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Comment on ‘‘Coherent states for the hydrogen atom’’
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Majumdar and Sharatchandra recently proposed a set of ‘‘coherent states’’ for the hydrogen atom@Phys.
Rev. A 56, R3322~1997!#. These states satisfy some of the typical properties of coherent states, such as, for
example, continuity in the parameters. The time evolution of these states is given by the classical evolution of
the angle variables, and the expectation values of the quantum observables behave quasiclassically. However,
those authors also claimed that, although one does not obtain exactly the same state after a Kepler period, the
gross features of their wave packets do not change. We show that this is not correct, and that these wave
packets do not remain localized on the classical variables, but spread rapidly over the Keplerian orbit. The
localization properties of these states do not improve in the limit of large quantum numbers.
@S1050-2947~99!00701-5#

PACS number~s!: 03.65.Ca, 32.80.Rm, 33.80.Rv
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In a recent paper Majumdar and Sharatchandra@1# ~here-
after referenced as MS! offered a solution to a long-standin
problem of modern physics@2#, i.e., the construction of ‘‘co-
herent states for the hydrogen atom.’’ The properties of
coherent states for the harmonic oscillator are uniquely
fined @3#: ~i! coherent states are continuous in their label;~ii !
they yield a resolution of unity;~iii ! under time evolution a
coherent state remains within the family of coherent sta
~iv! coherent states are well localized~i.e., minimum uncer-
tainty!, nonspreadingwave packets which are peaked on t
classical coordinates. On the other hand, the propertie
coherent states for atomic systems are not so clearly set
in principle one should always spell out clearly what are
properties which a proposed set of atomic ‘‘coherent stat
must satisfy.

In any case, MS@1# constructed states labeled by the cla
sical phase-space variables which satisfy some of the p
erties which one expects of ‘‘coherent states;’’ i.e., they
continuous in the parameters and yield a resolution of
identity by integrating over the parameter space with
classical phase-space measure. The time evolution of t
states is given by the classical evolution of the angle v
ables, and under time evolution a state of the set is map
into another state within the same set. Moreover, these s
yield quantum expectation values which approximately f
low the corresponding classical variables.

However, MS also concluded that although one does
obtain exactly the same state after a period, the ‘‘gross
tures do not change’’@1#. Furthermore, those author
claimed that asymptotically their wave packets are pea
around position, momenta, etc., corresponding to the act
angle variables labeling them, and also become minim
uncertainty states@1#. All these conclusions, however, appe
to be incorrect.

The best way to study the properties of the states p
posed by MS is visualizing the dynamics of those states,
in the limit of very large quantum numbers this is almo
impossible because of the overwhelming number of ba
states involved~the degeneracy of a hydrogenic manifo
equals the square of its principal quantum number!. How-
ever, the problem can still be addressed effectively by stu
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ing the autocorrelation function of the states proposed
MS. In atomic units (\51) the autocorrelation function of a
stateuc& is defined as@4#

C~ t !5u^cue2 iĤ tuc&u2. ~1!

For a normalized wave packet moving along a Kepler or
with no or little dispersion,C(t) must return to a value clos
to one ~i.e., its maximum value! every Kepler period, and
therefore it is an optimal probe to test the dynamics o
wave packet when direct inspection of its properties is i
possible.

Using Eq.~17! of Ref. @1#, we evaluated the autocorrela
tion function of the states proposed by MS,

C~ t !5U(
n51

`

e2R
Rn21

~n21!!
eit /2n2U2

, ~2!

whereR is the parameter of the state corresponding to
total classical action and one has

n̄'R, ~3!

wheren̄ is the principal quantum number which carries t
largest weight in the expansion, and is approximately eq
to the average principal quantum number of the state.
have relabeled the original sum of Ref.@1# in terms of the
principal quantum numbern, to make the Poissonian natur
of the distribution more evident. The sum in Eq.~2! can be
computed numerically with great efficiency up to tim
which are much longer than the expected Kepler periodTK
52pR3. Obviously we evaluated a finite sum; however, w
neglected only terms,102100, and therefore our results ar
an extremely accurate approximation to the exact sum
Fig. 1 we show our results forR510 and 200; there is no
recurrence close to 1, and the peaks of the autocorrela
function become smaller for a largerR, as we also observed
in many other extensive calculations.

Clearly, the results of Fig. 1 strongly indicate that t
wave packets constructed by MS@1# do not travel along
Keplerian orbits with no or little dispersionand most im-
900 ©1999 The American Physical Society
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PRA 59 901COMMENTS
portantly the quantum-classical correspondence, i.e., the
calization of the wave packets around the classical variab
does not improve in the semiclassical limit.

The properties of the autocorrelation function can be
derstood by considering the Poissonian nature of the di
bution over the eigenstates of the hydrogen atom. AsR
grows larger, the distribution is peaked~but not sharply!
around a large principal quantum numbern̄'R, but the vari-
ance of the distribution is also equal toR @5#, which is a large
number. Therefore as one approaches the semiclassical
the distribution over the hydrogenic eigenmanifolds becom
increasingly flatter. It is well known that in the hydroge
atom, and for a distribution centered around a princi
quantum numbern̄, the deviations from the harmonic spe
trum are proportional to (n2n̄)2 @4,6# so that a Poissonian
distribution yields an ever-increasing number of anharmo
frequencies which carry a non-negligible weight. A pure
harmonic spectrum permits the construction of quasicla
cal, nonspreading wave packets@2,3# by using a Poissonian
superposition of energy eigenstates: in the hydrogen a
the deviations from the harmonic spectrum are n
negligible and recurrences or quasirecurrences for tim
comparable to the Kepler period become impossible.

Note that the vanishing of the autocorrelation functi
does not necessarily imply the spreading of the wave pac
In principle, after a Kepler period the wave packet cou
come back to its original location still being sharply loca
ized, and yet it could also be orthogonal to its original co
~for example, consider two wave packets consisting of
same Gaussian envelope, but of a sine and cosine ca
wave, respectively!. However, this isnot the case for the
states constructed by MS@1# and the vanishing of the auto
correlation function is due precisely to the ultrafast spread
of their wave packets, as we demonstrate next.

We start from Eq.~9! of Ref. @1#, which gives the states
proposed by MSuc(0)& at time t50:

FIG. 1. The autocorrelation function or the coherent states
Ref. @1#: in panel ~I! we set R510 and in panel~II ! we set R
5200. In both cases the largest time considered is approxima
equal to ten Kepler periods.
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n

Cn~R!e2ıv1Ĵze2ıv4Ĵye2ıv2Ĵz

3e2ıv5âyeıv3R3/2n2
un,n21,n21&, ~4!

whereCn(R) is the Poissonian weight, theĴi ’s are compo-
nents of the angular momentum operator, and we have u
the more standard notationây for the y component of the
scaled Runge-Lenz vector operator; finally theun,n21,n
21& ’s are the usual circular eigenstates of the hydrog
atom.

The first three exponentials are nothing other than an
ler rotation, and because the hydrogenic Hamiltonian
spherically symmetric one can setv15v45v250 without
loss of generality. Also, it is easy to see that the factorv3R3

in the last exponential is just equivalent to an initial timet0 ,
and one can also setv350 again without loss of generality
Therefore, the states proposed by MS are just a Poisso
superposition of elliptic states@7,8#. The idea of constructing
localized wave packets in the hydrogen atom by a supe
sition of elliptic states is not new@8#. Nauenberg did it by
using a Gaussian distribution over the eigenmanifolds,
his wave packets slowly spread within a few Kepler perio
@8,4#.

In any case, one can further analyze the states constru
by MS @1# by setting v550, i.e., by considering a wave
packet moving along a circular orbit, which greatly reduc
the complexity of the problem because only one eigens
per eigenmanifold is needed. Moreover, in a circular or
the dynamics is confined to the azimuthal anglef, and one
can further reduce the problem by choosing particular val
for the radial coordinate and the polar angle. That is, one
define a one-dimensional ‘‘reduced’’ wave function as fo
lows:

FIG. 2. The reduced wave packet forR5200 and with r̄

5R(R21) and ū5p/2. Line a—continuous—shows the reduce
wave packet at timet50; line b—dashed—shows the same wav
packet after a Kepler period; linec—dotted—shows the reduce
wave packet after four Kepler periods, and the reduced state
completely spread along the orbit.
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f ~f,t !5c~ r̄ ,ū,f,t !5A1

N(
n

e2~R/21 r̄ /n!A~Rr̄2sin2ū !n21

pn2n21~n! !3
eı~n21!f2ıEnt, ~5!
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where we have used the usual coordinate representatio
the spherical eigenstates of the hydrogen atom@9# and where
N is a normalization coefficient:

N5E
0

2p

u f ~f,t !u2df52(
n

e2~R12r̄ /n!
~Rr̄2sin2ū !n21

n2n21~n! !3
.

~6!

The circular eigenstates of the hydrogen atom are w
localized in thexy plane, and so we setū5p/2. Moreover,
it is easy to show that

dRn,n21

dr
50⇔r 5n~n21!, ~7!

that is, the radial wave functionRn,n21 of a circular eigen-
state with principal quantum numbern is peaked atr 5n(n
21). The eigenstate which carries the largest weight in
Poissonian distribution hasn5n̄'R, and therefore we se
r̄ 5R(R21).

We present the results of our calculations forR5200 in
Fig. 2, where we plot the magnitude off (f,t) at three dif-
ferent times. Linea—continuous—shows the sharply peak
reduced wave packet at the initial time (t50); line
b—dashed—shows the same wave packet after a Kepler
riod (t52pR3); finally, line c—dotted—shows the reduce
wave packet after four Kepler periods (t58pR3). Clearly,
the reduced wave packet spreads very rapidly, and after
a Kepler period its height has decreased to'20% of its
original value. We have carried out several other calculati
for increasing values ofR, and the ratio of the height of th
initial reduced wave packet to its copy after a Kepler per
remains the same as in Fig. 2. Most importantly, after o
four Kepler periods the reduced wave packet has spr
completely along the orbit, and it does not show any remn
of quasiclassical localization.

However, the spreading of the whole wave packet p
posed by MS@1# is actuallymuch fasterthan it appears from
Fig. 2. This can be easily understood by considering
same reduced wave function as before, but with a differ
value of r̄ , as we explain next.

Choosing a differentr̄ means evaluating the whole wav
packet at a new radial coordinate, which maximizes the
dial amplitudeRn,n21 of an eigenstate withnÞn̄. At the
same time, the radial wave function of the stateun̄,n̄21,n̄
21& ~the state at the center of the Poissonian distributi!

can be very small when is evaluated at the newr̄ . The choice
of a differentr̄ is then equivalent to skewing the Poissoni
distribution in favor of a principal quantum number smal
~or larger! than n̄. Therefore, the new reduced wave pack
will oscillate with a period which may be significantly dif
ferent from the Kepler period of the whole state, as we illu
trate very clearly in Fig. 3.
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In panel~I! we setR5200 andr̄ 50.9R(R21), and com-
pute the evolution of the new reduced state. Li
a—continuous—shows the new reduced wave packett
50, and lineb—dashed—shows the same wave packet a
a Kepler period (t52pR3, i.e., the Kepler period of the
whole state proposed by MS!. The new wave packet spread
as expected; moreover, its distribution over the quant

numbers is centered onn1,n̄, and so the new wave packe
oscillates with a shorter period. Therefore after a Kepler
riod not only the new wave packet has completed a full
cillation, but it has also gone further, moving beyond
original location. In panel~II ! we show the same for a stat
with r̄ 51.1R(R21), that is, a reduced state with a long
period: line c—continuous—shows the wave packet att
50, and lined—dashed—shows the wave packet after
Kepler period. The reduced state spreads as expected, b
has not completed a full oscillation and has not returned
to its original location.

Because of the Poissonian distribution over the eig
manifolds, the whole wave packet proposed by MS@1# is not
sharply peaked in the radial direction. Indeed, using w
known results for the expectation values ofr and r 2 over
circular states of the hydrogen atom@10#, it is easy to show
that

FIG. 3. The reduced wave packet forR5200, with ū5p/2 and

two different choices forr̄ . In panel~I! we setr̄ 50.9R(R21), and
the period of the reduced packet is shorter than the Kepler perio
the whole state. After a Kepler period~line b—dashed! the reduced
packet has already moved beyond its original location~line

a—continuous!. In panel~II ! we setr̄ 51.1R(R21), which implies
a longer period. After a Kepler period~line d—dashed! the reduced
packet has not returned yet to its original location~line
c—continuous!.
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^cur 2uc&2^cur uc&25
9

2
R3F11OS 1

RD G . ~8!

Therefore reduced states like the ones in Fig. 3 constitu
significant part of the overall wave packet. This leads to
much faster spreading of the state than it appears from F
as it is well demonstrated by our calculations based on
autocorrelation function, which take automatically into a
count all the reduced states which make up the whole w
packet. Obviously, an identical argument holds also for d
ferent choices ofū.

Finally, although we have derived our analysis of reduc
wave packets in the case of circular orbits, we can extend
results to all elliptic orbits, and so we can fully confirm o
calculations based on the autocorrelation function, which
general and do not depend on the eccentricity of the or
More precisely, the Runge-Lenz vector commutes with
hydrogenic Hamiltonian, and one is free to apply first t
hydrogenic propagator, and second the pseudorotation op
tor which maps circular states into elliptic states of arbitra
eccentricity. It is well known@7,8# that such an operator doe
not bring about any localization, although the amplitude
an elliptic state is somewhat larger at the aphelion, reflec
the longer time which the classical electron spends aw
from the nucleus. Therefore wave packets which have sp
along a circular orbit, like the ones proposed by MS@1#, will
be mapped into wave packets which are spread along
desired Keplerian ellipse.

In conclusion we have shown that the ‘‘coherent states
the hydrogen atom’’ which were recently proposed by M
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@1# are not sharply localized wave packets which move alo
the classical trajectories with no or little dispersion, as
more familiar coherent states of the harmonic oscillator
The states constructed by MS@1# do possess some of th
properties which one typically expects of coherent sta
that is, they are continuous in the parameter, yield a res
tion of the unity, and under time evolution a state of the
is mapped into another state within the same set. Also, t
yield quantum expectation values which approximately f
low their classical counterparts. However, these states arenot
quasiclassical, nonspreading wave packets, and the claim
MS that after a Kepler period ‘‘the gross features@of the
wave packet# do not change’’@1# is incorrect, because suc
wave packets do spread almost immediately, and their lo
ization properties change dramatically even over a single
pler period. Also, the ultrafast spreading of these wave pa
ets means that soon the wave packets are not peaked o
classical variables in any physically significant way, a
therefore they cannot remain minimum uncertainty states

The reason for the breakdown of the classical-quant
correspondence~in the sense of minimum uncertainty loca
ization of the wave packet around the classical variables! is
due to the choice of a Poissonian distribution over the ene
levels. In the semiclassical limit the Poissonian distributi
becomes increasingly flatter, and the anharmonic correct
of the hydrogenic spectrum~which scale with the variance o
the distribution, not its root-mean-square deviation! remain
non-negligible, and therefore these wave packets spread
idly also in the regime of ultralarge principal quantum num
bers.
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