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Comment on ‘‘Arrival time in quantum mechanics’’
and ‘‘Time of arrival in quantum mechanics’’

Jerzy Kijowski
Centrum Fizyki Teoretycznej, PAN, Aleja Lotniko´w 32/46, 02-668 Warsaw, Poland

~Received 19 February 1998!

Contrary to claims contained in papers by Grot, Rovelli, and Tate@Phys. Rev. A54, 4676 1996!# and
Delgado and Muga@Phys. Rev. A56, 3425 ~1997!#, the ‘‘time operator,’’ which I have constructed@Rep.
Math. Phys.6, 361 ~1974!# in an axiomatic way, is a self-adjoint operator existing in ausual Hilbert spaceof
~nonrelativistic or relativistic! quantum mechanics.@S1050-2947~99!06901-2#

PACS number~s!: 03.65.Bz, 03.65.Ca
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Earlier I solved the following problem instandardquan-
tum mechanics~see@1#!. Consider a two-dimensional plan
in physical space~e.g., a planePzª$z5z%, where z is a
fixed constant! and its measurable subsets~call them win-
dows!. Given a window D,Pz and the time interval
Iª@ t1 ,t2#, is it possible to defineconsistentlythe probability
QI 3D(c) that a freely moving particle described by a qua
tum statec crosses the windowD within the time intervalI?

By consistencyI meant a set of obvious axioms. Some
them were implied by the structure of quantum mechan
~i! the probability should be given as a 3/2 linear form of t
statec QI 3D5^cuq̂I 3Duc&, where the operatorq̂I 3D must
be a projector;~ii ! probabilities should sum up for disjointe
three-dimensional regionsI 3D ~we may call them space
time windows!; and ~iii ! probabilities must be normalized
Other axioms were implied by the Galilei invariance of t
nonrelativistic quantum mechanics and by the Poincare´ in-
variance in the relativistic case~both cases were considered!.
It was proved that these axioms defineuniquelyan operator
t̂ z that, together with the position operatorsx̂ andŷ, give the
projectorq̂I 3D as an integral of their common spectral me
suredE(t,x,y) over the space-time windowI 3D.

In a recent publication@2# Grot, Rovelli, and Tate wrote
‘‘Kijowski obtained a probability distribution, but not on th
usual Hilbert space: thus the interpretation of the wave fu
tion in terms of familiar quantities is obscure.’’ Moreover,
@3# Delgado and Muga wrote the following. ‘‘Our resu
turns out to be similar to those previously obtained by K
jowski. However, the approach by Kijowski was based
the definition of a non-conventional wave function whi
evolves on a family ofx5const planes~instead of evolving
in time according to the Schro¨dinger equation!, and whose
relation to the conventional wave function is unclear’’

These comments are incorrect. I stress that my const
tion and the uniqueness proof were performed in the fra
work of absolutely conventionalquantum mechanics. Th
time operatort̂ z on the planePz wasuniquely obtainedfrom
the axioms.
PRA 591050-2947/99/59~1!/897~3!/$15.00
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The main technical device that I have used to simplify t
mathematical aspect of the theory was a new representa
of wave functions that is little known, although it is perfect
equivalentto both the position and the momentum repres
tations. This new representation was obtained from the w
function c̃(px ,py ,pz) in the momentum representation@the
Fourier transform of the wave functionc(x,y,z) in the po-
sition representation#. The new representation is obtained b
replacing the variablepz by the signed energy variable

sªEz sgn~pz!, ~1!

whereEz is the amount of energy carried by thezth degree
of freedom ~in the nonrelativistic case it is simplyEz

5(1/2m)pz
2 ; in the relativistic case it is equal to the diffe

ence between the actual energy and the energy correspon
to pz50). The symbol ‘‘sgn’’ stands for ‘‘the sign of’’ and
enables us to distinguish between the ‘‘right movers’’ a
the ‘‘left movers’’ carrying the same energy. This way, a
quantum state may be represented by a square-integ
function of the three variables

w̃~s,px ,py!ªA m

upz~s,px ,py!u
c̃„px ,py ,pz~s,px ,py!…

~2!

~the square root factor arises because, geometrically,
wave function is a half density and must follow the corr
sponding transformation law when passing to a new coo
nate system!. The transformation from the square-integrab
functionsc to the square-integrable functionsw̃ is unitary:

uucuu25E ucu2d3x5E uc̃u2d3p

5E uw̃~s,px ,py!u2ds dpxdpy . ~3!
897 ©1999 The American Physical Society
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In this representation the formula for the time operato
the simplest possible: Forz50 it turns out to be a momen
tum canonically conjugate to the parameters,

t̂0w̃52 i\
]

]s
w̃, ~4!

~see p. 373 in@1#!, and for other values ofz it may be
obtained from the above operator by a standard translatio
the direction of thezth axis. @Actually, I used in @1# the
parameters defined in a slightly different way, namely,s
ªE sgn(pz). With respect to Eq.~1!, the complete energyE
replaces here the quantityEz . Because both definitions ofs
differ only by a constant depending onpx and py , formula
~4! gives the same result in both descriptions. In the pres
paper I have chosen the variables defined by formula~1!
because its range is equal to the real axis, without
‘‘hole’’ in the middle, and the entire representation loo
more similar, e.g., to the standard formula for the posit
operator in the momentum representation.#

Still another representation of the quantum state is v
useful because it gives the common eigenvector expansio
the three commuting operators (t̂ z ,x̂,ŷ). This new represen
tation uses the inverse Fourier transformw(t,x,y) of the
wave functionsw̃(s,px ,py). Again, the transformation from
c to the space of square-integrable wave functionsw is uni-
tary and the probability in question is simply given by t
integral over the space-time window

QI 3D~c!5E
I 3D

uw~ t,x,y!u2dt dx dy. ~5!

The importance of this representation consists in the fact
it gives the generalized eigenfunction expansion of the qu
tum statec with respect to the operatort̂ z . Indeed, its eigen-
functions are simply Diracd functions in the variablet.

The transition from a planePz to another planePz8 was
also studied within this representation. There is absolu
nothing nonconventional in the fact that such transition
erators form a group and the generator of this group is n
ing but the momentum operatorp̂z . Hence such a transition
may be formulated as an ‘‘evolution on a family ofz
5const planes’’~as mentioned by Delgado and Muga! with
p̂z being the Hamiltonian of such an evolution. Here the o
nonconventional aspect was the use of the abovew represen-
tation. To obtain the explicit formula forp̂z in this represen-
tation, we had to express it in terms of momenta (ŝ,p̂x ,p̂y),
canonically conjugate to the positions (t,x,y). I am afraid
that the nonconventionality of my paper, claimed by Delga
and Muga, was based on a misunderstanding of this sim
fact.

On the other hand, any quantum state~whether described
in my representation as a functionw or in the position rep-
resentation as theconventionalwave functionc) undergoes
the standard‘‘chronological evolution’’ from timet1 to t2 ,
described by the Schro¨dinger equation. There is absolute
no contradiction between these two different evolutio
They are used to answerdifferentphysical questions.

In addition, formula~4! may be recalculated from on
representation to another~e.g., to the momentum represent
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tion or to the position representation!. This immediately im-
plies the following formula, relating the above time opera
with the position operatorẑ and the momentum operatorp̂z :

t̂ zc52 sgn~pz!m
1

2
$~ ẑ2z!~ p̂z!

211~ p̂z!
21~ ẑ2z!%c,

~6!

valid for sufficiently regular wave functionsc ~such that all
the symbols used have an unambiguous meaning!. For a
beam prepared in such a way that it contains right mov
exclusively~i.e., pz.0) this formula may be considered a
an analog of the corresponding classical formula for the
rival time defined by the planePz , expressed in terms o
classical observablesz andpz :

tz52m
z2z

pz
. ~7!

@In formula~6! we obtain thesymmetricorder for the product
of noncommuting operators.# For a beam containing lef
movers exclusively, the arrival time arises here with an o
posite sign. Formula~6! was not given in@1#, but it is a
one-line consequence of Eq.~4!. The reason that I do not like
such a formula is that it is mathematically ‘‘dangerous
Without specifying precisely the domain of the operator it
a priori not even a self-adjoint operator.

Reference@4# proves indeed that one must be careful
using such formulas: Giannitrapani considers the symme
version of the classical arrival time~7!, i.e., an operator de
fined in such a way that the sign ofpz in front of Eq.~6! has
been deleted~cf. also @5#!. Using rather complicated argu
ments he proves that this operator is not self-adjoint. Thi
not surprising: In ourw̃(s,px ,py) representation this opera
tor is equal to

T̂ª2 i sgn~s!\
]

]s
~8!

and one sees immediately that such an operator hasno self-
adjoint extension because its deficiency indices are diffe
~no arguments based on the Pauli theorem are necessary!. On
the other hand, the axiomatic approach proposed in@1# leads
uniquely to aperfectly self-adjointoperator~4! ~the same
techniques were later used in@6# in order to prove the
uniqueness of the Newton-Wigner position operator in re
tivistic quantum mechanics!.

Both Refs.@2# and @3# confirm the main theorem prove
in @1#: The above constructionis unique. Indeed, formulas
~26!–~33! and~66! of @3# are identical to the definitions pro
posed in@1#. On the other hand, Ref.@2# constructs an ap-
proximation~in a certain sense! of the ‘‘classical’’ formula
by self-adjoint operators. Again, ourw̃ representation simpli-
fies this construction considerably: It is sufficient tosmooth
out the singular vector field~8! within the interval s

P@2e,e# and define the operatorT̂e as a Lie derivative ofw̃
with respect to this smooth field. Keeping in mind the fa
that the wave function isnot a scalar but a half density, w
immediately obtain formula~37! of @2#.

Although, there is no room to modify the mathematica
unique definition of the probabilityQI 3D(c) within the stan-
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dard mathematical framework of quantum mechanics~spec-
tral measures, self-adjoint operators, etc.!, the problem is still
open from the physical point of view. Indeed, the probabi
tic interpretation of quantum mechanics is based on s
measurements of the type, What is the probability that
particle will be found within the three-dimensional volumeV
preciselyat a given time instantt? How to relate them to
long measurements, corresponding to time intervalsI rather
than to time instantst, is by no means obvious. From th
point of view the result of Refs.@2–4# are very interesting.

I want to stress that the classification ‘‘nonconvention
wave function . . . whose relation to the conventional wav
function is unclear’’ could only be conceived by somebo
who did not read my paper carefully@1#. Indeed, the compo
sition of the paper is following. In Sec. 1 the Heisenbe
energy-time uncertainty principle is discussed. In Sec.
propose to understand the quantityDt appearing in this prin-
ciple as the ‘‘average deviation of the time of passi
through the planeQ’’ ~or ‘‘arrival time’’ in modern lan-
guage; see page 363!. Moreover, I analyze the physical or
gin of this uncertainty. Section 3 contains the proof that
three naive ways of defining the above arrival time incon-
ventional wave mechanics are incorrect. In Sec. 4 I show
how the arrival time can be defined axiomatically in classi
statistical mechanics. In Sec. 5 I prove that the same set o
axioms may be taken as the definition of the arrival time
-
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e

l

I

e

l

conventional quantum mechanics. At this point the time op-
eratoris already definedwithout any nonconventional tools
The remaining part of the paper is devoted to the analysi
the properties of the quantum mechanical observablet̂ de-
fined this way. In Sec. 6 I prove that it possesses the corre
classical limit. Finally, in Sec. 7 I show how to diagonalize it
~or to find its complete set of eigenvectors!. For this techni-
cal purpose the nonconventional representationsw̃ andw are
introduced. There is no doubt that these are new represe
tions of aconventional wave function: In the first formula of
this section~p. 370! I define the wave function in this new
representation starting from the wave function in the conv
tional momentum representation. As a conclusion I cla
that the complete construction of my arrival time in the co
text of the absolutely conventional quantum mechanics
contained in the first six sections of Ref.@1#.

In the remaining part of the paper I also analyze the re
tion between arrival times corresponding to different plan
~different values of the variablez). Delgado and Muga@3#
do not like this analysis and remark that the wave function
thew representation ‘‘evolves on a family ofx5const planes
instead of evolving in time according to the Schro¨dinger
equation.’’ I stress, however, that this nonconventional e
lution does not contradict the Schro¨dinger evolution because
both evolutions describe different aspects of quantum m
chanics.
i.,
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