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Comment on “Coherent states for the hydrogen atom”
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Majumdar and Sharatchandra recently proposed a set of “coherent states” for the hydrogdiPlaysm
Rev. A56, R3322(1997)]. These states satisfy some of the typical properties of coherent states, such as, for
example, continuity in the parameters. The time evolution of these states is given by the classical evolution of
the angle variables, and the expectation values of the quantum observables behave quasiclassically. However,
those authors also claimed that, although one does not obtain exactly the same state after a Kepler period, the
gross features of their wave packets do not change. We show that this is not correct, and that these wave
packets do not remain localized on the classical variables, but spread rapidly over the Keplerian orbit. The
localization properties of these states do not improve in the limit of large quantum numbers.
[S1050-294{@9)00701-3

PACS numbd(s): 03.65.Ca, 32.80.Rm, 33.80.Rv

In a recent paper Majumdar and Sharatchampdltdhere- ing the autocorrelation function of the states proposed by
after referenced as M®ffered a solution to a long-standing MS. In atomic units §=1) the autocorrelation function of a
problem of modern physid®], i.e., the construction of “co- state|) is defined ag4]
herent states for the hydrogen atom.” The properties of the .
coherent states for the harmonic oscillator are uniquely de- C(t)=[(yle” ™% D)
fined[3]: (i) coherent states are continuous in their lakiel;
they yield a resolution of unity(iii) under time evolution a
coherent state remains within the family of coherent states
(iv) coherent states are well localizéice., minimum uncer-
tainty), nonspreadingvave packets which are peaked on t
classical coordinates. On the other hand, the properties
coherent states for atomic systems are not so clearly set, amgs
in principle one should always spell out clearly what are the
properties which a proposed set of atomic “coherent states

For a normalized wave packet moving along a Kepler orbit
with no or little dispersionC(t) must return to a value close
t 0 one (i.e., its maximum valueevery Kepler period, and
he therefore it is an optimal probe to test the dynamics of a
Jyave packet when direct inspection of its properties is im-
ssible.
Using Eq.(17) of Ref.[1], we evaluated the autocorrela-
,t|on function of the states proposed by MS,

must satisfy. % R“*1 2
In any case, M$1] constructed states labeled by the clas- C(t)= E = git/en? , )
sical phase-space variables which satisfy some of the prop- n= (n—1)!

erties which one expects of “coherent states;” i.e., they are
continuous in the parameters and vyield a resolution of th&vhereR is the parameter of the state corresponding to the
identity by integrating over the parameter space with theotal classical action and one has
classical phase-space measure. The time evolution of these _
states is given by the classical evolution of the angle vari- n~R, 3)
ables, and under time evolution a state of the set is mapped
into another state within the same set. Moreover, these stateéheren is the principal quantum number which carries the
yield quantum expectation values which approximately fol-largest weight in the expansion, and is approximately equal
low the corresponding classical variables. to the average principal quantum number of the state. We
However, MS also concluded that although one does ndnave relabeled the original sum of R¢t] in terms of the
obtain exactly the same state after a period, the “gross fegerincipal quantum number, to make the Poissonian nature
tures do not change’[1]. Furthermore, those authors of the distribution more evident. The sum in H@) can be
claimed that asymptotically their wave packets are peakedomputed numerically with great efficiency up to times
around position, momenta, etc., corresponding to the actionvhich are much longer than the expected Kepler pefipd
angle variables labeling them, and also become minimun¥ 27R3. Obviously we evaluated a finite sum; however, we
uncertainty statefl]. All these conclusions, however, appear neglected only terms<10™1%, and therefore our results are
to be incorrect. an extremely accurate approximation to the exact sum. In
The best way to study the properties of the states proFig. 1 we show our results fdR=10 and 200; there is no
posed by MS is visualizing the dynamics of those states, butecurrence close to 1, and the peaks of the autocorrelation
in the limit of very large quantum numbers this is almostfunction become smaller for a largBr as we also observed
impossible because of the overwhelming number of basigh many other extensive calculations.
states involvedthe degeneracy of a hydrogenic manifold Clearly, the results of Fig. 1 strongly indicate that the
equals the square of its principal quantum numbklow-  wave packets constructed by M3] do not travel along
ever, the problem can still be addressed effectively by studyKeplerian orbits with no or little dispersioand most im-
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FIG. 1. The autocorrelation function or the coherent states of FIG. 2. The reduced wave packet f&=200 and witht

Ref. [1]: in panel(I) we setR=10 and in panelll) we setR _ — ) )
=200. In both cases the largest time considered is approximatel% R(R—1) and '9._ 2. L'T‘e a—continuous—shows the reduced
ave packet at timé=0; line b—dashed—shows the same wave

equal to ten Kepler periods. packet after a Kepler period; line—dotted—shows the reduced
wave packet after four Kepler periods, and the reduced state has

portantly the quantum-classical correspondence, i.e., the l@ompletely spread along the orbit.

calization of the wave packets around the classical variables,

does not improve in the semiclassical limit.

The properties of the autocorrelation function can be un- |l//(0)>=; Cn(R)e ™ '1lzg ™ walyg™ 102
derstood by considering the Poissonian nature of the distri-
bution over the eigenstates of the hydrogen atom.RAs Xe—lwsz}yems@/zn?mn_1,n_l>, (4

grows larger, the distribution is peak_e{dut not sharply

around a large principal quantum numiper R, but the vari-  whereC,(R) is the Poissonian weight, thk's are compo-
ance of the distribution is also equalRd5], which is alarge  nents of the angular momentum operator, and we have used
number. Therefore as one approaches the semiclassical liMi{e more standard notaticﬁlj for the y component of the

the distribution over the hydrogenic eigenmanifolds becomegg|aq Runge-Lenz vector operator; finally ten—1,n

increasingly flatter. .It i_s well known that in the hydr_oggn —1)'s are the usual circular eigenstates of the hydrogen
atom, and for a distribution centered around a prmmpalatom_

quantum numben, the deviations from the harmonic spec-  The first three exponentials are nothing other than an Eu-
trum are proportional tor(—n)? [4,6] so that a Poissonian ler rotation, and because the hydrogenic Hamiltonian is
distribution yields an ever-increasing number of anharmonispherically symmetric one can set= w,= w,=0 without
frequencies which carry a non-negligible weight. A purelyloss of generality. Also, it is easy to see that the faaigR®
harmonic spectrum permits the construction of quasiclassiin the last exponential is just equivalent to an initial titge
cal, nonspreading wave packé®3] by using a Poissonian and one can also set;=0 again without loss of generality.
superposition of energy eigenstates: in the hydrogen atormherefore, the states proposed by MS are just a Poissonian
the deviations from the harmonic spectrum are non-superposition of elliptic statdg,8]. The idea of constructing
negligible and recurrences or quasirecurrences for timekcalized wave packets in the hydrogen atom by a superpo-
comparable to the Kepler period become impossible. sition of elliptic states is not new8]. Nauenberg did it by
Note that the vanishing of the autocorrelation functionusing a Gaussian distribution over the eigenmanifolds, and
does not necessarily imply the spreading of the wave packehis wave packets slowly spread within a few Kepler periods
In principle, after a Kepler period the wave packet could[8,4].
come back to its original location still being sharply local- In any case, one can further analyze the states constructed
ized, and yet it could also be orthogonal to its original copyby MS [1] by setting ws=0, i.e., by considering a wave
(for example, consider two wave packets consisting of thepacket moving along a circular orbit, which greatly reduces
same Gaussian envelope, but of a sine and cosine carriie complexity of the problem because only one eigenstate
wave, respectively However, this isnot the case for the per eigenmanifold is needed. Moreover, in a circular orbit
states constructed by M&] and the vanishing of the auto- the dynamics is confined to the azimuthal angleand one
correlation function is due precisely to the ultrafast spreadingan further reduce the problem by choosing particular values
of their wave packets, as we demonstrate next. for the radial coordinate and the polar angle. That is, one can
We start from Eq(9) of Ref.[1], which gives the states define a one-dimensional “reduced” wave function as fol-
proposed by MSy(0)) at timet=0: lows:
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- _ ™ -n2_nfl
f(d),t):,/,(r'g’d,,t): \/%; e*(R/2+r/n)1 /%émlwﬁnt, (5)

where we have used the usual coordinate representation of |n panel(l) we setR=200 and_zo_gR(R_l)’ and com-
the spherical eigenstates of the hydrogen &Bhand where  pyte the evolution of the new reduced state. Line
N is a normalization coefficient: a—continuous—shows the new reduced wave packet at
o _ (RPsirg)" =0, and Iinep—dashed—shows the same wave packet after
N:f If(,1)|2dp=2>, e RF2m__—_ - a Kepler period (=27R3, i.e., the Kepler period of the
0 n n?"~1(n!)3 whole state proposed by MSThe new wave packet spreads
(6) as expected; moreover, its distribution over the quantum

The circular eigenstates of the hydrogen atom are wel'Umbers is centered am<n, and so the new wave packet
localized in thexy plane, and so we s@t= /2. Moreover, qscnlates with a shorter period. Therefore after a Kepler pe-
it is easy to show that riod not only the new wave packet has completed a full os-

cillation, but it has also gone further, moving beyond its

dRnn 1 original location. In pane(ll) we show the same for a state
—qr _ _oer=n(n-1), (7) with r=1.1R(R—1), that is, a reduced state with a longer
period: line c—continuous—shows the wave packet tat
that is, the radial wave functioR, ,_; of a circular eigen- =0, and lined—dashed—shows the wave packet after a

state with principal quantum numbaris peaked at =n(n Kepler period. The reduced state spreads as expected, but it
—1). The eigenstate which carries the largest weight in thdnas not completed a full oscillation and has not returned yet
Poissonian distribution has=n~R, and therefore we set 1O its original location. _
T=R(R-1). Because of the Poissonian distribution over the eigen-

manifolds, the whole wave packet proposed by M$is not
sharply peaked in the radial direction. Indeed, using well-
known results for the expectation values roaind r? over
circular states of the hydrogen atdi0], it is easy to show
fhat

We present the results of our calculations R+ 200 in
Fig. 2, where we plot the magnitude 6f¢,t) at three dif-
ferent times. Linea—continuous—shows the sharply peaked
reduced wave packet at the initial time=0); line
b—dashed—shows the same wave packet after a Kepler p
riod (t=2xR%); finally, line c—dotted—shows the reduced
wave packet after four Kepler periods<(87R®). Clearly,
the reduced wave packet spreads very rapidly, and after just
a Kepler period its height has decreased~t@0% of its
original value. We have carried out several other calculations
for increasing values dR, and the ratio of the height of the
initial reduced wave packet to its copy after a Kepler period
remains the same as in Fig. 2. Most importantly, after only
four Kepler periods the reduced wave packet has spread >y ey oo 15 a4
completely along the orbit, and it does not show any remnant @
of quasiclassical localization.

However, the spreading of the whole wave packet pro-
posed by Mg 1] is actuallymuch fastethan it appears from
Fig. 2. This can be easily understood by considering the «
same reduced wave function as before, but with a different § 2

value ofr, as we explain next.

Choosing a different means evaluating the whole wave
packet at a new radial coordinate, which maximizes the ra- — PLAM BT ¥ ,
dial amplitudeR,, ,_; of an eigenstate witm#n. At the ) P
same time, the radial wave function of the stiten—1,n
—1) (the state at the center of the Poissonian distribiition _ _ — —
can be very small when is evaluated at the meWhe choice WO different choices for. In panel(l) we setr =0.9R(R—1), and

] — . ) . . the period of the reduced packet is shorter than the Kepler period of
of a differentr is then equivalent to skewing the Poissonianine whole state. After a Kepler peridthe b—dashedl the reduced
distribution in favor of a principal quantum number smaller packet has already moved beyond its original locatigine
(or large) thann. Therefore, the new reduced wave packeta—continuous. In panel(Il) we setr =1.1R(R— 1), which implies
will oscillate with a period which may be significantly dif- a longer period. After a Kepler peridtine d—dashedithe reduced

ferent from the Kepler period of the whole state, as we illus-packet has not returned yet to its original locatidfine
trate very clearly in Fig. 3. c—continuous.
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FIG. 3. The reduced wave packet fer=200, with 6= 7/2 and
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('/f|r2|'//>_<‘/f|r|l//>2=§R3 1+0 (8)  the classical trajectories with no or little dispersion, as the

more familiar coherent states of the harmonic oscillator do.
Therefore reduced states like the ones in Fig. 3 constitute &he states constructed by M3] do possess some of the
significant part of the overall wave packet. This leads to gproperties which one typically expects of coherent states:
much faster spreading of the state than it appears from Fig 2hat is, they are continuous in the parameter, yield a resolu-
as it is well demonstrated by our calculations based on théon of the unity, and under time evolution a state of the set
autocorrelation function, which take automatically into ac-is mapped into another state within the same set. Also, they
count all the reduced states which make up the whole wavgield quantum expectation values which approximately fol-
packet. Obviously, an identical argument holds also for dif{ow their classical counterparts. However, these statesaire
ferent choices of). quasiclassical, nonspreading wave packets, and the claim by

Finally, although we have derived our analysis of reducedVS that after a Kepler period “the gross featudes the

wave packets in the case of circular orbits, we can extend it&yave packdtdo not change’[1] is incorrect, because such
results to all elliptic orbits, and so we can fully confirm our wave packets do spread almost immediately, and their local-
calculations based on the autocorrelation function, which arézation properties change dramatically even over a single Ke-
general and do not depend on the eccentricity of the orbitpler period. Also, the ultrafast spreading of these wave pack-
More precisely, the Runge-Lenz vector commutes with theets means that soon the wave packets are not peaked on the
hydrogenic Hamiltonian, and one is free to apply first theclassical variables in any physically significant way, and
hydrogenic propagator, and second the pseudorotation opertiterefore they cannot remain minimum uncertainty states.
tor which maps circular states into elliptic states of arbitrary The reason for the breakdown of the classical-quantum
eccentricity. It is well knowni7,8] that such an operator does correspondencén the sense of minimum uncertainty local-
not bring about any localization, although the amplitude ofization of the wave packet around the classical varighikes
an elliptic state is somewhat larger at the aphelion, reflectinglue to the choice of a Poissonian distribution over the energy
the longer time which the classical electron spends awalevels. In the semiclassical limit the Poissonian distribution
from the nucleus. Therefore wave packets which have spredaecomes increasingly flatter, and the anharmonic corrections

1” [1] are not sharply localized wave packets which move along
ﬁ .

along a circular orbit, like the ones proposed by M$ will of the hydrogenic spectruvhich scale with the variance of
be mapped into wave packets which are spread along thiae distribution, not its root-mean-square deviatioemain
desired Keplerian ellipse. non-negligible, and therefore these wave packets spread rap-

In conclusion we have shown that the “coherent states fordly also in the regime of ultralarge principal quantum num-
the hydrogen atom” which were recently proposed by MSbers.
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