-space formulation is used for a general group-theoretfd—[Q2){({| is the geometric quantization for this system
description of the quantum-state reconstruction method. Thig38]- The standardor maximum-symmetrysystems of the
description can be useful not only for measurements of quarfoherent states correspond to the cases when an “extreme”

€M =1, heH. (2.2

tum states but also in the field of signal processing. state of the representation Hilbert spaeeg., the vacuum
state of an oscillator or the lowest/highest spin gtase
Il. BASICS OF MOYAL QUANTIZATION chosen as the reference state. This choice of the reference

state leads to systems consisting of states with properties

“closest to those of classical state37,39. In what follows

we will consider the coherent states of maximum symmetry
Given a specific physical system, the first thing one needand assume that the phase space of the quantum system is a

to do for the Moyal quantizatiofi.e., for constructing phase- homogeneous Kderian manifoldX=G/H, each point of

A. Generalized coherent states and the definition
of quantum phase space
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which corresponds to a coherent stgt®. In particular, the reality condition(2.58 means that ifA is self-adjoint, then

Glauber coherent states of the Heisenberg-Weyl gidyp FA((;s) is real. The conditiorf2.5b) is a natural normaliza-

are defined on the complex plafieeH3/U(1), and thespin  tion, which means that the image of the identity operatsr

coherent states are defined on the unit sphéfe the constant function 1. The covariance conditiGh50

=SU(2)/U(1). In themore rigorous mathematical language means that the phase-space formulation must explicitly ex-

of Kirillov’s theory [40], the phase spac¢is defined as the press the symmetry of the system.

coadjoint orbit associated with the unitary irreducible repre- The linearity is taken into account if we implement the

sentationT of the groupG on the Hilbert spacét. mapA—F(€;s) by the generalized Weyl rule

B. The Stratonovich-Weyl correspondence Fal(d;s)=TIAA(L;S)], 2.6
Once the phase space of a quantum system is determineghere {A({;s)} is a family (labeled bys) of operator-

the Moyal quantization proceeds in the following way. ket Vvalued functions on the phase spaceThese operators are

be an operator off{. ThenA can be mapped by a family of referred to as the SW kernels. The generalized tracing con-

functionsF 5(£2;s) onto the phase spage(the indexslabels  dition (2.50 is taken into account if we define the inverse of

functions in the family. If A is the density matrixp of a  the generalized Weyl rul€2.6) as

guantum system, the corresponding phase-space functions

FP(Q;S)EP(QES) are called QPDs. Of course, the pha§e- A:f du(Q)FA(Q:S)A(Q; —5S). 2.7)

space formulation of the quantum theory for a given physical X

system can be successful only if the functiéhg(2;s) pos- .

sess some physically motivated properties. These propertidéoW. the condition$2.58—(2.59 of the SW correspondence

were formulated by Stratonovidi25] and are referred to as for FA(€);s) can be translated into the following conditions

the SW correspondence. . on the SW kernel\(€2;s):
Eio)) Ile-:an;ﬁl;;ty: A—FA(Q;s) is one-to-one linear map. i) A:9)=[AQ:9)] VOeX. 2.89
Fal@i9) = [FA9]" @53 @ [ du)as-1 280
X

(i) Standardization:
(i)  A(g-Q;9)=T(9)A(Q;9)T(g™H).
(2.80

Substituting the inverted mag2.7) for A andB into the
generalized tracing conditio2.5d), we obtain the relation
between functions with different values of the index

fxd#(Q)FA(Q;s)zTr A. (2.5b

(iii) Covariance:

Fag(;8)=Fa(g-Q;s), (2.50
whereA(g)=T(g"HAT(g). FA(Q;S):fde(Q )Kss (2, Q)FAQ";s"), (2.9
(iv) Tracing:

Ko (2,Q)=TrA(Q;9)A(Q";=s")].  (2.10

fXdM(Q)FA(Q;S)FB(Q;_S):Tr(AB)- (2.50  |f we takes=s' in Eq. (2.9) and take into account the arbi-
trariness ofA, we obtain the relation

If the functionFA((;s) satisfies the SW correspondence, it

is called the SW symbol of the operatar A(Q;s)zj du(QHKQ,QHAQ";s), (2.1
The above conditions have a clear physical meaning. The X

linearity and the tracing conditions are related to the statisti- .

cal interpretation of the theory. B is the density matrixthe where the function

state operatgrof a system, then the tracing conditiGa5d K(Q,Q')=THAQ:8)AQ;—5)] (2.12

assures that the statistical average of the phase-space distri- ' ' ' '

bution F, coincides with the quantum expectation value of pehaves like thes function on the manifoldk.

the operatoA. O’'Connell and Wignef41] have shown that

the tracing condition for density matrices of a spinless quan- |, ~oNSTRUCTION OF THE STRATONOVICH-WEYL

tum particle(there it appears as an overlap relaji@ nec- KERNEL
essary for the uniqueness of the definition of the Wigner
function. It has also been shoyR9] that the tracing condi- It is clear that the Moyal quantization for a physical sys-

tion is necessary for the uniqueness of the definition of theem is accomplished by constructing the SW kerhé();s)
symbol calculus(twisted or “star” product$ of the phase- that satisfies the SW postulates. Although the form of the
space functions and for the validity of the related noncom-SW kernel has been known for many systems, a general
mutative Fourier analysis. Equati@B.50 is actually a gen- construction method was not known. A procedure that was
eralization of the usual tracing conditidi25,27,29, as it  applied in many work$8,30—37 is as follows. An arbitrary
holds for anys and not only for the Wigner case=0. The  point Qe X is fixed and then an ansatz is made for a self-
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adjoint operaton () (usually only the case=0 was con- harmonic function¥ () are linear combinations of matrix
sidered that satisfies the standardization conditith8b  elementsT,,.(g). Therefore the transformation rule for the
and the following property: harmonic functions i$42]

AQ)=T(AQIT(y™)  ¥yeHa, (1 TOYQ)=Y,(g7 Q)= T,,(9)Y,().

where Ho ={ye G|y-Qo=0Q} is the isotropy subgroup (3.9
for . For anyQ e X there existsge G such thatg-Qq |t should be understood that the summation in E5) is
=(), and then the SW kernel is defined by only on the part ofv that labels functions within an irreduc-
. ible subspace.
A(Q)=A(g-Q0)=T(9)A(Q)T(g ). (3.2 Next, we once again use the coherent states, in order to

) . o ) _introduce the concept of invariant coefficients. The positive-
This kernel automatically satisfies the covariance conditior,gjyed functior}(Q|Q')? is symmetric inQ andQ)’. There-

(2.80, but the problem is that the tracing is not guaranteedore its expansion in the orthonormal basis must be of the
Of course, in the described procedure the form of the kernglyrm

depends on the ansatz and often no kernel satisfying the trac-
ing condition is found. 2 . , .

We propose here a simple and general algorithm for con-KQ[Q)] :EV 7,Y, ()Y, (Q ):EV 7Y, (Q)Y,(Q),
structing the SW kerneléhe wholes-parametrized family (3.6)
which explicitly satisfy all the SW postulates, including both
the covariance and the tracing. Our method makes use ofherer, are real positive coefficients. Using the invariance
Perelomov’'s concept of coherent states and of only soméQ|Q’)=(g-Q|g-Q’) and the unitarity of the representa-
basic ideas from harmonic analysis. Hopefully, the simplicitytion T, we obtain
and generality of our method will draw more attention to the

ideas of the phase-space quantization. |<Q|Q,>|222 7Y (g-Q)Y,(g-Q")
A. Necessary instruments: harmonic functions, invariant
coefficients, and tensor operators =2 Y:,(Q)E 7,1, (9)Y,(g-Q").
Our problem is to find the explicit form of the SW kernel v '
A(£;s) that satisfies the conditiori.89—(2.89 and(2.11). (3.7

Ir.' ord_er to accpmpllsh_ this _task,_we need_ t_hree basic NI order to satisfy this equality, the coefficients must be
dients: harmonic functions, invariant coefficients, and tensor

operators. The coherent states serve here as the glue tEyanar']l'thiusn?neera:]hsetr:rz]i?—exd(t)r?]r:if?jremgmnor?fﬂl]zéq;'?;n:{,f
binds them together. Tvr - v p P

L . which labels functions within an irreducible subspace. Since
sqtﬁ?e-si:\?;tgPgblzo?usfc?igrr]vg((t;])e :r:";(ecwtshpiﬁi(ﬁ'\igri;:]t the Laplace-Beltrami operator is self-adjoint, one finds that

measuredu. The representatioil of the Lie groupG on Y*(Q)=e¢MY~(Q), (3.9
L?(X,u) is defined as !

1 where Y5(Q) is another harmonic function, with the same
T(Qu()=u(g Q). (33 eigenvalue asy,(Q). Since|(Q|Q') is real, the coeffi-

] ] ] cientst, must be invariant under the index transformation of
The eigenfunction¥ ,(€2) of the Laplace-Beltrami operator Eq.(3.8: 7,= 1.

[42] form a complete orthonormal basis lirf(X, x): Next we use the coherent states, harmonic functions, and
invariant coefficients for defining the set of operatdbs,}
S YHQ)Y,(Q)=80-0"), (343 On't
D,= TJ”ZJ du(Q)Y,(Q)[QNKQ]. 3.9
X
f du(Q)Y3 ()Y, (Q)=6,,:. (3.4b
X

Using the expressiofi3.6) and the orthonormality relation
(3.4b for the harmonic functions, we obtain the orthonor-
The functionsy ,((2) are called the harmonic functions, and mality condition for the operator®,,:

8(Q1—Q') is the delta function inX with respect to the

measuredu. Note that the index is multiple; it has one Tr(Dle,)zéwr. (3.10
discrete part, while the other part is discrete for compact

manifolds and continuous for noncompact manifolds. In theNote that the factor, Y2in front of the integral in Eq(3.9)
latter case the summation oveincludes an integration with  serves just for the proper normalization. Using E3)6), we
the Plancherel measudp(v) and the symbob,, includes also obtain the relation

some Dirac delta function§or more details see Ref42]). 1

For conciseness, we omit these details in our formulas. The 7, {Q[D,|Q)=Y,(Q). (3.1
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The invariance of the coefficients, implies thatD, are the
tensor operators whose transformation rule is the same as for de,u(Q)YV(Q)C>C Oy - (3.19
the harmonic function¥ ,(Q):

(As was already mentioned, for noncompact manifolds the

T(g)D,T(g H=> T, ,(g)D, . (3.12  symbold,,, actually includes some Dirac delta functionis.
v can be easily seen from Eg&.15), (3.16, and(3.19 that
. the standardization condition is satisfiedf {&; 7, )=, *2,
A useful property of the tensor operators is that any operator 0 0
A on'H can be expanded in the orthonormal bg#s}: 1€,
f(s;1)=1 Vs. (3.20
A=, Tr (AD})D,. (3.13
v The covariance conditiof2.89 can be rewritten as
B. Explicit form of the kernel S f(s: 7,)D,Y*(g-Q)
Using the above preliminary results, we are able to find v
the SW kernelA (£2;s) with all the desired properties. Spe-
cifically, let us define = f(s: 7,)T(g)D,T(g"HY*(Q). (3.21)
A;9)=2 f(s;7,)Y5(Q)D,. (3.19

Using the transformation rule@.5 and (3.12, Eq. (3.20)

We will show that the construction of the generalized kernelCan be transformed into

(3.14) satisfies the SW correspondence. In 314 f(s;7,)

is a function ofr, and of the indexs. We assume that > X f(s;7,)D, T, (9) Y5 (Q)
possesses the invariance properties af Vo
Using the invariance of, under the index transformation
of Eqg. (3.8), we see that the reality conditid2.83 is satis- _ f(s )T D.,Y*(Q
fied if f(s;7,) is a real-valued function. Therefore we can 2;’ %" (Si7) Ty (@)D, Y, (1), 3.22

consider only real values of the index
Next we consider the standardization conditi¢h8h). Changing the summation indexes- v’ on either side of Eq.

Using the definition3.14), we obtain (3.22, we immediately see that the covariance condition is
satisfied by virtue of the invariance of, under the index
f dM(Q)A(Q;s):E f(s; TV)DVJ' du(Q)Y*(Q), transformation of Eqs(3.5) and(3.12.
X v X In order to satisfy the relation2.11), the function

(319  K(0,Q') of Eq. (2.12 must be thes function in X with

while Eq.(3.13 can be used to write respect to the measudy.,

-3 100D, 3 ¥, [ dut@vio. K(Q,09=3 YI(Q)Y,(Q)=50-0). (323

(310  This result is valid if

The standardization condition is satisfied if the expressions . e\ —
(3.15 and (3.16 are equal. Using the identity resolution fsim)f(=sim)=1. 3.29
(2.4) and Eq.(3.6), we can write This property is satisfied only by the exponential function of

s, i.e.,

_ _ ’ \|2
1—(Q|Q>—fxd,u(9 K Q)] f(sim,)=[f(r,)]" (3.25

_ * / / Note that the standardization conditidB8.20 then reads

S v [ du@vie).  @ap Note
The exact form of the functiof(7,) can be determined if

Multiplying the left and right sides of this equation by we defing[43] for s=—1

Y, (Q) and integrating ovedx(2), we obtain

A(Q;-1)=|Q)Ql. (3.26
fxd,U/(Q)YV(Q): TVJ’XdIu’(Q)YV(Q) (31& Then we obtain
Since 7, is not identically 1, this relation can be satisfied |Q><Q|=Z [f(7,)]"1Y*(Q)D (3.27)
only if there exists some, such thatr, =1 and ” g Y . '
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Multiplying both sides of this equation by,.({Q2) and inte- Let{| ¢,)} be a complete orthonormal basis in the Hilbert
grating overdu(Q), we findf(r,)=17, 2, ie., spaceH. Using the generalized Weyl rul@.6) for the op-
eratorA=|¢,){ ¢, we obtain
f(s;r,)=r,%. (3.28
Fa(Q;9)=(dn|A(2;9)[ ) =Anpn(Qis).  (4.8)
Obviously, the standardization conditib(l)=1 is satisfied.
Finally, we obtain Using Eq.(3.29, we find

AQ;9)=2 7, %Y*(Q)D,=2 7, %%, (Q)D]. Amr(Q;9)=2 7, %% DI b)Y, (). (4.9

(3.29

The standardization and tracing conditiq@ssh) and (2.50
It is evident that this kernel is completely determined by thecan be used to show that
harmonic functions on the corresponding manifold and by
the coherent states which form this manifold. We will see
that the SW kerne(3.29 is a generalization of the Canhill- fXdM(Q)Amn(Q;S):émni (4.10
Glauber kernel for a harmonic oscillatpt0,11] and of the
Agarwal kernel for spirf44].
| 40a(0) 2 0:9200(01-9)= 5o (31
IV. PHASE-SPACE FUNCTIONS %

AND THE SYMBOL CALCULUS The functionsA ,(Q;s) form a useful orthonormal basis in

A. Types of phase-space function L2(X, ).

The SW symbols obtained for some special valuesare
frequently used in numerous applications. In particular, for
s=—1, we obtain theQ function (Berezin’s covariant sym-

As the explicit form of the SW kernels is known, we can
write the SW symbols on the phase space as

- bol [38]):
Fa(;9)=2 7,R4,Y,(Q)=2 7,%%4,Y5(Q),
! ! QA(Q)=FA(Q2; —1)=(Q|A[Q). (4.12
4.1
' Equation(4.12 can be easily obtained by recallipgee Egs.
where we have defined (3.26 and (3.27)] that
A,=Tr(AD"), A4,=Tr(AD,). (4.2)

A -D=la)0|=X nA5@)D,. (413
For a self-adjoint operatoA, we get A,=A* . It can be g
easily verified that substituting expressids]) and (3.29 For s=1, we obtain theP function (Berezin’s contravariant
into the inverse Weyl rule(2.7), one indeed obtain$\ symbol[és]):

=2,4,D,. We also note that the functidfs ¢ (€2,€") of

Eqg. (2.10 is given by

PAQ)=FA(Q;1)=2 7,2A,Y,(Q), (4.19

Kes (2,0)=2> 7,552y (Q)Y*(Q"), (4.3
v whose defining property is

and it clearly satisfies E2.9) which connects the functions
with different values of the index In general, leF(Q) and A=f du(Q)PA(Q)|QNQ. (4.19
H(Q) be two phase-space functions such that X

The functionsP andQ are counterparts in the tracing condi-
F(Q)=2 F,Y,(Q), (4.4  tion (2.5d. Perhaps the most important SW symbol corre-
: sponds tos=0, because this function is “self-conjugate” in
the sense that it is the counterpart of itself in the tracing
H(Q)=> H,Y,(Q). (4.5  condition(2.5d. It is natural to call the function witls=0
v the generalized Wigner function:

Then they are related through the transformation
WAQ)=FA(Q;0)=2 A,Y,(Q). (416

F)= [ du0)Ke0.00H0), @8 | |
X The corresponding SW kernel is

F,
KFH(Q,Q’):EV H—YV(Q)Y,f(Q’). 4.7 A(Q;0)=A(Q)=>, Y*(Q)D,. (4.17
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B. The generalized twisted product Ls,s’,s”(QiQ/ Q=TI AQ:S)A(Q;—s)A(Q": —5")]
The phase-space formulation of quantum mechanics can
be made completely autonomous if one introduces a symbol = A Q;S)A Q' —5)
calculus for the functions on the phase space, which replaces m.n.k
the usual manipulations with operators on the Hilbert space. X A Q7 —8"). 4.25

This symbol calculus is based on the so-called twisted prod-
uct (or Moyal product which corresponds to the usual prod-
uct of operator$18,26,21.

Let us first consider the case of the Wigner function
(s=0). The twisted product of two functions is denoted by
W,*Wg and is determined by the condition f du(Q)Ls e (2,Q",Q")=THAQ";—s")A(Q";—5")]

X

Using the standardization conditid®.80) and the defini-
tion (2.10, we obtain

* =
Wa()*Wg(£2)=Wpg(2) (4.19 K o (0,07, 4.26
for any two operatoré andB. Note that the conditio4.18 _ ) )
assures the associativity of the twisted product. On the othekhis result together with the relatiof2.9) can be used to
hand, this product is, in general, noncommutative. In thiobtain the so-called tracial identity for the generalized
way the algebra of operators is mapped onto the algebra dyvisted product,
phase-space functions. If one starts from a classical phase-
space description, the introduction of the twisted product can ce) o
be viewed as the quantization realized by a deformation of XdM(Q)(FA*FB)(Q’S)_ fde(Q)FA(Q’S )
the algebra of functiongl8].

Using the Weyl rulg(2.6) and its inversd2.7), we obtain XFg(Q;=s"), (427

Wiug(Q)=TrAw(Q)AB] which holds for anys ands’. Equation(4.27) is the phase-
space version of the tracial identity for the operators,

:Tr[AW(Q)fde(Q’)WA(Q,)AW(Q,) S Ad
Tr(AB)=2, A,B,. (4.28

X J dM(QH)WB(Q")AW(QH)}- (4.19 _ _ 3 -

X Using the covariance conditiof2.89 and the definition
4.25, we find the invariance property of the trikernel
Introducing the functioritrikernel) 4.29 property

L(Q’Q/,QH):Tr[AW(Q)AW(Q/)AW(QH)]' (42® LS,S’,S”(g'ng'Q,lg'Q”): LS’Sr’SH(Q,Q/,Q”).

(4.29
we obtain the following definition of the twisted product: This property implies the equivariance of the twisted prod-
uct:
(WA*WB)(Q)Ef f du(Q")du(Q")L(Q,07,0")
o (Fa*Fg)9(€2;9) =F4(2;8")*F§(Q:s"),  (4.30
XWr(Q)Wg(Q"). (4.21)
where
The so-called Moyal bracket is defined as
. FA(Q;8)=Fa(g™*-Q;s). (4.3
[Wa, Wgly= —1(Wa*Wg—Wg*W,). (4.22
The twisted product can be easily generalized for ar- V. EXAMPLES

bitrary values ofs. The s-parametrized twisted product
(Fa*Fg)(Q;s) of any two functions FA(Q;s’) and
Fg(Q;s") is once again determined by the condition

The general formalism presented above can be understood
much better by illustrating it with a number of simple ex-
amples. We will consider two simple physical systems: a

FA(Q;8)*Fg(Q:8")=Fas(Q;S). (4.23 (nonrelativisti¢ spinless quantum particle and spin, whose
dynamical symmetry groups are the Heisenberg-Weyl group
Analogously to the Wigner function case, this leads to theds and SU2), respectively. It should be emphasized that the
definition SW kernels for these basic systems have been known for a
long time[45], so the novelty here is not the result itself but
the method of derivation. Our aim is to demonstrate how the
(FA*FB)(Q;S)EJ f du(Q)du(Q")Lss o (2,Q",9")  general algorithm works by applying it to a number of rela-
XJX . . .
tively simple and well-known problems. We will show that
XFA(Q';8")Fg(Q";8"), (4.24 by identifying harmonic functions, invariant coefficients, and
tensor operators for a given system, one can readily derive
where the generalized trikernel is given by the explicit form of the SW kernel.
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A. The Heisenberg-Weyl group
First, we consider the Heisenberg-Weyl gradp which
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is just the displacement operatd( &) =ef ¢, The natu-
ral orthonormal basis in the Hilbert space is the Fock basis

is the dynamical symmetry group for a spinless quantuni/n)}, a'aln)=n|n) (n=0,1,2...). Thematrix elements

particle and for a mode of the quantized radiation fighbd-
eled by a quantum harmonic oscillatofhe Wigner function
[1] and the Moyal quantizatiof2] were originally intro-

duced for such systems. The kernel implementing the map-

ping between Hilbert-space operators asgarametrized
families of phase-space functiofthe SW kernel in our no-
tation) for H; was introduced by Cabhill and GlaubgtQ].

The generalization of the formalism to the many-dimensiona,

case is straightforwartkee, e.g., Ref8]).

The nilpotent Lie algebra dofi; is spanned by the basis
{a,a’,1}, wherea and a' are the boson annihilation and
creation operators, satisfying the canonical commutation re-
lation,[a,a']=1. Group elements can be parametrized in the

following way:

9=9(y,¢), T(g)=er agel (5.1)

whereye C and ¢ e R.
The phase space is the complex plaheH;/U(1), and
the (Glaubey coherent states are

|Q)=|a)=D(a)|0), acC (5.2
where
D(a)=expaa'—a*a) (5.3

is the displacement operator. The invariant measure is

du(Q)=7"1d?a, (5.4
and the corresponding function is
s(Q-0")=m8?(a-a'). (5.5
The harmonic functions ofi are the exponentials:
Y (Q)=Yda)=Y(§,a)=exp({a* — " a).  (5.6)

Here v= ¢ € C with the Plancherel measure given dy(v)
=7"1d%¢ and with 8, ,, =75 (¢—¢'). Note that for the

of the tensor operator are given [37]
(m[D(&)[n)

Jni/mielé?2gm=n m=n(|£2) - p=p
Jmijnt e 12— geyn-mnm| ]2),

l/vhereLﬁ(x) are the associated Laguerre polynomials. Using
the parametrizatiori5.1) of group elements, one can easily
find the transformation rule

m=sn

T(9)D(HT(g™H=D(y)D(£)D(-7)

=exp(y&* —y*§D(§). (5.9
Therefore the inde¥ does not change under the group trans-
formation, asD (&) and Y(&,a) are just multiplied by a
phase factor. Correspondingly, there is no index transforma-
tion, induced by the action of group elements, to whi€k)
should be invariant. On the other hand/* (¢, a)

= Y(—¢,a), and7(&) is obviously invariant under the in-
dex transformatiorF«— — £&.

Finally, the harmonic function¥(¢,«), the invariant co-
efficients 7(¢), and the tensor operatoB(¢) can be substi-
tuted into the general formulé8.29. Then one obtains the
SW kernel for the Heisenberg-Weyl group:

d2§ 210 &% q— ga* T_g*
A(a;s)=f 7es"5‘ ef e tatgal~t"a (510

which is exactly the kernel introduced by Cahill and Glauber
[10].

B. The SU2) group

As another example, we consider @Jwhich is the dy-
namical symmetry group for the angular momentum or spin
and for many other systems, for example, a collection of
two-level atoms, the Stokes operators describing the polar-

Heisenberg-Weyl group both the phase-space coordilate jzation of the quantized light field, two light modes with a
=a and the indexv=§ are complex numbers, and the fixed total photon number, etc. A number of authors have
Plancherel measure is similar to the invariant measuré.on ysed different approaches to the construction of the Wigner
The invariant coefficients,=7(£) can be found in the function for spin[20,23,27,38,44,46—32The explicit ex-
following way. In the present context E¢3.6) takes the pressions for theQ, W, and P functions for arbitrary spin
form were obtained by Agarwdh4], who used the spin coherent-
state representatid®37,53,54 and the Fano multipole opera-
tors [55]. Varilly and Gracia-Bonda [27] have shown that
the spin coherent-state approach is equivalent to the formal-
ism based on the SW correspondence.
Taking into account that the Fourier transform of a Gaussian The simple Lie algebra of SQ) is spanned by the basis
function is once again a Gaussian, it is not difficult to obtain{J, ,J,,J,},

(&) =exp(—|£]?). (5.7)

Then we deduce that the tensor operator

o [ / ,
|<a|a'>|2:e_|a—a 1°= J(‘?T(g)ef*(a—a )—éla—a )*_

[Jpv‘]r]:ieprt‘]t- (5.11

The unitary irreducible representations are labeled by the in-
dexj (j=0,1/2,1 . ..), and theHilbert spacef; is spanned

by the orthonormal basi$,u) (u=j,j—1,...,—j). Group

e [ B o
D,=D(§)=e —e la)(al (5.9 : ] :
cm elements can be parametrized using the Euler angl8sy:
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(5.12

The phase space is the unit sphgfe- SU(2)/U(1), and
each coherent state is characterized by the unit vector

(5.13

g=9g(a,B,y)=¢e Vze!Fle 1z,

n=(sin 6 cos ¢,sin 6 sin ¢,cosf).

Specifically, the coherent statg®)=|j;n) are given by the
action of the group element
9(Q)=9g(0,¢)=e e 0y (5.14

on the highest-weight statg, j):
liimy=1i;0,6)=9(0.4)j.i)
j .
2
.S ( j

PSRV R”

X sin ~4(012)e” #j, u).

1/2 )
cod #(6/2)

(5.15
The invariant measure is

2j+1 2j+1
du(0)= 4 dn= 4

sinfdod d¢p, (5.16

and the corresponding delta function is

, A
AQ=QN=7m

o(n—n’")

_ 4
S 2j+1

o(cosf—cosh')d(p— ). (5.17

The harmonic functions of? are the familiar spherical

armonics:
Y (Q)= \/—4 Yim( 6,
V( ) 2] 1 IH( ’ )

In this contextwv is the double discrete indefd,m} with
1=0,1,2... andm=Il,l-1,...,—|. The transformation
rule for the spherical harmonics reads

(5.18

|
g(a,,B,'y)Y|m(0,¢)= 2 Dg)/m(aiﬁv‘y)Ylm’(aiqs)i
m'=—|
(5.19

where

D@, B, =(L,M'[g(a,B,y)[1,m)  (5.20
is the matrix representation of $2) elements and(«, 3, y)

is given by Eq.(5.12. Another property of the spherical
harmonics is

Yin(0.8)=(=1)"Y| _n(6,9). (5.2
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1+n.n’\2
H PoAr\|2 —
I(i.nlj,n")l —( 3 )
_I:O m“’J, ’ |JIJ> Pl(n'n )a
(5.22
whereP,(x) are the Legendre polynomials and

<j1,m1;j2,m2|j,m>Elej2j (5.23

m;m,m

are the Clebsch-Gordan coefficients. Using the addition for-
mula for the spherical harmonics,

21+1 , . ,
. P = X YimYin(n), (529
™ m=—1
Eq. (5.22 can be rewritten as
2j I
4
jnljn")P=c j,i:1,001,5)?
Kionlin)P=527 2 2 (Lol
XY (M) Yim(n'). (5.29

Comparing this result with the general formula.6), we
readily find that the invariant coefficients are given by

o (2j +D[(2))1?
TVET|=<J,];|,O|]vJ>2:(2j+|+1)!(2j_|)!.
(5.26

Note thatr=0 for | >2j. The invariance of, is ensured by
the fact that they are independentrof

The tensor operators for spin are the well-known Fano
multipole operator$55], which can be written in the form

20+1  J

>

Dim= 2j+1 kg=-j

J,a)(j .kl
(5.27

Substituting expression&.18), (5.26), and (5.27) into the
general formuld3.29, we find that the SW kernel for spin is
given by

(j.k;1,mlj,q)

4 §
2j+1 |

=0

A(0,¢;5)=

(L300l s

|
X 3 DinYin(0,0), (5.28

which coincides fors=0,=1 with the results by Agarwal
[44] and by Vailly and Gracia-Bonda [27].
VI. RECONSTRUCTION OF QUANTUM STATES

A. Basic systems and methods

A great amount of work has been devoted in the last few
years to the problem of determining the quantum state from

The invariant coefficients can be found using the follow- information obtained by a set of measurements performed on

ing expansior]27]:

an ensemble of identically prepared systems. The task is to
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reconstruct the density matrixwhich, according to the prin- I'y(n)= U()\)|u><u|UT()\), (6.2
ciples of quantum physics, contains all available information
about the state of a system. Of course, the question arises aich is a transformed projector on a quantum sfaje The
to which set of measurements provides information sufficientinitary operatot (\) represents the corresponding transfor-
for the state reconstruction. This question first appeared imation, and the measurements are made for a range of values
early works by Fang56] and Pauli[57] and was discussed of the transformation parameter
in a number of paperkb8-63. We will distinguish here between two possibilities. If
Recently, significant theoretical and experimentalU(N)=T({}) is the phase-space displacement operator
progress has been achieved in the reconstruction of quantuwhich represents an element ¥t G/H, with G being the
states of the light fieldsee, e.g., a recent bopk7]). One of  dynamical symmetry group of a given quantum system, we
the most successful reconstruction methods in this context iwill call the observabld™,(A)=T",(Q) the properly trans-
the optical homodyne tomography. A tomographic approachiormed projector(or the displaced projectpr Otherwise
to the Wigner function was discussed by Bertrand and Ber¥",(\) will be called the improperly transformed projector.
trand [64] and a quantum-optical scheme was proposed by In order to illustrate these definitions, let us consider a
Vogel and Riske65]. The reconstruction of quantum states quantum harmonic oscillator which is the model system for a
of the light field by means of homodyne tomography wassingle mode of the quantized radiation field, a laser-cooled
realized in a series of intriguing experime&6,67. Vari-  ion moving in a harmonic trap, or a harmonic vibrational
ous methods for data analysis in optical homodyne tomogramode of a diatomic molecule. The corresponding symmetry
phy measurements were recently discud&834-73. The to- group is the Heisenberg-Weyl grougd;, and the phase
mographic schemes were also generalized for the&pace is the complex plarie=H;/U(1) (see Sec. V A In
reconstruction of the joint density matrix for two-mode andthis contextJ(\)=D(«) is the Glauber displacement opera-
multimode optical field§73—77. Among other approaches tor, and the expectation value of the displaced projector,
to the reconstruction of quantum states of light we would
like to mention the symplectic tomograpfi§8] and the pho- pu(@)=T{pl'(a)]=TrpD(a)p D' ()], (6.3

Lounm%cé?qgrrfoé?:&%g%g_8ﬂ (also known as the photon is called the operational phase-space probability distribution

In the case of a single-mode microwave field inside a[104—10(3. Here,p is the density matrix of the quantum state

high-Q cavity, a direct measurement on the system itself isOf the system ang, is the density matri{given by the

impossible. Instead, one can probe the state of the intracavi ;)Je”ctor|u)(Lr|]|_ fﬁr ﬁ pure SFathththe so-called qL(Jjant_um £
field via the detection of atoms after their interaction with the U/ State which characterizes the measurement device. For

field mode[83—85. Similar ideas were also applied to the example, displacing the state of the oscillator,

reconstruction of the quantum motional state of a laser- =pt D C 6.4
cooled ion trapped in a harmonic potentj&4,86—9Q, in- p=pla) (a)pD(@),  act, 69
cluding a beautiful experimental realizati¢@i]. and measuring the probability of finding it in the Fock state

State reconstruction procedures were proposed for varioys), one obtains the operational phase-space probability dis-
guantum systems, for example, one-dimensional wave packribution,

ets[92,93, harmonic and anharmonic molecular vibrations

[94,95, motional states of atom bearf@6], Bose-Einstein Pn(@)=(n|p(a@)[n)=Tr[pT'x(a)]. (6.9

condensatef97], cyclotron states of a trapped elect{@8], _ .

atomic Rydberg wave functiorf®9], etc. State reconstruc- | € displaced projector

tion methods for systems with a finite-dimensional state _ t

space (e.g., for spin  were also discussed Tn(a)=D(a)[n)(n|D’(a) .6

[51,52,59,60,100,1Q1 Experimental reconstructions were is optained forju)=|n) being the Fock state. In particular,

also reported for electronic angular-momentum states of hymeasuring the probability of finding the displaced oscillator

drogen[102] and for vibrational quantum states of a di- in the ground statd0), one obtains the Husimi function

atomic moleculg103]. Q(@)={(alp|a). On the other hand, if one knows the func-
tions p,(«) for all values ofn, then the Wigner function can

B. Displaced projectors be built as[10]

It turns out that the majority of schemes used for the o
reconstructior) of quantum states are r(_alated to the phase- W(a)ZZE (—1)"pr(a). 6.7
space formalism. Frequently, th@ function, the Wigner n=0
function, or other phase-space QPDs representing the densi_t[y . . .
matrix p of the system can be either measured directly or his formula can be generalized for QPDs with other values
deduced in some way from measured data. In particular, iR S [107]:
many proposed and realized schemes the measured quantity s+ 1

. K 2 * n
is the expectation value F,(a;s)=P(a;s)= s zo (g) pn(a). (6.8

Pu(M) =(Tu(N))=Tr[pI'y(N)] (6.2)
These methods for determining the Husimi function and
the Wigner function(and thus reconstructing the quantum
of a self-adjoint operator state of the systejmwere discussed by Roy¢®82] in 1985.
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Recently, such a scheme for measuring @héunction was  group of the oscillator groupl, whose algebra is spanned by
proposed in the context of trapped id@F]. Another method  {I,a,a’,a’a}. The improperly transformed projector is given
for the reconstruction of the motional state of a trapped ionby

proposed and experimentally realized by the NIST group

[91], employs the interaction between the vibrational mode Ty ( 0)=U(0)|x)<x|UT(0), (6.12

of the ion and its internal electronic levels. The initial mo-

tional state is displaced in the phase space, as iN@&4., \here|x) are the position eigenstates. The measured distri-
and then the interaction with the two-level internal sub-ption P(x,6) can be used for determining the Wigner func-
system is induced for a time The populatiorP (t,«) of the  tion via the inverse Radon transfoli®4—66. Alternatively,
lower internal state|) is measured for different values of e density matrix in some bagie.g., in the Fock basisan
displacement amplitude and timet (this measurement can pe deduced directly fron(x, ) by averaging a set of pat-
be made with great accuracy by monitoring the fluorescencgsn functions[68—71. Another example of measurements
produced in driving a resonant dipole transitiolfi || ) is the  ith improperly transformed projectors is the symplectic to-
internal state at=0, the signal averaged over many mea-mography{78], in which the phase-space rotation is accom-
surements Is panied by the squeezing transformation.
. In the case of measurements with improperly transformed
_ projectors, a general group-theoretic approach is problem-
P (ta)=5 1+HZO Pn(@)COY20 n.at)e” 70|, atic, because the number of possible transformations is very
(6.9 large and one should consider each situation separately. On
the other hand, the method of properly transformed projec-
where ), ., are the Rabi frequencies ang, are the ex- 1OrS works uniformly for physical systems with different
perimentally determined decay constants. This relation alSymmetry groups. For example, in the case of the25U
lows one to determine the populationg ) of the displaced ~Symmetry (e.g., spin, two-level atoms, efcproposals ap-
motional eigenstates. As one can see from fgg), the Peared 100,101 for measuring the function,
functions p,(«) in their turn can be used to calculate the

QPDsP(«;s) (e.g., the Wigner function Alternatively, the Q(n)=(j,nlplj,my=Tr(plj,n)(j,n), (6.13
density matrix in the Fock representation can be deduced
directly from p,(a). or, more generally, for measuring the probability

In the optical domain, the functiop,(«) can be deter-
mined in principle as the probability of recordimgcounts p.(N)=Tr[pl,(N)], (6.19
with an ideal photodetector exposed to the displaced light
field. In practice, one could use the unbalanced homodyning T,(n)=g(mj, ) ulg X n) (6.15

detection[79-87, in which the signal field is mixed in a

beam splitter with the local oscillator of coherent amplitude ¢ ¢ . :

B and the photon statistics of the superimposed field is theﬁf finding the displaced system
counted by a photodetector of quantum efficientyThe R
resulting counting statistics is denoted py(«,n), where p(M=g "(npg(n),
a=—RpIT is the effective displacement amplitueandR ) ) ) ]
are the transmission and reflection coefficients of the bearif) the statdj, x). These ideas for spin are conceptually very
splitten and 7= ¢|T|? is the overall quantum efficiency. In similar to the proposalslln the context of optical fields or
this realistic situation formuld6.8) should be replaced by {rapped ions. Therefore it seems natural to apply the phase-

nes? (6.16

the following resul80]; space formalism developed above to the general group-
theoretic description of the state reconstruction method based
2 2 [24 p(s—1)]" on the measurement of displaced projectors.
Pla;s)= 71— ngo Tas—1) Pn(a, 7). (6.10

C. General reconstruction formalism

This method of state reconstruction is sometimes called the From the practical point of view, the reconstruction pro-
photon number tomography. cedure consists of two steps. First, the system described by
As an example of measurements with improperly transthe density matriy is displaced in the phase space:
formed projectors, we mention the optical homodyne tomog- _
raphy[G%,GJq in which one measureg the probab)illity distri-g p—p(Q)=T HQ)pT(Q), QeX (6.17)
bution P(x, 6) for the rotated field quadrature
The second step is the measurement of the probability to find

X,=X COS 6+ p sin 6=U(8)xUT(§). (6.1) the(displaced system in a quantum stafe),

The field quadratures andp can be viewed as the scaled Pu(Q)=(ulp(Q)]u). (6.18
position and momentum operators of the harmonic oscillator,

with a=2"Y4x+ip), andU(¢) =exp(da'a) is the rotation Repeating this procedure for a large number of phase-space
operator(known in optics as the phase shiften the phase points ), one can, in principle, determine the function
plane.U(8) represents an element of the @P-U(1) sub-  p,(Q).
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1. More about displaced projectors Weyl group and fors=0, the general expressidb.25 re-

The information contained in the functiop,(Q) is  duces to the known resil105]

enough for the reconstruction of the density matrix. It is

2 1
convenient to analyze this problem with the help of the dis- ZJ da / /
placed projector, Pu(a)= | T Wlata?)Wy(a’). (6.2
TL(Q)=T(Q)|uy(u|T~(Q), (6.19

If the quantum ruler statRi)=| ) is the reference state

whose expectation value gives the measured fungtjgfy), ~ ©f the coherent-state basis, then

as in Eq.(6.1). The displaced projector satisfies a number of
useful properties.
(i) It is a self-adjoint operator,

rlQ)=ryQ) vaex. (6.20

F%(Q)=|Q><Q|=A(Q;—1) (6.27
is the SW kernel witrs=—1, and

Sincep, () is not only real but also non-negatiiis is p*”O(Q):(le'Q):QP(Q) (6.28

a probability, I' ,() is also a non-negatively defined opera- . ) o
tor. is the Q function. However, except for this coincidence, the
(i) Provided that the statier) is normalizedI',()) is a displaced projectors are not the SW kernels, as they do not

trace-class operator of trace one, and the following standardatisfy the tracing condition. On the other hand, the functions
ization condition holds: p.(Q) differ from the majority of QPDs, as they are positive

on the whole phase spa¢ehich reflects the fact that they

are measurable probabilitiedJsually the statéu) is chosen
de“(mru(ﬂ): L. 62D o belong to some complete orthonormal bdsis, )} which
consists of energy eigenstates of a natural Hamiltonian of the
This implies the normalization qf,(Q), physical systente.g., the Fock basis for a harmonic oscilla-

tor or J, eigenstates for spinThen there exists the relation
| du@pyo-1 6.2
2 py, (D=1, (6.29
(iii) The displaced projector is manifestly covariant,
which follows from the completeness of the basis.

T(QT()T(g™H=Tu(g-Q). (6.23
Consequently, ip,(2) corresponds to the initial density 2. Entropy
matrix p, the functionp,(g-{2) will correspond to the trans- A useful quantity for analyzing statistical properties of the
formed density matrixp(g)=T(g )pT(9). system(in particular, the amount of noisés the entropy. A

Denoting the density matrix of the quantum ruler state byphase-space version of the entropy can be introduced in the
pu (which is [u){u| for a pure statg the operational phase- following way:
space probability distribution reads

Pu(Q) =T pT(Q)p, T~ HD)]. (6.29 Su=-— fxdu(ﬂ)pu(ﬂ)lnpu(ﬂ)- (6.30
Using the inverse Weyl rulé2.7) for the density matrixp,
we obtain For |u)= o), Eq.(6.30 gives
pu(ﬂ)=deu(ﬂ’)P(Q’:S)Tr[T*(Q) S:—fXdM(Q)Qp(Q)InQP(Q), (6.31)

XA(Q;=5)T(Q)pyl, o _—

which is a generalization of the Wehrl entro@08] that was
whereP(Q;s)=F ,(Q;s) is the SW symbol op. Now, the  defined originally on the flat phase space of the Weyl-
covariance property2.89 can be used to obtain the follow- Heisenberg group. The entrog$.30 can be useful in the
ing expression: reconstruction procedure, as it is a sensitive measure of the
noise added to the system during the displacement and de-
tection processes. A similar situation exists also in the field
of signal processin109]. There|u) represents the test sig-
nal andp,(€) is a distribution on the time-frequency space.
whereP,((;s) is the SW symbol op,,. Therefore the op- One can produce various test signfy and compute the
erational phase-space probability distributim(2) is given  corresponding entropieS,. Choosing|u) that minimizes
by a convolution of the two QPDs representing the quantunthe entropy, one obtains the optimal form of pattern analysis
state of the system and the quantum ruler state of the medin particular, this method allows one to achieve data com-
surement apparatus. In the particular case of the Heisenbergression.

pum):fxdum')P(Q-Q';s)Pum';—s>, (6.25
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3. Harmonic expansions

A useful expression fop,({2) can be derived in the fol-
lowing way. Using the expansion

p=2 R,D,, R,=Tr(pD)), (6.32

we obtain

Pu(Q) =2 R(u|T"1(Q)D,T(Q)|u)

=2 R,2 T,,(Q)XuD, |u). (633

Expandingp,(€2) in the basis of harmonic functions,

pu(Q)=2 YR,Y,(Q),

14

(6.39

we identify the coefficients") by means of the relation

VY, (D) =(lT(Q 1D, T(Q)|u).  (6.35
Formally, we can write
(uy_ _—1/2 ’ *
=7, | duiiau)vi@)
XY ,(Q-Q)[(ulQ")?, (6.3

but actually Eq(6.35 is more convenient for calculating the

coefficientsx(" .
Equation(6.34 for the functionsp,({)) corresponds to
the expansion

(@)= «“Yy*)D,=> «"Y,(Q)D!
(6.37
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Formally, we can also represent the density matrix by means
of an integral transform of the displaced projector:

p=J du(Q)r (Q)Iy(Q). (6.41)
X

This relation gives the density matrix in terms of a phase-
space functiorr ,(Q1), and in this sense it is the inverse of
Eq. (6.1). The functionr,(Q) is defined by its harmonic
expansion,

r(Q)=2 [«W7R,Y,(Q). (6.42

We also obtain the following relation between the functions
ry(€2) andp,(€2),

pu(9)=fxdu(ﬂ’)ru(ﬂ’)Tf[Fu(Q)Tu(Q’)],
(6.43

where

Tr [Ty( Q)T ,(Q)]=KulT"H Q) TQ)|v)
=2 IRV Q) Y.

(6.49

Certainly, the most convenient way for deducing the density
matrix from the measured functiomg({2) is by calculating
the coefficientsk, via Eq. (6.40.

The measured functiong,({)) can be used also for the
reconstruction of various QPDs which represent the density
matrix in the phase-space formulation. According to the gen-
eral expressiori4.1), the QPDs for the density matrix are
given by the harmonic expansion

F (Q;9)=P(Q;9)=2 7,%R,Y,(Q). (6.4

for the displaced projectors. It follows from the properties of

I',(Q) that the coefficients!" are positive and possess the Therefore one can just use the coefficieRiscalculated via
same invariance properties ag. Using the general result Eq.(6.40. On the other hand, E¢4.6) can be used to obtain

(4.6), we obtain the relation between the functiomg(2)

the relation between the QPD®(();s) and the measured

andp,(£2), corresponding to different quantum ruler statesfunctionsp,(Q):

|u) and|v),
pum):fxdmn')me,n')pvm'), 638

! KE}U) * !
Ku(Q,0)=2 =Y, (Q)Y5(Q),
v K

14

(6.39

4. Deducing the density matrix and quasiprobabilities

Knowledge of the phase-space functipf({2) allows us
to reconstruct the density matrix in a simple way:

RV=[Ki”]—lfxdmmpu(mvt(m. (6.40

P(Q;s)= fxdmn')KJS(n,n')pu(Q'), (6.46

)= [ du(0)KH0,0)PO1),  (6.47
where the transformation kernels are
Koo 2,0)=2 [« 757151y ,(Q)Y5(Q). (6.48

It can be easily shown tha¢ (Q,Q")=P,(Q"1.Q’;—5)
whereP,(€);s) is the SW symbol ofu){u|, so Eq.(6.47) is
consistent with the relatio(6.25.
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As was already mentioned, if the stats is the reference
state |¢,) of the coherent-state basis, thehi,, (Q2)
=|Q){(Q] and the measured functiqn, (Q) coincides with
the functionQ,(Q)=P({;—1). Comparing the harmonic
expansiong6.34) and(6.45 for the casdu) =), we find
the following relation:

(o) _ _112
K, 0= 7.

(6.49
In this case we also obtain that the functi%(ﬂ) of Eq.
(6.42) is just theP function,

() =P,(Q)=P(Q;1). (6.50
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| . 1
<J!M|D|m'|11/*l’>: m(L/‘L’Lm |]11U“>1 (656)

vanishes unless’ =0, Eg. (6.54) reads

(1) B 21+1 0 o
Kl& Ylm( 01¢)_ ?DOm(OIG!QB)“ 'lu”l !O“ ,,u)

Taking into account the fact that

M _ 4
DOm(a,,B,'y)— mYlm(Biy)y

we finally obtain that thec coefficients are independent of

(6.57

Note that in the case of the Heisenberg-Weyl group one cathe indexm:

also calculate the QPDs using the form(fe8).

5. Examples

We see that the mathematical procedure of the reconstruc-

tion of the density matrixyp and its QPDs(£};s) from the
measured probability () actually consists of the simple

transformation(6.40. The mathematical tools one needs for

this procedure are the harmonic functioxis({2) and the
invariant coefficients-, and «<{") . In what follows we com-
pute the explicit form of«{") for simple but instructive ex-
amples of the Heisenberg-Weyl gro(with |u) being a Fock
state and the S(R) group (with |u) being aJ, eigenstate

In the case of the Heisenberg-Weyl group, we consider

the probabilityp,(«) to find the displaced initial state in the
Fock stateln) (n=0,1,2...). Then Eq.(6.39 can be re-
written in the form

<M(€)Y(£,a)=(n|D(— @)D (£)D(a)|n). (6.5))
Using Eq.(5.9), we obtain
D(=a)D(§)D(a)=Y(§,a)D(§). (6.52

Therefore thec coefficients are given by
k(&) =(n[D(&)|n)=exp(— 3]€*)Ly(|€%). (6.53

Of course, fom=0 one gets<(9(&)=[ (&)1

In the case of the S@) group, we consider the probabil-
ity p,(6,¢) to find the d|splaced initial state in tlke eigen-
state|j,u) (u=j,j— .,—]). Then Eq.(6.39 takes the
form

Im "Im\Y, - ' ) Im ’ , .
Kl i 0,6) = \| 1419720, )Dim(6, &) 12)

(6.59

Using the parametrizatiotb.14) for g(#,$) and the trans-
formation rule(5.19, we can write

“X(6,4)D1n9(6,) = 2 DY) (0,0,4)D i -
m'=-1
(6.55

Since the matrix element of the tensor operator,

K= (31,00 ). (6.59

For u=], one findsk’= 72, Indeed, according to the
def|n|t|on (5.15 of the SL(Z) coherent states, the function
Q(8,4)={(j,n|p|j,n) coincides with the probability
p;( 6, ) to find the displaced system in the highest spin state
|j,j). Itis not difficult to see that the probability_;(6, #)

to find the displaced system in the lowest spin stpte j) is
equal to Q(#+m,¢). As an application of the relation
(6.46), we also obtain the following expression for the (8
Wigner function in terms of the measured probabipty(n),

(4 ) l(2I +1)

W(n)= E dn’Py(n-n")p,(n"),

(6.59

whereP,(x) are the Legendre polynomials.

D. Informational completeness and unsharp measurements

When the question of the state reconstruction arises, it is
understood that the set of measurements one makes on an
ensemble of identically prepared systems should give com-
plete information about the quantum state. In particular, if
one measures expectation values of some observables, it is
natural to ask how many such observables are needed to
characterize completely the state of the system. In this sense
a set of observables, whose expectation values are sufficient
to reconstruct the quantum stdi@r, equivalently, to distin-
guish between different stajesan be considered as infor-
mationally complete. A formal definition is as folloW/61]:

A set of bounded operato={A} onH is said to be infor-
mationally complete if for density matricgsp’ the equality
of expectation values,

VAed, (6.60

Tr(pA)=Tr(p'A)
impliesp=p’.

The informational completeness of positive operator-
valued measures covariant with respect to Heisenberg-Weyl,
affine, and Galilei groups was recently discussed in Ref.
[63]. This subject was showf63] to be of importance not
only in quantum mechanics but also in signal processing
where a problem exists of extracting information from non-
stationary signals and images. Another interesting feature is



PRA 59 PHASE-SPACE FORMULATION OF QUANTM . .. 985

that both in quantum mechanics and in signal processing this self-adjoint wherf is real. In particular, leB be a region

phase-space formulation is of great importance for approachimore specifically, a Borel sein X, with the characteristic

ing this kind of problems. function yg(Q) that equals 1 fo) e B and 0 otherwise.
It would be interesting to analyze the results of the presentaking f(Q) = xg({2), one obtains

paper from the point of view of informational completeness.

First, it is evident from the expansion
2,(8)= | du@)r ). (6.64

p=2 Tr(pD})D, (6.62)

g It is not difficult to see that the informational completeness
that the orthonormal s¢D,} of the tensor operators is in- Of the sefI'y(©2)|Q e X} of displaced projectors implies the
formationally ~ complete.  Correspondingly, the setinformational ~completeness of the sef{Z,(B)|B
{A(Q;s)|Q e X} of the SW kernels for eachis also infor- € Borel sets o} of localization operators. Therefore, in the

mationally complete. This fact is reflected by the inversecase of realistic unsharp measurements, the localization op-
Weyl rule written as erators may be conveniently used for analysis and recon-

struction of quantum states or electronic signals and images.

o= [ au@Tipr @@ 5. 662
X VII. CONCLUSIONS

In other words, the density matrix can be uniquely recon- In the present paper we propose a simple algorithm for
structed from its sparametrized QPD P({;s)  constructing the SW kernels which implement the linear
=Tr [pA(Q;s)]. From the practical point of view, the im- bijective mapping between Hilbert-space operators and
portant thing is the informational completeness of the sephase-space functions for physical systems possessing Lie-
{T,(Q)]Q e X} of the displaced projectors for any) e H. group symmetries. The constructed kernels are manifestly
This fact was formally proved in Ref63]. Here, we pre- covariant under the action of the corresponding dynamical
sented a simple algorithiibased on the method of harmonic symmetry group and satisfy the tracing condition which en-
expansioi for the reconstruction of the density matrix from sures that quantum expectations can be represented by
the measurable probabilitigs,(Q)=Tr[pl',(Q)]. This re- statistical-like averages over the phase space. Adding the
construction procedure clearly implies the informationalnoncommutative twisted product that equips phase-space
completeness of the séF',(Q)[Q e X}. functions with the algebraic structure of quantum operators,
One of the useful features of the method of displacectn autonomous phase-space formulation of quantum me-
projectors is the ability to take into account in a simple waychanics is developed.
the unsharpness of a realistic measurement. Of course, it is It turns out that the concept of phase space naturally
impossible in practice to make a completely accurate disemerges in the majority of schemes proposed for the recon-
placement to a specified poifl on the phase space. For struction of quantum states as well as in the standard meth-
example, one should take into account the phase and inte@ds of signal analysis. In particular, we focus on the method
sity fluctuations of a classical microwave source that disbased on measurements of displaced projectors and develop
places the quantum state of the radiation field in a cavity, oits general group-theoretic description. We do so by applying
instabilities of a classical driving field that displaces the mo-the same technique of harmonic expansions on the phase
tional state of a trapped ion. Similarly, the so-called coarsgpace that was used for the construction of the SW kernels.
graining problem arises in radar analysis due to frequencyhe problem of the state reconstruction is also approached
instabilities of the test signal or uncertainties in timing of using the concept of informational completeness, and the
signal initiation. As a result, the probabilitigs,(Q) should  role of localization operators in describing realistic measure-
be integrated over the variation range. This yields the expedhents is discussed.
tation value of the localization operator defined[6%]
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