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Localization of events in space-time

M. Toller
Department of Physics of the University of Trento and INFN, I-38050 Trento, Italy

~Received 13 May 1998!

The present paper deals with the quantum coordinates of an event in space-time, specified by a quantum
object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding
spectral projection-valued measure. We describe them by means of a positive-operator-valued~POV! measure
in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Poincare´ group.
This POV measure determines the probability that a measurement of the coordinates of the event gives results
belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the
one-particle states, which cannot define any event. We give a general expression for the Poincare´ covariant
POV measures. We define the baricentric events, which lie on the world line of the center of mass, and we find
a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit
the determination of the coordinates with an arbitrary accuracy.@S1050-2947~99!06001-1#

PACS number~s!: 03.65.Bz, 03.30.1p, 02.20.2a
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I. INTRODUCTION

The aim of the present paper is to study how a phys
quantum system can define~with some indetermination! a
point in Minkowski space-time, namely, an event. Th
study, even if it has a rather formal character, may help
clarify the operational meaning of the concept of eve
namely its definition in terms of observables. Some res
about this problem have been given in@1#. The most natural
approach is to consider the space-time coordinates of
event as quantum observables described by the Herm
operatorsXa, a50,1,2,3. Operators of this kind have be
defined in Ref.@2# in the case of a relativistic system of ze
mass particles, which has a symmetry under dilatations.

If we indicate byPa the self-adjoint operators that de
scribe the components of four-momentum, it is natural
assume that, in a suitable dense domain of the Hilbert sp
H, we have (\5c51, g0051)

@Pa,Xb#5 igab, ~1!

or, in the translation invariant domain where the operat
Xa are defined,

exp~2 ixaPa!Xbexp~ ixaPa!5Xb1xb. ~2!

If the operatorpaXa is self-adjoint, we have

exp~ ipaXa!Pbexp~2 ipaXa!5Pb1pb ~3!

and it follows that the joint spectrum of the four-momentu
operatorsPa is invariant under translations in the directio
of the four-vectorpa. Since this joint spectrum is containe
in the future cone,paXa cannot be self-adjoint. It follows
that the operatorsXa cannot have a spectral representat
and the statistical interpretation of the corresponding obs
ables requires some particular attention.

The argument given above, discussed by Wightman@3#, is
an immediate generalization of a well-known argument d
PRA 591050-2947/99/59~2!/960~11!/$15.00
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to Pauli @4# concerning the time observableT, namely the
quantity obtained by reading a quantum clock. It satisfies
commutation relation

dT

dt
5 i @H,T#51, ~4!

wheret is the usual time parameter, measured by a class
external clock. IfT is self-adjoint, this equation contradict
the fact that the spectrum of the HamiltonianH is bounded
from below.

Our coordinateX0 is strictly related to the reading of
clock, but it is more similar to a time-of-arrival observab
@5–12#, namely the time registered by a classical clock wh
some event happens, for instance a quantum particle rea
a given point or two quantum particles collide. If we co
sider a quantum clock, the time-independent observable

X05t2T ~5!

is the timet measured by a classical clock when the quant
clock givesT50, and it is a typical time-of-arrival observ
able. Its commutator with the HamiltonianH5P0 is given
by Eq. ~1!.

Here we deal with an ‘‘indirect’’ measurement of a tim
of arrival, namely the measurement operation can be p
formed at any timet and we use the equations of motio
which are supposed to be known. A different and more d
ficult problem is the ‘‘direct’’ measurement of a time of a
rival, performed by means of operations lasting a long ti
and detecting immediately the event at the time at which
happens.

The quantum time problem has been discussed by sev
authors, see for example@13–22#, besides the ones cite
above. A satisfactory solution is obtained@23–26# by writing
a generalized spectral representation

T5E t dt~ t !, ~6!
960 ©1999 The American Physical Society
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PRA 59 961LOCALIZATION OF EVENTS IN SPACE-TIME
where t is a normalized positive-operator-valued~POV!
measure on the real line. SinceT is not self-adjoint,t cannot
be a projection-valued measure~for a different point of view,
see@7#!. The POV measuret is not uniquely determined by
the operatorT, but it describes the time observable com
pletely, since the probability that the result of a time me
surement is contained in an intervalI is given by

P~ I !5„c,t~ I !c…, ~7!

t~ I !5E
I
dt~ t !, ~8!

where the normalized vectorc describes the quantum sta
of the clock.

Observables of this kind have been considered for dif
ent purposes by several authors@23,27–30#. The operator
t(I ) represents a test~or an effect! @31–33#, namely a mixed
yes-no observable. If we decompose the real line into a se
nonoverlapping intervals I 1 , . . . ,I n , the operators
t(I 1), . . . ,t(I n) represent a multibin test. One can sho
@34,35# that for any multibin test one can find a correspon
ing measuring instrument, if there are no limitations to t
choice of the interaction Hamiltonian. This result legitimat
the use of observables defined by POV measures within
standard formalism of quantum theory.

The aim of the present paper is to apply the POV meas
formalism to the four space-time coordinatesXa of an event
measured with respect to a classical reference frame.
quantitiesX1,X2,X3 should not be confused with the sel
adjoint Newton-Wigner coordinates of a particle@3,36–38#,
which do not commute with the HamiltonianPo, since the
position of the particle changes with time. The coordinates
an event are clearly time-independent.

A particular need of a clear treatment of the quant
properties of the space-time coordinates arises when
considers the limitations to the measurements of time
length, which appear when one tries to merge quan
theory, relativity, and gravitation@39–46#. From this point of
view, our treatment in the absence of gravitation is jus
preliminary but necessary exercise. In fact, we have to
member that in general relativity the physical meaning of
coordinates is a delicate problem even in the absenc
quantum effects@47,48#.

In Sec. II we describe the POV measures in t
Minkowski space-time which are covariant with respect
the space-time translations. In Sec. III we impose the P
caré covariance condition and we give an explicit gene
formula for these POV measures. We also discuss the
straint which appears in the presence of a symmetry un
dilatations. We shall not consider in this paper the conditio
imposed by the covariance under space and time reflecti
when the theory considered has these symmetries.

It is expected that, given a suitable physical object,
choice of the POV measure is not uniquely determined
fact there is a large arbitrariness in the choice of the conv
tions which define the event in terms of the properties a
the motion of the object. It follows that it is interesting
study more restricted classes of POV measures obtaine
imposing some further constraints. In Sec. IV we discuss
‘‘baricentric’’ events, which lie, exactly or approximately
-
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on the world line of the center of mass of the object th
defines them. In Sec. V we give explicit expressions for
operatorsXa and we compare our results with those of R
@2#. In Sec. VI we study the conditions which permit th
determination of the coordinates of an event with an arbitr
accuracy.

II. TRANSLATION COVARIANT POV MEASURES

Following the ideas introduced above, we consider a P
measuret(I ) on the Minkowski space-timeM. If the nor-
malized vectorcPH describes, in the Heisenberg pictur
the state of the system that defines the event, the probab
that the event is found in the Borel setI ,M is given by

P~ I !5„c,t~ I !c…. ~9!

It is necessary to make clear that we are dealing with ‘‘in
rect’’ measurements of the coordinates of an event, nam
the testt(I ) is not measured by means of physical operatio
performed in the space-time regionI. For this reason we do
not require that the operatorst(I ) andt(I 8) commute if the
regionsI andI 8 are spacelike-separated. Actually, it has be
shown@49# thatt(I ) cannot be a quasilocal observable@50#.
The normalization condition

t~M!51 ~10!

means that an event is certainly detected at some poin
space-time. We shall show that, in general, this is not true
an arbitrary choice of the statec; for instance, the vacuum
state cannot define any event. Therefore we adopt the we
assumption

0,t~M!<1. ~11!

Then we set

Xa5E
M

xadt~x!. ~12!

Since these operators cannot be self-adjoint,t cannot be a
projection-valued measure.

We indicate byP̃ the universal covering of the prope
orthochronous Poincare´ groupP. For its elements we use th
notation (x,a), wherex is a four-vector which describes
translation andaPSL(2,C). L(a) is the 434 Lorentz ma-
trix corresponding toa. If U(x,a) is the unitary representa
tion of P̃ that acts on the spaceH, we require that

U†~x,a!t@L~a!I 1x#U~x,a!5t~ I !. ~13!

This means that the POV measuret and the representationU
of P̃ form a ‘‘system of covariance’’@51#. If t were a
projection-valued measure, we should have a ‘‘system of
primitivity’’ @52#. Of course, the covariance assumption
valid if no external objects intervene in the definition of th
event.

It is clear that the covariance and the boundedness co
tions~11! do not determine the POV measuret uniquely. For
instance, ifK is a unitary operator that commutes with all th
operatorsU(x,a), the POV measure
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962 PRA 59M. TOLLER
t8~ I !5K†t~ I !K ~14!

satisfies the required conditions as well ast. The covariance
condition ~13! is satisfied even ifK is not unitary.

In the rest of the present section we consider
d-dimensional space-time and we use only the covaria
with respect to the space-time translation group, which
be written in the form

exp~2 ixaPa!t~ I 1x!exp~ ixaPa!5t~ I !. ~15!

From this equation and Eq.~12! we obtain

exp~2 ixaPa!Xbexp~ ixaPa!5Xb1xbt~M!, ~16!

which coincides with Eq.~2! if the measuret is normalized.
If we also assume that the momentum spectrum is c

tained in the closed future coneV̄, as a consequence of E
~15! we obtain the following result.

Proposition 1.If I ,M is a nonempty open set, we hav

t~ I !.0. ~17!

Moreover, the equality

„c,t~ I !c…50 ~18!

implies that

„c,t~M!c…50. ~19!

If t(I )50, we also havet(I 1x)50 for any choice of the
vector x and thereforet(M)50, in contradiction with Eq.
~11!. In order to prove the second part ofProposition 1, we
consider two open setsI 8 and I 9 with the property

I 81I 9,I . ~20!

Then we have

„c,t~ I 81x!c…5„exp~2 ixaPa!c,t~ I 8!exp~2 ixaPa!c…

50 for xPI 9, ~21!

namely

@t~ I 8!#1/2exp~2 ixaPa!c50 for xPI 9. ~22!

This expression is the limit of a vector-valued function an
lytic in the tube defined by ImxP2V, whereV is the open-
future cone. An application of the edge-of-the-wedge th
rem @53# shows that this analytic function vanishes in t
whole tube and it follows that

„c,t~ I 81x!c…50 ~23!

for any real value ofx. The announced result follows from
the additivity property of the measure.

From Proposition 1, we obtain another proof thatt can-
not be a projection-valued measure. In fact, ifI has a non-
empty interior,t(I ) cannot be a projection operator differe
a
e
n

n-

-

-

from t(M). We also see that the localization of an event
a bounded regionI cannot be considered as a ‘‘property’’ o
the system.

The problem of finding a general representation for a
variant POV measure has been studied by several aut
@51,54–57#. Here we give, for easier reference, a se
contained treatment of the particular case in which we
interested. In the meantime, we introduce the notations n
essary for further developments.

The Hilbert spaceH of the theory is given by the direc
integral @52,58#

H5E %

H~k!dm~k!, ~24!

where m is a measure in thed-dimensional momentum
space. If we choose suitable bases in the spacesH(k), its
elements are described by the wave functionscs(k), defined
in regions of momentum space that can depend ons. We
adopt the convention that the wave functions vanish outs
the region in which they are defined. The norm is given

ici25E (
s

ucs~k!u2dm~k!. ~25!

The measurem can be decomposed@59# into a partm8
absolutely continuous with respect to the Lebesgue mea
and a partm9 which has a support with vanishing Lebesg
measure. The Hilbert space has the corresponding decom
sition

H5H8%H9. ~26!

We can rescale the wave functions~outside the support o
m9) and replace the measuredm8 by the equivalent measur
f S(k)ddk, where f S(k) is the characteristic function of th
supportSof m8. With our convention on the wave function
this factor can be omitted. If we indicate byP8 the projection
operator on the subspaceH8, we have

~c,P8c!5E (
s

ucs~k!u2ddk. ~27!

We consider the dense translation invariant linear sp
D,H composed of the wave functions in momentum spa
which are infinitely differentiable, fast decreasing, and n
vanishing only for a finite set of values of the indexs. They
have the property

ici r
25E (

s
u~11k0!rcs~k!u2dm~k!,`, r 50,1, . . . ,

~28!

which implies thatF(P)cPH for any choice of the polyno-
mial functionF(P) of the momentum operators. We defin
the topology ofD by means of this family of norms.

The convolution of the numerical measure„c,t(x)f…

with the functiong(x), continuous and with compact sup
port, is a function ofx given by
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PRA 59 963LOCALIZATION OF EVENTS IN SPACE-TIME
S c,E g~x2y!dt~y!f D
5S exp~2 ixaPa!c,E g~2y!dt~y!

3exp~2 ixaPa!f D . ~29!

Its partial derivatives are given by sums of similar expr
sions in which the vectorsc andf are replaced by vectors o
the kind F(P)c and F8(P)f, whereF(P) and F8(P) are
polynomials. Ifc,fPD, we see that the convolution define
above is infinitely differentiable for any choice of the co
tinuous functiong. A general theorem concerning distribu
tions @60# permits one to draw the following conclusion.

Proposition 2.If c,fPD, we can write

„c,t~ I !f…5E
I
r~c,f,x!ddx, ~30!

wherer(c,f,x) in an infinitely differentiable function ofx.
In particular,

„c,t~ I !c…5E
I
r~c,x!ddx, ~31!

where

r~c,x!5r~c,c,x!>0. ~32!

If we introduce the set

I ~x!5$yPM: y0,x0, y1,x1, . . . ,yd21,xd21%,
~33!

we have

r~c,f,x!5
]d

]x0]x1
•••]xd21

~c,t„I ~x!…f!

5
]d

]x0]x1
•••]xd21

~exp~2 ixaPa!c,t„I ~0!…

3exp~2 ixaPa!f!. ~34!

A simple calculation gives

ur~c,f,x!u<2dicidifid ~35!

and we see thatr(c,f,x) for fixed values ofx is a continu-
ous function ofc,fPD.

From Eqs.~11! and ~15! we obtain

E r~c,x!ddx<ici2, ~36!

r„exp~ iyaPa!c,exp~ iyaPa!f,x1y…5r~c,f,x!.
~37!

Sincer(c,f,x) is a continuous function ofx, it has a well-
defined value atx50. If r(c,f,0) is given, we set
-

r~c,f,x!5r„exp~2 ixaPa!c,exp~2 ixaPa!f,0…
~38!

and the covariance condition~37! is satisfied.
Note thatr(c,f,0) is a continuous sesquilinear form o

the spaceD. It defines a scalar product in the quotient spa
D/D0 and on its completionH̃, which is a Hilbert space. We
have indicated byD0 the subspace ofD defined by the con-
dition r(c,0)50. This construction also defines a linear o
eratorh:D→H̃ and we have

r~c,f,0!5~hc,hf!, ~39!

where on the right-hand side there is the scalar product of
Hilbert spaceH̃. The operatorh is continuous, since we hav

ihci<2d/2icid . ~40!

We introduce a basis in the spaceH̃ and we represent its
elementC by means of its componentsCg . The norm is
given by

iCi25(
g

uCgu2. ~41!

From Eq.~40!, using the Riesz theorem, we see that we c
write

Cg5@hc#g5~2p!2d/2E (
s

Kgs~k!cs~k!dm~k!,

~42!

where the functionsKgs(k) are locally square integrabl
with respect to the measurem.

From Eqs.~38! and ~39! we have

r~c,x!5(
g

uCg~x!u2, ~43!

where

C~x!5h exp~2 ixaPa!c, ~44!

namely

Cg~x!5~2p!2d/2E (
s

Kgs~k!exp~2 ixaka!cs~k!dm~k!.

~45!

From Eqs.~36! and ~43!, we obtain

E (
g

uCg~x!u2ddx<ici2 ~46!

and we see that the functionsCg(x) are square integrable
We also see that Eq.~44! defines a bounded linear mappin
ĥ:D→H̃^ L2(M), which can be extended by continuity t
the whole spaceH. It follows that for all the vectorscPH
the POV measuret can be defined by Eq.~31!, where the
probability densityr(c,x) is an integrable function~in gen-
eral not continuous!.
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964 PRA 59M. TOLLER
The square integrable functionsCg(x) can be represente

as Fourier transforms of square integrable functionsC̃g(k) in
momentum space, namely we have

Cg~x!5~2p!2d/2E C̃g~k!exp~2 ixaka!ddk. ~47!

By comparing Eqs.~45! and ~47! we obtain the following
equality between measures:

(
s

Kgs~k!cs~k!dm~k!5C̃g~k!ddk. ~48!

Since this measure vanishes on the sets of zero Lebe
measure, we can drop the singular partm9 of m and keep
only the absolutely continuous part. Then we can write

Cg~x!5~2p!2d/2E (
s

Kgs~k!exp~2 ixaka!cs~k!ddk.

~49!

By substitution into Eq.~46!, we obtain the condition

E (
g

U(
s

Kgs~k!cs~k!U2

ddk<ici2, ~50!

which is equivalent to the following condition valid for a
most all the values ofkPS:

(
g

U(
s

Kgs~k!csU2

<(
s

ucsu2. ~51!

This formula means that the matricesKgs(k) represent
bounded operatorsK(k):H(k)→H̃ with iK(k)i<1.

If the subspaceH9 is not reduced to zero, the normaliz
tion condition~10! cannot be satisfied, but we can consid
the weaker condition

t~M!5P8, ~52!

whereP8 is the projection operator on the subspaceH8 de-
fined by Eq.~27!. If we impose this condition we obtain

(
g

Kgs~k!Kgs8~k!5dss8 . ~53!

This equation means that the operatorsK(k) are isometric.
In conclusion we have the following.
Proposition 3. The most general translation covaria

bounded POV measuret is given by Eqs.~31!, ~43!, and
~49!, where the quantitiesKgs(k) satisfy the condition~51!
and, if we impose the normalization condition~52!, also Eq.
~53!. We have

t~ I !c50 if cPH9. ~54!

Note that ford51 these results apply to a time-of-arriv
observable.

In an asymptotically complete@53,61# theory without
massless particles, the subspaceH9 contains the vacuum an
the one-particle states. It is physically clear that those st
cannot individuate an event. The subspaceH8 contains scat-
ue

r

es

tering states, which can be described in terms of two or m
incoming or outgoing particles. The description ofH in
terms of asymptotic states is physically interesting, beca
it deals with a situation in which the space-time position
an event, for instance a collision, is measured by mean
operations performed in a faraway region, as it happens,
instance, in the famous conceptual position measuremen
means of a microscope, discussed by Heisenberg@62# and
reconsidered by Mead@39# in the presence of the gravita
tional interaction. This point of view could also provide th
starting point for the introduction of space-time concepts i
pureS-matrix theory.

III. POINCARE´ COVARIANT POV MEASURES

The covariance condition~13! with respect to the prope
orthochronous Poincare´ group introduces some new con
straints. It is easy to show that the linear spaceD is invariant
under the Poincare´ transformations and iff,cPD we have

r„U~y,a!c,U~y,a!f,L~a!x1y…5r~c,f,x!. ~55!

Since the translation covariance has already been explo
it is sufficient to impose that

r„U~0,a!c,U~0,a!f,0…5r~c,f,0!. ~56!

It follows that U(0,a) defines a unitary representation
SL(2,C) in the quotient spaceD/D0 and in its completionH̃.
We indicate this representation byŨ(a). The operatorh is
an intertwining operator, namely we have

Ũ~a!h5hU~0,a!. ~57!

In order to proceed, we have to examine the represe
tionsU(x,a) andŨ(a) with more detail. We consider agai
the cased54. We remark that the subspaceH8 is invariant
under the representationU(x,a) and we indicate byU8(x,a)
the restriction ofU(x,a) to H8. We decompose this repre
sentation into a direct integral of irreducible unitary repr
sentations~IURs! of P̃ @63#. Of course, only positive-energ
representations appear in this decomposition. Since the f
momentum spectrum is absolutely continuous, we can di
gard zero-mass representations and consider only posi
mass IURs, which are labeled by the massm and the spinj.

The Hilbert spaceH8 is decomposed into a direct integr
of spaces in which IURs ofP̃ operate. A vectorcPH8 is
described by a wave function of the kindcs jm(k), where the
index s labels the spaces in which equivalent IURs opera
For instance, in a two-particle states describes the center
of-mass helicities@64#. It is not necessary to specify the ma
m, since it is a function ofk. The norm is given by

ici25E
V
(
s jm

ucs jm~k!u2d4k, ~58!

whereV is the open future cone.
For fixed s, m, and j, the groupP̃ acts in the way de-

scribed by Wigner@63#. We choose for each four-momentu
kPV an elementakPSL(2,C) with the property
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PRA 59 965LOCALIZATION OF EVENTS IN SPACE-TIME
k5L~ak!q~m!, q~m!5~m,0,0,0!, m5~kaka!1/2

~59!

and we indicate byRmm8
j (u) the (2j 11)-dimensional IUR

of SU(2). Then we have

@U8~x,a!c#s jm~k!5exp~ ikaxa!(
m8

Rmm8
j

~u!cs jm8~k8!,

~60!

where

k85L~a21!k, u5ak
21aak8PSU~2!. ~61!

In order to describe the representationŨ, we consider its
direct integral decomposition into IURs of SL(2,C). Their
matrix elementsD jm j8m8

Mc (a) are treated in Refs.@65–68#.
There are two series of IURs: the principal series withc
imaginary andM integral or half-integral, and the supple
mentary series with21,c,1 andM50. The representa
tions DMc andD2M2c are unitarily equivalent. One shoul
not forget the trivial one-dimensional representation. Sin
the symbolD0,61 does not appear in the list given above, w
use it to indicate the one-dimensional representation. It
only the matrix elementD0000

0,61(a)51. This convention is
partially justified by continuity arguments.

The restriction of these representations to the subgr
SU(2) is given by

D jm j8m8
Mc

~u!5d j j 8Rmm8
j

~u!, uPSU~2! ~62!

and the possible values of the indicesj ,m are

j 5uM u,uM u11, . . . for cÞ61,

j 5uM u50 for c561, ~63!

m52 j ,2 j 11, . . . ,j .

In the following it is understood that all the quantities th
depend on these indices vanish if these relations are not
isfied.

We consider the direct integral decomposition of the H
bert spaceH̃ into irreducibles spaces labeled by the varia
g,

H̃5E
G

%

H̃gdv~g!. ~64!

The variableg stands for the parametersc andM that label
the equivalence classes of IURs of SL(2,C) and an indexn
that distinguishes the spaces where equivalent IURs ope
G is a set of points labeled by these parameters andv is a
positive measure onG. An elementCPH̃ can be described
by the quantityCg ln5CncMln . Its norm is given by

iCi25E
G
(
ln

uCg lnu2dv~g! ~65!

and the representationŨ acts in the following way:
e

as

p

t
at-

-

te.

@Ũ~a!C#ncMln5(
l 8n8

Dlnl 8n8
Mc

~a!CncMl8n8 . ~66!

Now we have to adapt the formulas found in the prec
ing section to the description given above of the spacesH8

andH̃. In the first case, we have only to replace the indexs
by the set of indices$s, j ,m%, as we have done in replacin
Eq. ~25! by Eq. ~58!. In the second case, we have to repla
the index g by the set of indices$g,l ,n%, where g
5$n,c,M %. Sincec is a continuous parameter, the sum ov
g has to be replaced by an integral with respect to the m
suredv(g), which also implies a sum over the indicesn and
M. In this way, for example, we pass from Eq.~41! to Eq.
~65!.

By means of these substitutions, Eq.~42! takes the form

@hc#g ln5Cg ln5~2p!22E
V
(
s jm

Kg lns jm~k!cs jm~k!d4k.

~67!

From the intertwining property~57! we obtain

(
l 8n8

Dlnl 8n8
Mc

~a!KncMl8n8s jm~k8!

5(
m8

KncMlns jm8~k!Rm8m
j

~u!, ~68!

wherek8 andu are given by Eq.~61!. If we seta5akak8
21 ,

we getu51 and, using the representation property,

(
l 8n8

Dlnl 8n8
Mc

~ak8
21

!KncMl8n8s jm~k8!

5(
l 8n8

Dlnl 8n8
Mc

~ak
21!KncMl8n8s jm~k!. ~69!

We see that this is a Lorentz invariant function ofk, which
depends only onm. Then we can write

KncMlns jm~k!5(
l 8n8

Dlnl 8n8
Mc

~ak!FncMl8n8s jm~m!. ~70!

If we substitute this formula into Eq.~68!, we obtain

(
n8

Rnn8
l

~u!FncMln8s jm~m!5(
m8

FncMlns jm8~m!Rm8m
j

~u!

~71!

and from the Schur lemma we obtain

FncMlns jm~m!5FncMs
j ~m!d l j dnm ~72!

and in conclusion

KncMlns jm~k!5Dln jm
Mc ~ak!FncMs

j ~m!. ~73!

By taking this formula into account and by adding th
new representation indices, Eqs.~43!, ~49!, ~51!, and ~53!
take the form
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r~c,x!5E
G
(
ln

uCg ln~x!u2dv~g!, ~74!

Cg ln~x!5~2p!22E
V
exp~2 ixaka!

3(
s jm

Dln jm
Mc ~ak!Fgs

j ~m!cs jm~k!d4k, ~75!

E
G
U(

s
Fgs

j ~m!csU2

dv~g!<(
s

ucsu2, ~76!

E
G
Fgs

j ~m!Fgs8
j

~m!dv~g!5dss8 . ~77!

In conclusion, we have the following.
Proposition 4.The most general bounded Poincare´ cova-

riant POV measuret on the Minkowski space-time is give
by Eqs.~31!, ~74!, and~75!, in terms of the measurev, and
of the functionFgs

j (m) satisfying the condition~76!. The
normalization condition~52! is equivalent to Eq.~77!.

It is interesting to remark that the IURs of SL(2,C) be-
longing to the supplementary series and the one-dimensi
representation may appear in the decomposition ofŨ upon
which the construction of the POV measure is based. On
contrary, they do not appear in the direct integral decom
sition, based on the Plancherel formula@65–67#, of the uni-
tary representationU8(0,a) which acts on the physical Hil
bert spaceH8. This could not happen if the intertwinin
operatorh, which is defined onD, had a unitary extension to
the whole Hilbert spaceH. The existence of this extension
however, does not follow from our assumptions.

If the theory is invariant under the dilatations

cs jm~k!→cs jm8 ~k!5l2cs jm~lk!, ~78!

the covariance under dilatations requires

r~c8,x!5l24r~c,l21x!. ~79!

This condition is equivalent to the requirement that the fu
tions Fgs

j (m) do not depend onm.

IV. BARICENTRIC EVENTS

The general formulas given in the preceding sections
scribe a very large class of covariant POV measures. N
we have to discuss how some physical requirements ca
used to obtain more definite results. We have already
cussed the normalization requirement~52!. Another interest-
ing condition is to require that the space coordina
X1,X2,X3 coincide with the coordinates of the center of ma
at the timeX0. The formulation of this condition for a quan
tum system is somehow ambiguous and it is useful to disc
first the classical relativistic case. We indicate by

Lab~x!5Lab2xaPb1xbPa, Lab5Lab~0!, ~80!

the relativistic angular momentum tensor with respect to
point xPM. The world line of the center of mass containsx
if we have@69#
al

e
-

-

e-
w
be
s-

s
s

ss

e

L10~x!5L20~x!5L30~x!50. ~81!

If in the center of mass system there is a nonvanishing
gular momentum, the position of the center of mass depe
on the velocity of the observer and it is useful to work in
frame in whichP15P25P350. Then, the square of the spa
tial distance of the center of mass from the origin, whi
does not depend on time, is given by

J5 (
a51

3

~xa!25~P0!22(
a

~La0!2

5~PgPg!22LabPbPgLga. ~82!

We adopt the expression on the right-hand side, which
Lorentz invariant.

In a quantum theory we have to use the Hermitian ope
tor corresponding to the quantityJ ~there is some problem
of ordering!. It is defined on the dense spaceD introduced in
Sec. II and, since it is positive, it has a self-adjoint extens
and we can consider a wide class of functionsf (J). It is
natural to interpret the operatoru(J2h2), as the spectra
projector on the states in which the world line of the cen
of mass has a distance from the origin larger thath.0. If we
introduce the Casimir operators ofP̃,

C15PaPa, C252SaSa, Sa5
1

2
eabgdPbLgd ,

~83!

and the Casimir operators of SL(2,C)

C35
1

2
LabLab, C45

1

8
eabgdLabLgd , ~84!

we have

J5C1
22C22~C1!21C3 . ~85!

The Casimir operators have the properties

@C1c#s jm~k!5m2cs jm~k!,
~86!

@C2c#s jm~k!5m2 j ~ j 11!cs jm~k!,

@C3C#g ln~0!5~M21c221!Cg ln~0!,
~87!

@C4C#g ln~0!5 iMcCg ln~0!.

Note that, sincecPD, Cg ln(x) is a differentiable function
of x. Then from Eq.~75! we have

@ f ~J!C#g ln~0!5~2p!22E
V
(
s jm

Dln jm
Mc ~ak!Fgs

j ~m!cs jm~k!

3 f „m22@ j ~ j 11!2M22c211#…d4k.

~88!

According to our interpretation, a POV measuret is strictly
baricentric if we have

r„f ~J!c,0…50, ~89!



o,
of
o

tte

-

es
of
s
el
t

a
on
t
t

nd

a
lu

w

wi
on
e

ore

s of
ual
ee
the
r
ub-
n-

ree

ob-

PRA 59 967LOCALIZATION OF EVENTS IN SPACE-TIME
whenever the functionf vanishes in a neighborhood of zer
namely f (J)c represents a state in which the world line
the center of mass does not meet a neighborhood of the
gin. It could seem natural to require that the density~89!
vanishes in the same neighborhood, but this is not permi
by Proposition 1. The condition~89! implies that

FnMcs
j ~m!Þ0 only if j ~ j 11!2M22c21150,

~90!

namely if

j 5M50, c561. ~91!

We see that in the definition oft, only the trivial one-
dimensional representationD01 can appear. Moreover,t
must vanish on all the subspaces ofH8 which correspond to
nonvanishing values of the indexj and it cannot be normal
ized in the sense of Eq.~52!, which requires that Eq.~77! is
satisfied for all the values ofj andm.

If we consider a system composed of two free spinl
point particles,j is the angular momentum in their center
mass and the conditionj 50 means that the two particle
meet as closely as is permitted by the indeterminacy r
tions; otherwise, the event does not take place. This poin
view is similar to the one discussed in Ref.@8#, which deals
with the time of arrival of a single relativistic particle at
fixed point in three dimensions. However, one can also c
sider events which correspond, in the classical case, to
center of mass at the time in which the distance between
two particles takes its minimum value. An event of this ki
happens for arbitrary values of the angular momentumj.

In order to define a normalized POV measure which is
baricentric as possible, we have to minimize, for every va
of j, the expressionj ( j 11)2M22c211, namely to impose
the condition

FnMcs
j ~m!Þ0 only if

M5 j , c51 for j 50, and c50 for j .0. ~92!

Note that in this case the measurev(g) is discrete and the
corresponding integral can be replaced by a sum, namely
can write

r~c,x!5~2p!24E
V
E

V
exp„ixa~k8a2ka!…

3 (
n j s8m8sm

D jm8 jm
jc

~ak8
21ak!

3Fns8
j

~m8!Fns
j ~m!cs8 jm8~k8!

3cs jm~k!d4k8d4k,

Fns
j ~m!5Fn jcs

j ~m!. ~93!

Note that there is no interference term between states
different j. The POV measures which satisfy the conditi
~92! will be calledquasibaricentric. We shall discuss som
of their properties in the next sections.
ri-
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V. COORDINATE OPERATORS

Even if the coordinates of an event are described m
completely by the POV measuret, it is interesting to con-
sider the~non-self-adjoint! operatorsXa defined by Eq.~12!.
Note that they can be used to calculate the average value
the coordinates, but not, in general, to obtain in the us
way the details of their statistical distributions. As we s
from Eq.~16!, these operators are more meaningful when
normalization condition~10! is satisfied and we conside
only this case. Then we have to disregard the Hilbert s
spaceH9 and consider only states with an absolutely co
tinuous four-momentum spectrum.

From Eqs.~31! and ~74! we obtain

~c,Xac!5E xar~c,x!d4x

5E xaE
G
(
ln

uCg ln~x!u2dv~g!d4x. ~94!

If cPD, from Eq. ~75! we have

xaCg ln~x!52 i ~2p!22E
V
exp~2 ixaka!

3(
s jm

]

]ka
„Dln jm

Mc ~ak!Fgs
j ~m!cs jm~k!…d4k.

~95!

The derivative in the right-hand side is composed of th
terms, which, when substituted into Eq.~94!, give rise to
three contributions

~c,Xac!5Aa1Ba1Ca. ~96!

By taking into account the normalization condition~77! and
the representation property, after some calculations we
tain

Aa5E
V
E

G
(

s8 j 8m8s jm

Sa j 8m8 jm
Mc

~k!

3FGs8
j 8 ~m!Fgs

j ~m!cs8 j 8m8~k!cs jm~k!d4k dv~g!,

~97!

Ba5E
V

m21ka (
ss8 jm

Ts8s
j

~m!cs8 jm~k!cs jm~k!d4k,

~98!

Ca52 i E
V
(
s jm

cs jm~k!
]

]ka
cs jm~k!d4k, ~99!

where we have introduced the Hermitiam matrices

Sa j 8m8 jm
Mc

~k!52 i F ]

]ka
D j 8m8 jm

Mc
~ak8

21ak!G
k85k

, ~100!
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Ts8s
j

~m!52 i E
G
Fgs8

j
~m!

]

]m
Fgs

j ~m!dv~g!. ~101!

The termCa has a familiar form and it is covariant unde
translations, but not under the Lorentz group. The ot
terms are translation invariant. The termBa vanishes if
Fgs

j (m) does not depend onm, as it necessarily happens
dilatation invariant theories.

In order to compute the quantities~100!, we use the fol-
lowing expression for the Wigner boosts:

ak5@2m~m1k0!#21/2~m1k01ksss!. ~102!

Here and in the following the indicesr ,s,t take the values
1,2,3. If we setqa5ka2k8a and we disregard quadratic an
higher-order terms in these differences, we have

ak8
21ak512

q0krs r

2m2
1

qrs r

2m
1

kssskrqr

2m2~m1k0!
1 i

e rstqrkss t

2m~m1k0!

1•••. ~103!

If the quantitesu r andz r are infinitesimal, we have

D j 8m8 jm
Mc S 12

i

2
u rs r1

1

2
z rs r1 . . . D

5d j 8 jdm8m2 iu rd j 8 jMm8m
r j

2 i z rNj 8m8 jm
rMc

1•••,

~104!

whereMm8m
r j are the usual angular momentum matrices a

Nj 8m8 jm
rMc are the generators of the SL(2,C) boosts, which can

be found~with different notations! in Ref. @65#. From these
formulas we obtain

S0 j 8m8 jm
Mc

~k!5
kr

m2
Nj 8m8 jm

rMc , ~105!

Sr j 8m8 jm
Mc

~k!52
1

m
Nj 8m8 jm

rMc
2

krks

m2~m1k0!
Nj 8m8 jm

sMc

1
e rstks

m~m1k0!
d j 8 jMm8m

t j . ~106!

Now we consider with more detail quasibaricent
events, namely we assume that the condition~92! is satisfied.
Then we have only terms withj 85 j 5M and the value ofc
is fixed. From the formulas given in Ref.@65# we have

Njm8 jm
rMc

50 if Mc50. ~107!

Then, by means of Eq.~77!, we obtain the simpler expres
sions

A050 ,
~108!

Ar52E
V

e rstks

m~m1k0!
(

s jm8m

cs jm8~k!Mm8m
t j cs jm~k!d4k.
r

d

Note that the same expression can be obtained for diffe
choices of the parameters which define the POV measurt.
For instance, in the term withj 85 j 5M50 we can choose
an arbitrary value ofc without affecting the operatorsXa.

We want to show that if the POV measure is normaliz
and quasibaricentric, the operatorsXa can be written in a
form similar to the one suggested in Ref.@2#, namely

Xa5~PgPg!21@PbLab2Pa~D22i !#, ~109!

whereLab are the components of the relativistic angular m
mentum operator andD is given by

D5 i S ka
]

]ka
12D 2mT~m!, ~110!

whereT(m) is the matrix defined by Eq.~101! which acts on
the indexs of the wave function. In a theory with dilatatio
symmetry, the termT(m) vanishes and the operatorD has a
self-adjoint extension which is the generator of the dila
tions defined by Eq.~78!. In the general case,D is just a
Hermitian operator defined on the domainD. It describes the
clock which is necessarily present in the object that defi
the event andT(m) can be interpreted as a kind of prop
time delay.

The operatorsLab are the generators of the Lorentz tran
formations defined by Eq.~60!. They are given by

Lab5 i S ka

]

]kb
2kb

]

]kaD 1L̂ab , ~111!

where L̂ab are matrices which represent infinitesimal rot
tions and act on the indexm of the wave function. They have
the form

L̂ rs5e rstM t, L̂0r52L̂ r052
1

m1k0
e rstksMt.

~112!

One can easily verify that Eq.~109! follows from these for-
mulas.

We have seen that Eq.~109! holds for all the normalized
quasibaricentric POV measures and it agrees with the
mula given in Ref.@2# if the theory is symmetric under dila
tations. Since the event lies on the world line of the cente
mass, the dynamical aspects concern only the clock
scribed by the operatorD. The other aspects have simply
kinematical, i.e., group-theoretical, character.

VI. COORDINATES AS DEFINITE OBSERVABLES

In this final section we discuss the conditions that per
the determination of the coordinates of an event, in suita
chosen states, with an arbitrary precision. Following R
@26#, we introduce the following definition.

Definition 1. We say that an observable described by
POV measuret is ‘‘definite’’ ~or simply thatt is definite! if,
whenever the setI has a nonempty interior, we have

it~ I !i51. ~113!
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This means that, with an apropriate choice of the statec,
the probability that the result of the observable lies inI can
be made as near to 1 as we want.

If the POV measure is translation covariant, it is sufficie
to impose the condition~113! for the setsI which form a
fundamental system of neighborhoods of the origin. Anot
equivalent condition is to require the existence of a seque
$c (l)% of normalized vectors with the property

lim
l→`

„c~l!,t~ I !c~l!
…51 ~114!

whenI is an arbitrary neighborhood of the origin. An equiv
lent property is

lim
l→`

r~c~l!,x!5dd~x! ~115!

in the sense of distribution theory. By means of a Four
transformation and of Eqs.~43! and ~49!, we can also write

lim
l→`

E
V
(

gss8
Kgs8~k8!Kgs~k81k!

3cs8
~l!

~k8!cs
~l!~k81k!ddk851 ~116!

always in the sense of distribution theory.
A sufficient condition can be obtained by considering t

particular choice

cs
~l!~k!5l2d/2cs~k!f~l21k!, ~117!

where f(k) is a test function with compact supportJ,V
and

E uf~k!u2ddk51, ~118!

(
s

ucs~k!u251. ~119!

We are assuming that forl sufficiently large the setlJ is
contained in the region~possibly dependent ons) where the
wave functioncs(k) is defined.

Then Eq.~116!, after a rescaling of the integration var
able, takes the form

lim
l→`

E r ~lk8,lk81k!f~k8!f~k81l21k!ddk851,

~120!

where

r ~k8,k!5 (
gss8

Kgs8,~k8!Kgs~k!cs8~k8!cs~k!<1.

~121!

From these formulas, we find the following.
Proposition 5.The translation covariant POV measuret

described inProposition 3is definite if we can find the mea
surable functionscs(k), which satisfy the normalization
condition ~119!, in such a way that
t

r
ce

r

lim
l→`

r ~lk8,lk81k!51, k8PJ, kPRd. ~122!

This is not a necessary condition, but it shows that
definiteness property depends on the asymptotic behavio
Kgs(k).

Now we consider a quasibaricentric Poincare´ covariant
POV measure of the kind described by Eq.~93!. Since there
is no interference between terms with differentj, we try to
satisfy Eq.~116! by means of wave functions which do no
vanish only for a given pair of values of the indicesj ,m and
for these values of the indices are given by

cs jm
~l! ~k!5l2d/2cs~m!f~l21k!, ~123!

with the normalization conditions~118! and

(
s

ucs~m!u251. ~124!

Also in this case we obtain the condition~122! with

r ~k8,k!

5 (
ns8s

Fns8,
j

~m8!Fns
j ~m!D jm jm

jc ~ak8
21ak!cs8~m8!cs~m!.

~125!

If we remark thatalk5ak , we see that

lim
l→`

alk8
21 alk81k51. ~126!

It follows that

lim
l→`

„r ~lk8,lk81k!2 r̂ ~lk8,lk81k!…50, ~127!

where

r̂ ~k8,k!5 r̂ ~m8,m!5 (
ns8s

Fns8
j

~m8!Fns
j ~m!cs8~m8!cs~m!.

~128!

In conclusion, we have the following sufficient conditio
Proposition 6The Poincare´ covariant and quasibaricentri

POV measuret described by Eq.~93! is definite if we can
find the measurable functionscs(m), which satisfy the nor-
malization condition~124!, in such a way that, for some
value of the indexj, the expression defined by Eq.~128! has
the property

lim
m→1`

r̂ ~m,m1c!51 ~129!

uniformly for c belonging to any bounded interval of the re
line.
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