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Localization of events in space-time
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The present paper deals with the quantum coordinates of an event in space-time, specified by a quantum
object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding
spectral projection-valued measure. We describe them by means of a positive-operatofR@uetheasure
in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Pajnoape
This POV measure determines the probability that a measurement of the coordinates of the event gives results
belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the
one-particle states, which cannot define any event. We give a general expression for the” Roveaaat
POV measures. We define the baricentric events, which lie on the world line of the center of mass, and we find
a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit
the determination of the coordinates with an arbitrary accurfg@3050-294{®@9)06001-1

PACS numbeg(s): 03.65.Bz, 03.30tp, 02.20—a

I. INTRODUCTION to Pauli[4] concerning the time observable namely the
quantity obtained by reading a quantum clock. It satisfies the
The aim of the present paper is to study how a physicatommutation relation
guantum system can defif@ith some indeterminationa
point in Minkowski space-time, namely, an event. This )
study, even if it has a rather formal character, may help to ot H.TI=1, (4)
clarify the operational meaning of the concept of event,

namely its definition in terms of observables. Some resu“?/vheret is the usual time parameter. measured by a classical
about this problem have been given[il. The most natural P ’ y

xternal clock. IfT is self-adjoint, this equation contradicts

approach is to consider the space-time coordinates of th S
event as quantum observables described by the Hermiti r:n:at?élgwt the spectrum of the Hamiltonibinis bounded

operatorsX®, «=0,1,2,3. Operators of this kind have been . 0 - . .
defined in Ref[2] in the case of a relativistic system of zero Our coq@nat@( IS s_trlctly rele}ted to th? reading of a
clock, but it is more similar to a time-of-arrival observable

mass particles, which has a symmetry under dilatations. [5—17], namely the time registered by a classical clock when

If we indicate byP® the self-adjoint operators that de- some event happens, for instance a quantum particle reaches
scribe the components of four-momentum, it is natural to_ . t happens, 14 np
: . : . a given point or two quantum particles collide. If we con-
assume that, in a suitable dense domain of the Hilbert space L
T 00._ Sider a quantum clock, the time-independent observable

H, we have i=c=1,9g"=1)

[P, XF]=ig®®, (1) XO0=t-T (5)

. L . , is the timet measured by a classical clock when the quantum

or, in the translation invariant domain where the operators . = e . . .

X< are defined clock givesT=0, and |t_|s a typical _t|me_-of-arr|val opserv-
' able. Its commutator with the Hamiltonia=P° is given

by Eq. (2).

exXp( —ix P XPexp(ix ,P*) = XF +xP. 2 Here we deal with an “indirect” measurement of a time
of arrival, namely the measurement operation can be per-
If the operatomp,X* is self-adjoint, we have formed at any time and we use the equations of motion,
which are supposed to be known. A different and more dif-
exp(ip X% PPexp( —ip X*)=P~+ph (3) ficult problem is the “direct” measurement of a time of ar-

rival, performed by means of operations lasting a long time

and it follows that the joint spectrum of the four-momentumand detecting immediately the event at the time at which it
operatorsP“ is invariant under translations in the direction happens. _ _
of the four-vectop®. Since this joint spectrum is contained ~ The quantum time problem has been discussed by several
in the future conep,X® cannot be self-adjoint. It follows authors, see for example3—-23, besides the ones cited
that the operatorX® cannot have a spectral representation2Pove. A satisfactory solution is obtaing2B—26 by writing
and the statistical interpretation of the corresponding obsen?@ generalized spectral representation
ables requires some particular attention.

The argument given above, discussed by Wighti@nis T q 6
an immediate generalization of a well-known argument due = | td(), 6)
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where 7 is a normalized positive-operator-valu¢@OV) on the world line of the center of mass of the object that
measure on the real line. Sin€as not self-adjoint; cannot  defines them. In Sec. V we give explicit expressions for the
be a projection-valued measufer a different point of view, operatorsX* and we compare our results with those of Ref.

see[7]). The POV measure is not uniquely determined by [2]. In Sec. VI we study the conditions which permit the

the operatorT, but it describes the time observable com-determination of the coordinates of an event with an arbitrary
pletely, since the probability that the result of a time mea-accuracy.

surement is contained in an intendais given by

P()= (7)), ()

Il. TRANSLATION COVARIANT POV MEASURES

Following the ideas introduced above, we consider a POV
measurer(l) on the Minkowski space-tim@. If the nor-
T(l)ZJdT(t), (8)  malized vectorye H describes, in the Heisenberg picture,
' the state of the system that defines the event, the probability

where the normalized vectaf describes the quantum state that the event is found in the Borel seT M is given by

of the clock. —

Observables of this kind have been considered for differ- PO=@rhy). ©
ent purposes by several authd23,27-30. The operator |t is necessary to make clear that we are dealing with “indi-
(1) represents a tesor an effect[31-33, namely a mixed rect” measurements of the coordinates of an event, namely
yes-no observable. If we decompose the real line into a set afe testr(1) is not measured by means of physical operations
nonoverlapping intervals I, ... l,, the operators performed in the space-time regibnFor this reason we do
7(11), ..., 7(1,) represent a multibin test. One can show not require that the operator§l) and~(1’) commute if the
[34,39 that for any multibin test one can find a correspond-regionsl and|’ are spacelike-separated. Actually, it has been
ing measuring instrument, if there are no limitations to theshown[49] that 7(1) cannot be a quasilocal observapig)].
choice of the interaction Hamiltonian. This result legitimatesThe normalization condition
the use of observables defined by POV measures within the
standard formalism of quantum theory. T(M)=1 (10

The aim of the present paper is to apply the POV measure
formalism to the four space-time coordinaé$ of an event means that an event is certainly detected at some point of
measured with respect to a classical reference frame. THepace-time. We shall show that, in general, this is not true for
quantitiesX*,X2,X3 should not be confused with the self- an arbitrary choice of the statg; for instance, the vacuum
adjoint Newton-Wigner coordinates of a partif@36—-3§,  state cannot define any event. Therefore we adopt the weaker
which do not commute with the HamiltoniagP®, since the —assumption
position of the particle changes with time. The coordinates of
an event are clearly time-independent.

A particular need of a clear treatment of the quantum.l_hen we set
properties of the space-time coordinates arises when one
considers the limitations to the measurements of time and
length, which appear when one tries to merge quantum X“=J xed7(x). (12
theory, relativity, and gravitatiof89—46. From this point of M
view, our treatment in the absence of gravitation is just a_. -
preliminary but necessary exercise. In f%\ct, we havejto r:_Sm_ce t'hese operators cannot be self-adjaintannot be a
member that in general relativity the physical meaning of thé)rOJectlon—valued measure.

coordinates is a delicate problem even in the absence of We indicate by the universal covering of the proper
quantum effect§47,48. orthochronous PoincagroupP. For its elements we use the

In Sec. Il we describe the POV measures in thenotation §,a), wherex is a four-vector which describes a
Minkowski space-time which are covariant with respect totranslation andae SL(2,C). A(a) is the 4x4 Lorentz ma-
the space-time translations. In Sec. Il we impose the Pointrix corresponding ta. If U(x,a) is the unitary representa-
care covariance condition and we give an explicit generaltion of P that acts on the spade, we require that
formula for these POV measures. We also discuss the con-
straint which appears in the presence of a symmetry under Ut (x,a)A(a)l +x]U(x,a)=7(1). (13
dilatations. We shall not consider in this paper the conditions_ )
imposed by the covariance under space and time reflection§his means that the POV measurand the representatids
when the theory considered has these symmetries. of P form a “system of covariance'[51]. If 7 were a

It is expected that, given a suitable physical object, theprojection-valued measure, we should have a “system of im-
choice of the POV measure is not uniquely determined. Irprimitivity” [52]. Of course, the covariance assumption is
fact there is a large arbitrariness in the choice of the convenvalid if no external objects intervene in the definition of the
tions which define the event in terms of the properties anevent.
the motion of the object. It follows that it is interesting to It is clear that the covariance and the boundedness condi-
study more restricted classes of POV measures obtained hipns(11) do not determine the POV measureniquely. For
imposing some further constraints. In Sec. IV we discuss thénstance, ifK is a unitary operator that commutes with all the
“baricentric” events, which lie, exactly or approximately, operatordJ(x,a), the POV measure

0<r(M)<1. (12)
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(1) =K'7(HK (14 from 7(M). We also see that the localization of an event in
a bounded regioh cannot be considered as a “property” of
satisfies the required conditions as wellasThe covariance e System. o ,
The problem of finding a general representation for a co-

condition(13) is satisfied even iK is not unitary. ! |
variant POV measure has been studied by several authors

In the rest of the present section we consider 8[55 : .
d-dimensional space-time and we use only the covariance’1:54—51. Here we give, for easier reference, a self-

with respect to the space-time translation group, which Caﬁontained treatment of ?he partigular case in which we are
be written in the form interested. In the meantime, we introduce the notations nec-

essary for further developments.

i N ) N The Hilbert spacé of the theory is given by the direct
exp —iX, P*) (1 +x)expix P =7(l). (15 integral[52,58

From this equation and E¢12) we obtain ®
H= [ H09duch), @29

exp —ix, P*)XPexpix,PY) =XP+xPr(M), (16)
where u is a measure in thal-dimensional momentum

which coincides with Eq(2) if the measurer is normalized. ~ SPace. If we choose suitable bases in the spaf@, its
If we also assume that the momentum spectrum is con€/€éments are described by the wave functigpék), defined
in regions of momentum space that can dependrorwe

adopt the convention that the wave functions vanish outside
the region in which they are defined. The norm is given by

tained in the closed future cong as a consequence of Eq.
(15 we obtain the following result.
Proposition 1.If | C M is a nonempty open set, we have

(1)>0. a7 = | S 10 Pauco @

Moreover, the equality The measurgw can be decomposdd9] into a partu’

absolutely continuous with respect to the Lebesgue measure

(@, 7(1)$)=0 (18 and a partw” which has a support with vanishing Lebesgue
implies that n_1t¢asure. The Hilbert space has the corresponding decompo-
sition
(, 7(M)¢)=0. (19

H=H'oH". (26)
If 7(1)=0, we also have(l +x)=0 for any choice of the
vector x and thereforer(M) =0, in contradiction with EQ. \we can rescale the wave functiofmutside the support of
(12). .In order to prove the seconq part Bfoposition 1 we «") and replace the measudg.’ by the equivalent measure
consider two open sets and|” with the property fs(k)d%, wherefg(k) is the characteristic function of the
supportSof w'. With our convention on the wave functions,

el (20 this factor can be omitted. If we indicate By the projection
Then we have operator on the subspaé¢’, we have
(i, 7(1" +X) )= (exp( —iX  ,P*) ¢, 7(1 ") exp( —iX ,P%) ¢) ,
= S lyyholak @)
=0 for xel”, (21 v
namely We consider the dense translation invariant linear space
_ DC'H composed of the wave functions in momentum space
[7(1")]Y%exp(—ix,P*) =0 for xel”.  (22)  which are infinitely differentiable, fast decreasing, and not

) o o ) vanishing only for a finite set of values of the index They
This expression is the limit of a vector-valued function ana-naye the property

lytic in the tube defined by Ime —V, whereV is the open-

future cone. An application of the edge-of-the-wedge theo-

rem [53] shows that this analytic function vanishes in the ||1,0||r2=f D (1+ko) Y (k)| 2du(k) <o, r=0.1,...,
whole tube and it follows that a 29)

(W, 7(1" +x))=0 (23 L :
which implies that~(P) ¢ H for any choice of the polyno-
for any real value ofk. The announced result follows from mial functionF(P) of the momentum operators. We define
the additivity property of the measure. the topology ofD by means of this family of norms.
From Proposition 1 we obtain another proof that can- The convolution of the numerical measute, 7(x) ¢)
not be a projection-valued measure. In fact| ias a non-  with the functiong(x), continuous and with compact sup-
empty interior,7(1) cannot be a projection operator different port, is a function of given by
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(v, [ s yyariyal
= ( exp — ixaP“)w,f g(—y)dz(y)

xexq—ixaP")¢). (29
Its partial derivatives are given by sums of similar expres
sions in which the vectorg and ¢ are replaced by vectors of
the kind F(P)y andF'(P) ¢, whereF(P) andF'(P) are
polynomials. Ifi, ¢ € D, we see that the convolution defined
above is infinitely differentiable for any choice of the con-
tinuous functiong. A general theorem concerning distribu-
tions[60] permits one to draw the following conclusion.
Proposition 2.If ,¢ e D, we can write

(i, 7(1) )= J. p(,,x)d%, (30

wherep(i, ¢,X) in an infinitely differentiable function ox.
In particular,

O fl p(x)d%, (3D
where
p(h,X)=p(4h,,x)=0. (32
If we introduce the set
I(x)={yeM: yo<xO yi<xi, ..., yd-t<xd=1y,
(33

we have

d

J
p(h,d.x)= m(lﬁ, (1(x))¢)

=W(exn—ixapa)w, 7(1(0))
X exp(—iX,P%) ). (34)
A simple calculation gives
|p(4. .| <2%ldl| Bl (35

and we see thai(#, ¢,x) for fixed values ofx is a continu-
ous function ofy, ¢ € D.
From Egs.(11) and(15) we obtain

| ptxatx=lur, 39
pexpliy .P“) ¢, expliy .P%) d,X+y)=p(4, b, X).
37

Sincep(i, ¢,X) is a continuous function of, it has a well-
defined value ax=0. If p(¢,¢,0) is given, we set
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p(h,¢,X) = p(exp(—ix,P*) i, exd —ix,P%) ¢,0)
(39

and the covariance conditid37) is satisfied.

Note thatp(i,¢,0) is a continuous sesquilinear form on
the spaceD. It defines a scalar product in the quotient space
DID, and on its completiofi, which is a Hilbert space. We
have indicated byD, the subspace db defined by the con-
dition p(,0)=0. This construction also defines a linear op-

eratorh: D—H and we have

p(4,¢,0)=(hy,he),

where on the right-hand side there is the scalar product of the
Hilbert spaceH. The operatoh is continuous, since we have

(39

Ihyll<2¥ gl 4. (40)

We introduce a basis in the spakeand we represent its
element¥ by means of its component® .. The norm is
given by

||‘1’H2=27 w2 (41)

From Eq.(40), using the Riesz theorem, we see that we can
write

W= [0, 2 3 K (R (0 du (k)
(42)
where the functionK (k) are locally square integrable

with respect to the measuje.
From Egs.(38) and(39) we have

p(¢,x>=§ 1P (x)[2, (43)

where

W (x)=hexp —ix, P i, (44)

namely

v, (x)= (ZW)_d/ZJ 2 Kya(K)exp(—ix k) ¢, (K)du(k).
(45

From Egs.(36) and(43), we obtain

[ S 1voorasx=tor 2

and we see that the functions,(x) are square integrable.
We also see that Eq44) defines a bounded linear mapping
h:D—H®L,(M), which can be extended by continuity to
the whole spacé. It follows that for all the vectorsye H
the POV measure can be defined by Eq31), where the
probability densityp(¢,x) is an integrable functioin gen-
eral not continuous
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The square integrable functiods,(x) can be represented tering states, which can be described in terms of two or more
as Fourier transforms of square integrable functiémgk) in ~ INcoming or outgoing particles. The description #f in
momentum space, namely we have Ferms of e}symp'gotlc .stat.es |s.phyS|caIIy mterestmg, b_ecause

it deals with a situation in which the space-time position of
~ an event, for instance a collision, is measured by means of
‘I’y(X)=(27T)_d/2f W, (k)exp(—ixk*)d%. (47  operations performed in a faraway region, as it happens, for
instance, in the famous conceptual position measurement by
By comparing Eqs(45) and (47) we obtain the following means of a microscope, discussed by Heisenbé2j and
equality between measures: reconsidered by Meaf39] in the presence of the gravita-
tional interaction. This point of view could also provide the

~ starting point for the introduction of space-time concepts in a
; Ky ¢, (K)dpa(k) =W, (k) dk. (48) pure S'matrix theory.
Since this measure vanishes on the sets of zero Lebesgue 1. POlNCARE, COVARIANT POV MEASURES
measure, we can drop the singular paft of u and keep
only the absolutely continuous part. Then we can write The covariance conditiofiL3) with respect to the proper
orthochronous Poincargroup introduces some new con-
_ —dp a d straints. It is easy to show that the linear space invariant
¥y (x)=(2m) f 2 Kyo(K)exp(—ix k) ¢,(k)d k. under the Poincareansformations and i#, e D we have
(49

p(U(y, @), U(y,a)¢,A(@)x+y)=p(4,¢,x). (55
By substitution into Eq(46), we obtain the condition
Since the translation covariance has already been exploited,

2 . .. .
it is sufficient to impose that
f S |2 KoKd,(k)| dk=[y2, (50 P
Y o
p(U(02)#,U(0a)¢,0)=p(4,,0). (56)
which is equivalent to the following condition valid for al-

most all the values oke S: It follows that U(0,a) defines a unitary representation of

) SL(2,0) in the quotient spac®/ D, and in its completior.

> Ko(kc,| <2 e, |2 (51  We indicate this representation ly(a). The operatoh is

P o an intertwining operator, namely we have

This formula means that the matricés, (k) represent
bounded operator (k): H(k)— H with [|[K(k)|<1.
If the subspacét” is not reduced to zero, the normaliza-  |n order to proceed, we have to examine the representa-

tion condition(10) cannot be satisfied, but we can CO”SidertionsU(x,a) andU(a) with more detail. We consider again
the weaker condition the cased=4. We remark that the subspat# is invariant
HM)=P’ (52) under the representatidh(x,a) and we indicate by’ (x,a)

' the restriction ofU(x,a) to H'. We decompose this repre-
whereP’ is the projection operator on the subspatede-  Sentation into a dirgct integral of irreducible unitary repre-
fined by Eq.(27). If we impose this condition we obtain sentationgIURs) of P [63]. Of course, only positive-energy

representations appear in this decomposition. Since the four-
2 Koo (KK o (K) = 8, (53 momentum spectrum is absqlutely continuo_us, we can d@s_re-
” gard zero-mass representations and consider only positive-
mass IURs, which are labeled by the masand the spir.
This equation means that the operatii(k) are isometric. The Hilbert spacé{’ is decomposed into a direct integral
In conclusion we have the following. of spaces in which IURs oP operate. A vectowye H' is
Proposition 3. The most general translation covariant gescribed by a wave function of the kinig};m(k), where the
bounded POV measure is given by Egs.(31), (43), and  jndex o labels the spaces in which equivalent IURs operate.
(49), where the quantitiek, (k) satisfy the conditio51)  For instance, in a two-particle state describes the center-
and, if we impose the normalization condititb?), also Eq.  of-mass helicitie§64]. It is not necessary to specify the mass
(53). We have w, since it is a function ok. The norm is given by

(=0 if peH" (54)

U(a)h=hU(0.). (57)

= [ 3 1umtiola 8

Note that ford=1 these results apply to a time-of-arrival
observable. )
In an asymptotically complet¢53,61] theory without WhereV is the open future cone. ~
massless particles, the subspatecontains the vacuum and For fixed o, u, andj, the groupP acts in the way de-
the one-particle states. It is physically clear that those statescribed by Wignef63]. We choose for each four-momentum
cannot individuate an event. The subspafecontains scat- keV an element, e SL(2,C) with the property
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k=A : =(,0,0,0, w=(kk*¥? - .
(ak)q('u) Q(M) (M ) # ( ) (59) [U(a)\p]ychn:E D|'\r/|1|'n'(a)q,chl’n’- (66)
1'n’

and we indicate b)Rj (u) the (2 +1)-dimensional IUR

mm’

Now we have to adapt the formulas found in the preced-
of SU(2). Then we have

ing section to the description given above of the spdgés

_ and7. In the first case, we have only to replace the index

[U'(x,a) z//]ajm(k)zexp(ikax“)z RJmm,(u)zjx(,jm,(k’), by the set of indice$o,j,m}, as we have done in replacing
m’ Eqg. (25 by Eqg.(58). In the second case, we have to replace

€0 the index v by the set of indices{y,l,n}, where y
where ={v,c,M}. Sincec is a continuous parameter, the sum over
v has to be replaced by an integral with respect to the mea-
k'=A(a bk, u=ak_laak, cSU2). (61) suredw(7y), which also implies a sum over the indicesand
M. In this way, for example, we pass from Ed.l) to Eq.
(65).

In order to describe the representatidn we consider its
direct integral decomposition into IURs of SL(3, Their
matrix eIementsDJ!‘fan,m,(a) are treated in Refd.65—68§.
There are two series of IURs: the principal series with [hlr//]'yln:\l,yln:(z'ﬂ)izf > Koinaim(K) ¥ajm(K) d*k.
imaginary andM integral or half-integral, and the supple- Veim 67)
mentary series with-1<c<1 andM =0. The representa-
tions DM andD ™~ are unitarily equivalent. One should From the intertwining property57) we obtain
not forget the trivial one-dimensional representation. Since
the symbolD®*? does not appear in the list given above, we Me
use it to indicate the one-dimensional representation. It has > Dinin (@ Kemirn ojm(K")
only the matrix elemenD5;5(a)=1. This convention is 'n’
partially justified by continuity arguments. |

The restriction of these representations to the subgroup :g KueMinaim (K)Rey (1), (68)

SU(2) is given by

By means of these substitutions, E42) takes the form

wherek’ andu are given by Eq(61). If we seta=aka;,l,

Mc
D we getu=1 and, using the representation property,

jmj!m!

(W= R (1), ueSU2) (62)

mm’

and the possible values of the indigesm are

Mc -1 ’
j=IM[,IM|+1 for c#+1 |/E' O (@ MK searn (k)
- I} [BCEE — 4y n

j=|M|=0 for c==+1, (63 => Dmlc,n,(akfl)KVch,n,gjm(k). (69)
1'n’
m=—j,—j+1,...,. L i . ) .
We see that this is a Lorentz invariant functionkpfwhich

In the following it is understood that all the quantities thatdepends only on.. Then we can write
depend on these indices vanish if these relations are not sat-

isfied. K m()=> DY (a)F emirn’oi 70
We consider the direct integral decomposition of the Hil- vettingjm(K) %f i (B omirmojm( ). (70

bert spacé” into irreducibles spaces labeled by the variable ] . ] ]
y, If we substitute this formula into Eq68), we obtain
~ & | j
H:f H,dw(y). (64) 2 Ry (WF sominroim(#) =2 Fromingims ()R, (W)
r n’ m’
(71)
The variabley stands for the parametecsandM that label

the equivalence classes of IURs of Sl{Rand an indexv
that distinguishes the spaces where equivalent IURs operate.

and from the Schur lemma we obtain

. =Fi .
I is a set of points labeled by these parameters aris a FueMingim(s) =Fiemo(1) 6 6nm (72)
positive measure oh. An element¥ H can be described and in conclusion
by the quantity¥ ,;, =W ,cmin. Its norm is given by
Kemingjm(K) = Difm(2i) Floma( ). (73

4 2:J2 U nl2dw(y) (65)
el Ir’In ¥l 4 By taking this formula into account and by adding the

3 new representation indices, Eq4.3), (49), (51), and (53
and the representatidd acts in the following way: take the form
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L1%x)=L2%x)=L%x)=0. 81
o= [ 3 W n0fdatn, 74 PI=LT0=LT (&
rin If in the center of mass system there is a nonvanishing an-
gular momentum, the position of the center of mass depends
xpyln(x):(zw)ﬂf exp(—ix k%) on the velocity of the observer and it is useful to work in a
v frame in whichP'=P2=P3=0. Then, the square of the spa-
tial distance of the center of mass from the origin, which

XE DMij(ak)Fjw(M)wojm(k)d4k, (75) does not depend on time, is given by
ojm

In

3
E=2 (x9)?=(P) 72X (L*)?
a=1 a

2
HE Flo(uic, do(n=2> [c,]% (76
=(P,P?) 2L, zPPP L. (82
ferya(M)Fjwr(M)dw(Y)Z5agf- (77 We adopt the expression on the right-hand side, which is

Lorentz invariant.

In a quantum theory we have to use the Hermitian opera-
tor corresponding to the quantif§ (there is some problem
of ordering. It is defined on the dense spaPeantroduced in
Sec. Il and, since it is positive, it has a self-adjoint extension
and we can consider a wide class of functidf&). It is
natural to interpret the operat@(= — 7?), as the spectral
projector on the states in which the world line of the center
8{ mass has a distance from the origin larger that0. If we

introduce the Casimir operators &%

In conclusion, we have the following.

Proposition 4.The most general bounded Poincawesa-
riant POV measure on the Minkowski space-time is given
by Egs.(31), (74), and(75), in terms of the measure, and
of the function F'W(,u) satisfying the condition76). The
normalization conditior(52) is equivalent to Eq(77).

It is interesting to remark that the IURs of SL(2,be-
longing to the supplementary series and the one-dimension

representation may appear in the decompositiok afpon
which the construction of the POV measure is based. On the 1

contrary, they do not appear in the direct integral decompo-  Cc,=pP_P® C,=-S,5% sa:_eaﬁvﬁpBL
sition, based on the Plancherel form{ib—67], of the uni- 2
tary representatiok)’(0,a) which acts on the physical Hil-
bert spaceH’. This could not happen if the intertwining
operatorh, which is defined orD, had a unitary extension to
the whole Hilbert spac@{. The existence of this extension, 1
however, does not follow from our assumptions. C3=§LHBL“3, C4=§e“37‘9La5Ly5, (84

If the theory is invariant under the dilatations

yé

(83

and the Casimir operators of SL(2,

/ e have
Yaim(K) = ¥ im(K) = N2 NK), (79 MEH
=_r~-2 _ -1
the covariance under dilatations requires 5=C17Co=(Cy) "Cs. (85
p(4' X)=A"4p( A" x). 79) The Casimir operators have the properties
This condition is equivalent to the requirement that the func- [Cllﬁ]ojm(k)zﬂz‘/’vjm(k)v -
tionsF!, (w) do not depend omp. o 86
7 [Cotr]im(K) = 12 (j + 1) g im(K),
IV. BARICENTRIC EVENTS
[C3¥1,n(0)=(M?+c2=1)¥ ;5(0),
The general formulas given in the preceding sections de- . (87)
scribe a very large class of covariant POV measures. Now [C4¥],n(0)=iMc WV ,(0).

we have to discuss how some physical requirements can be ) ] ) ] )
used to obtain more definite results. We have already disNote that, sinceje D, W ,;(x) is a differentiable function
cussed the normalization requireméb®). Another interest-  Of . Then from Eq.(75) we have
ing condition is to require that the space coordinates
U S . ) _ ~ .
X5X5X c0|0nC|de with the (.:oordlna'tes of thg center of mass[f(=)W¥],,(0)=(2m) 2J 2 DMFm(ak)ija(M)lﬁajm(k)
at the timeX". The formulation of this condition for a quan- Vaojm
tum system is somehow ambiguous and it is useful to discuss o a2 2 4
first the classical relativistic case. We indicate by XTp (1 +1)-M=c™+1])d%.
(88)
L*B(x)=L*F—x*PP+xPPe L*=L*F(0), (80)

According to our interpretation, a POV measurés strictly
the relativistic angular momentum tensor with respect to thearicentric if we have
pointx e M. The world line of the center of mass contains

if we have[69] p(f(E),0)=0, (89
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whenever the functiofivanishes in a neighborhood of zero, V. COORDINATE OPERATORS
namelyf(Z) represents a state in which the world line of
the center of mass does not meet a neighborhood of the orl
gin. It could seem natural to require that the den$&9)
vanishes in the same neighborhood, but this is not permitteﬁ:
by Proposition 1 The condition(89) implies that

Even if the coordinates of an event are described more
completely by the POV measurg it is interesting to con-
ider the(non-self-adjoint operatorsX“ defined by Eq(12).
ote that they can be used to calculate the average values of
the coordinates, but not, in general, to obtain in the usual
way the details of their statistical distributions. As we see
from Eq.(16), these operators are more meaningful when the
normalization condition(10) is satisfied and we consider
only this case. Then we have to disregard the Hilbert sub-
spacet” and consider only states with an absolutely con-
j=M=0, c==1. (91) tinuous four-momentum spectrum._

From Egs.(31) and(74) we obtain

Flmco(#)#0 onlyif j(j+1)=M?~c?+1=0,
(90

namely if

We see that in the definition of, only the trivial one-
dimensional representatioB®! can appear. Moreoverr (i Xa([/):J' X%p(1,x)d*x
must vanish on all the subspacestf which correspond to ’ '
nonvanishing values of the indg¢»xand it cannot be normal-
ized in the sense of E@52), which requires that Eq77) is :f Xaf E I‘I’y|n(x)|2dw(y)d4x. (94)
satisfied for all the values gfand u. I'in

If we consider a system composed of two free spinless
point particles] is the angular momentum in their center of If # €D, from Eq. (75 we have
mass and the condition=0 means that the two particles
meet as closely as is permitted by the indeterminacy rela-
tions; otherwise, the event does not take place. This point of
view is similar to the one discussed in RE8)], which deals

Y on(X)= —i(27r)‘2f exp(—ix k%)
v

with the time of arrival of a single relativistic particle at a d 4
fixed point in three dimensions. However, one can also con- X E ke Injm(ak)F o (1) Y ojm(K))dK.
sider events which correspond, in the classical case, to the oim d

center of mass at the time in which the distance between the (95

two particles takes its minimum value. An event of this kind

happens for arbitrary values of the angular momengum The derivative in the right-hand side is composed of three
In order to define a normalized POV measure which is agerms, which, when substituted into E(4), give rise to

baricentric as possible, we have to minimize, for every valudghree contributions

of j, the expressiof(j+1)—M?—c?+1, namely to impose

the condition (4, X)) =A"+B+C". (96)
Flmeo(#)#0  only if By taking into account the normalization conditiofiv) and
the representation property, after some calculations we ob-
M=j, c=1 for j=0, andc=0 for j>0. (92 tain
Note that in this case the measus€y) is discrete and the
- S, mim(K)
corresponding integral can be replaced by a sum, namely We U'J'm'a,m l i
can write
XFJrUr(M)Fyo(M)¢o'j'm'(k) Yoim(K)d*k do(y),
p(wx=2m | [ explix, k) (o7
X X Difm(adta) B= f pKE X T (1) o im(K) im((K) A%k,
vio'm’ om v oo’ jm
_ (98)
XF (0 )L (1) Y jmr (K')
' — 0
X om(k) d*k' d%, Co=—i f > V(K= (K, (99)
' ' Vaojm Jke
Flo() =Flico(p). (93

where we have introduced the Hermitiam matrices
Note that there is no interference term between states with
differentj. The POV measures which satisfy the condition "
(92) will be called quasibaricentric We shall discuss some Sajcm im(K)=—1i
of their properties in the next sections.

MC

&k

k' =k
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j e Note that the same expression can be obtained for different
T (w)=—i J’FFW'(’“)ﬁ Fl,(w)dw(y). (101  choices of the parameters which define the POV measure
For instance, in the term with'=j=M =0 we can choose

The termC* has a familiar form and it is covariant under anv?/rbltrar{ \t/aIuE ot tvr;/ltthg;tlthaffsg\llng the Opefatom : lized
translations, but not under the Lorentz group. The other € want fo show that it the measure 1S normalize

terms are translation invariant. The terBf* vanishes if and quasibaricentric, the operatofS can be written in a

Fiyg(u) does not depend on, as it necessarily happens in form similar to the one suggested in REZ, namely
dilatation invariant theories. a_ -1 af_ pa ;
X*=(P PY PsL**—P*(D—2i)], 109
In order to compute the quantiti€s00), we use the fol- (PyP7) 1Py ( )] (109

lowing expression for the Wigner boosts: whereL *# are the components of the relativistic angular mo-

A= [ 2 KO ]~ Y2+ KO+ ko0). (102 mentum operator and is given by

Here and in the following the indicass,t take the values D=i
1,2,3. If we seg“=k*—k’* and we disregard quadratic and
higher-order terms in these differences, we have

—uT(w), (110

J
Ke—+2
K

whereT(u) is the matrix defined by Eq4101) which acts on
1 q’k"o" q'o’ kak'q" ~ €'gkSot the indexo of the wave function. In a theory with dilatation

a ag=1- > 2 N 0 symmetry, the ternT(w) vanishes and the operatbrhas a
2 2u 2pP(ptkd) 2u(ptk?) self-adjoint extension which is the generator of the dilata-
N (103  tions defined by Eq(78). In the general casd) is just a
Hermitian operator defined on the domé& It describes the
If the quantitesg” and (" are infinitesimal, we have clock which is necessarily present in the object that defines
the event andi'(u) can be interpreted as a kind of proper
Mc [ time delay.
Dy mim| 17 59 o+ 55 ot... The operators *# are the generators of the Lorentz trans-

- e formations defined by Eq60). They are given by

= 8i’j5m'm_|erﬁj/erT]‘l’m_lngj’m’jm—i_ ceey
J J

(1049 Log=i| k,— —k —)+£ 111

PN ke TP oke) P (

whereMLﬁ,m are the usual angular momentum matrices and

NJT',V'nf,jm are the generators of the SL(2,boosts, which can whereﬂaﬁ are matrices which represent infinitesimal rota-
be found(with different notationsin Ref.[65]. From these tions and act on the index of the wave function. They have

formulas we obtain the form
K’ R R R
S(’\)/]!(’:m’jm(k):_zN;"\An?’jm' (105 Lrs:ErstMt, [or—_[ro—_ Oerstkth_
ut+K
(112
M 1 k'k® M . .
Sy, (k)=——N[S ———————— N3 One can easily verify that Eq109 follows from these for-
rj’m’jm j'm’jm 2 0 j’m’jm
m(u+Kk°) mulas.
sts We have seen that E¢L09 holds for all the normalized
€k Ml (106 quasibaricentric POV measures and it agrees with the for-
w(pn+ko) 13 mrme mula given in Ref[2] if the theory is symmetric under dila-

tations. Since the event lies on the world line of the center of
Now we consider with more detail quasibaricentric mass, the dynamical aspects concern only the clock de-
events, namely we assume that the condit@®) is satisfied. ~ scribed by the operatdd. The other aspects have simply a
Then we have only terms witf =j=M and the value ot kinematical, i.e., group-theoretical, character.
is fixed. From the formulas given in Rg65] we have

‘Mo VI. COORDINATES AS DEFINITE OBSERVABLES
N =0 if Mc=0. (107

jm’jm In this final section we discuss the conditions that permit

Then, by means of Eq77), we obtain the simpler expres- the determination of the coordinates of an event, in suitably
sions chosen states, with an arbitrary precision. Following Ref.
[26], we introduce the following definition.
A%=0, Definition 1. We say that an observable described by a
(109 POV measure is “definite” (or simply thatr is definite if,
€St whenever the sdthas a nonempty interior, we have

Al=— | ———— (MY, (K) Ak
fvmwk")g;mgrm Vi (M) |71 =1. (113
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This means that, with an apropriate choice of the sfate ke RY.
the probability that the result of the observable lied itan
be made as near to 1 as we want.

If the POV measure is translation covariant, it is sufficient ~ This is not a necessary condition, but it shows that the
to impose the conditiorf113 for the setsl which form a  definiteness property depends on the asymptotic behavior of
fundamental system of neighborhoods of the origin. AnotheK ,(K)- )
equivalent condition is to require the existence of a sequence Now we consider a quasibaricentric Poinca@variant

lim r(Ak' Nk’ +K)=1,

A—o

k' eJ, (122

{y™)} of normalized vectors with the property

lim (™, 7(1) pN)=1

A—

(114

whenl is an arbitrary neighborhood of the origin. An equiva-
lent property is

lim p(y™,x)=6%(x) (115

A—oo

in the sense of distribution theory. By means of a Fourier

transformation and of Eq$43) and (49), we can also write

)

Xy N (k)PP (k +kydk =1

lim

N —

E Kyv’(k,)Kyv(k,+k)

!
yoo

(116

always in the sense of distribution theory.
A sufficient condition can be obtained by considering the
particular choice
PN () =", (k) (N k), (117)
where ¢(k) is a test function with compact suppartCV
and

f |p(k)|2d%k=1, (118

> lea(k)?=1. (119

We are assuming that for sufficiently large the sekJ is
contained in the regiofpossibly dependent om) where the
wave functiony (k) is defined.
Then EQq.(116), after a rescaling of the integration vari-
able, takes the form
lim f r(Nk’ AK"+K) (k") (k' + N~ k)d%k =1,
A—oo

(120

where

r(k' K= 2 Ky (K)K,o(K)Cy (K e (k)= 1.
" (120)

From these formulas, we find the following.

Proposition 5.The translation covariant POV measure
described irProposition 3is definite if we can find the mea-
surable functionsc,(k), which satisfy the normalization
condition(119), in such a way that

POV measure of the kind described by Eg3). Since there
is no interference between terms with differ¢gntve try to
satisfy Eq.(116) by means of wave functions which do not
vanish only for a given pair of values of the indices and
for these values of the indices are given by

Poim() =\, (1) p(N k), (123
with the normalization condition€l18) and
> lel(w)?=1. (124

Also in this case we obtain the conditigh22) with

r(k’,k)

=2 Pl (8)FL (D im(a a0 Cor (1)C (1)

VO"(T

(125
If we remark thata, ,=a,, we see that
lim a;kl/a)\k/Jrk: 1. (126)
A—
It follows that
lim (r(A\k’ ,Ak" +K)—r(Ak’ Ak’ +k))=0, (127

Ao

where

PR =T (' )= 2 F () Fh(m)Cq (1)e o).
Vo' o (128)

In conclusion, we have the following sufficient condition.

Proposition 6The Poincareovariant and quasibaricentric
POV measurer described by Eq(93) is definite if we can
find the measurable functiorts.(«), which satisfy the nor-
malization condition(124), in such a way that, for some
value of the indey, the expression defined by Ed.28) has
the property

lim r(p,u+c)=1 (129

p—t

uniformly for ¢ belonging to any bounded interval of the real
line.
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