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COMMENTS

Comments are short papers which criticize or correct papers of other authors previously publishedRhysieal Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as
for regular articles is followed, and page proofs are sent to authors.

Comment on “Arrival time in quantum mechanics”
and “Time of arrival in quantum mechanics”

Jerzy Kijowski
Centrum Fizyki Teoretycznej, PAN, Aleja Lotnik82/46, 02-668 Warsaw, Poland
(Received 19 February 1998

Contrary to claims contained in papers by Grot, Rovelli, and TRteys. Rev. A54, 4676 199¢] and
Delgado and MugdPhys. Rev. A56, 3425(1997], the “time operator,” which | have constructgep.
Math. Phys6, 361(1974] in an axiomatic way, is a self-adjoint operator existing insaal Hilbert spacef
(nonrelativistic or relativistic quantum mechanic$S1050-294{©9)06901-2

PACS numbd(s): 03.65.Bz, 03.65.Ca

Earlier | solved the following problem istandardquan- The main technical device that | have used to simplify the
tum mechanicgsee[1]). Consider a two-dimensional plane mathematical aspect of the theory was a new representation
in physical spacde.g., a planeP,:={z={}, where{ is a  of wave functions that is little known, although it is perfectly
fixed constantand its measurable subsétzall them win-  equivalentto both the position and the momentum represen-
?Ovﬁlts)- tC]EiV_er}t a W_iEIdOtW 5% P, ar_ldt tr}[ﬁthﬁme gﬂtﬁ_\{m tations. This new representation was obtained from the wave

=L11,12], IS 11 pOSSILIE (0 denneonsistentlyne probability —¢,nction 3(p, ,p, ,p,) in the momentum representatife
B B e b & U Faurransiom of e wabe nlof.y.) i h po
: sition representatign The new representation is obtained by

By consistency meant a set of obvious axioms. Some of eplacing the variable. by the sianed enerav variable
them were implied by the structure of quantum mechanics' P 9 ®2. by 9 9y

(i) the probability should be given as a 3/2 linear form of the s:=E, sgn(p,) 1)
statey Qyxp=(#qixp|#), where the operatay ., must z 2
be a projector(ii) probabilities should sum up for disjointed whereE, is the amount of energy carried by tath degree

zmaeeﬁiir%%rﬁfr;: dr((ei%i)onl?:)(bgb(i\lli\{[?esmgjsctaltl)ethrfgr]msgszed_ of freedom (in the nonrelativistic case it is simplg,
' P - =(1/2m) p§; in the relativistic case it is equal to the differ-

Other axioms were implied by the Galilei invariance of the :
nonrelativistic quantum mechanics and by the Poindare ence between the actual energy and the energy corresponding

variance in the relativistic cagboth cases were considefed © P-=0). The symbol “sgn” stands for “the sign of” and
It was proved that these axioms defimeiquelyan operator €nables us to distinguish between the “right movers™ and
t, that, together with the position operatarandy, give the the “left movers™ carrying the same energy. This way, any

. ~ . ) guantum state may be represented by a square-integrable
projectorq, xp as an integral of their common spectral mea-

sured&(t,x,y) over the space-time windowx D. function of the three variables

In a recent publicatiof2] Grot, Rovelli, and Tate wrote -
“Kijowski obtained a probability distribution, but not on the P -
usual Hilbert space: thus the interpretation of the wave func- #(S:Px:Py) Ip.(s,Px.Py) Y(Px:Py PSPy Py))
tion in terms of familiar quantities is obscure.” Moreover, in 2
[3] Delgado and Muga wrote the following. “Our result
turns out to be similar to those previously obtained by Ki-(the square root factor arises because, geometrically, the
jowski. However, the approach by Kijowski was based onwave function is a half density and must follow the corre-
the definition of a non-conventional wave function which sponding transformation law when passing to a new coordi-
evolves on a family ok=const planeginstead of evolving nate system The transformation from the square-integrable

in time according to the Schainger equatioy) and whose  fynctions to the square-integrable functiogsis unitary:
relation to the conventional wave function is unclear”

These comments are incorrect. | stress that my construc- ) - o
tion and the uniqueness proof were performed in the frame- || =f lyl°d X=J |4|%d°p
work of absolutely conventionafjuantum mechanics. The
time operatoﬁg on the planeP, wasuniquely obtainedrom :f ~ 2
the axioms. |‘P(Sypx !py)| dsdpd Py . (3
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In this representation the formula for the time operator istion or to the position representatjohis immediately im-
the simplest possible: F@r=0 it turns out to be a momen- plies the following formula, relating the above time operator

tum canonically conjugate to the parameser with the position operataz and the momentum operatpy:
A~ 0~ R 1 . “ ~ ~
top=—ifi e, (4) top=— sgr(pz)mz{(z—Z)(pz)’l+(pz)*1(z—§)}l/f,
(6)

(see p. 373 in[1]), and for other values of it may be
obtained from the above operator by a standard translation ilid for sufficiently regular wave functiong (such that all
the direction of thezth axis.[Actually, | used in[1] the the symbols used have an unambiguous meaniRgr a
parameters defined in a slightly different way, namelg, beam prepared in such a way that it contains right movers
:=E sgn(p,). With respect to Eq(l), the complete energi  exclusively(i.e., p,>0) this formula may be considered as
replaces here the quantiB,. Because both definitions &f  an analog of the corresponding classical formula for the ar-
differ only by a constant depending @3 andp,, formula  rival time defined by the plan®,, expressed in terms of
(4) gives the same result in both descriptions. In the presendlassical observablesandp,:
paper | have chosen the variat8edefined by formula(1)
because its range is equal to the real axis, without any z—{
“hole” in the middle, and the entire representation looks t;=—m p,
more similar, e.g., to the standard formula for the position
operator in the momentum representatjon. [In formula(6) we obtain thesymmetricorder for the product
Still another representation of the quantum state is verypf noncommuting operatofisFor a beam containing left
useful because it gives the common eigenvector expansion ofiovers exclusively, the arrival time arises here with an op-

the three commuting operators; (X,y). This new represen- POsite sign. Formulg6) was not given in[1], but it is a
tation uses the inverse Fourier transforft,x,y) of the  One-line consequence of ). The reason that | do not like

wave functionsZo(s,px,py). Again, the transformation from \S/\l/J(t:f:] at formglg IS that' It Ilsﬂr:\a&hema'\tlca}llé “dangetroui”_:
i to the space of square-integrable wave functigris uni- ithout specifying precisely the domain of the operator it is

o A : iori not even a self-adjoint operator.
tary and the probability in question is simply given by the & Prion no . .
integral over the space-time window Referencd4] proves indeed that one must be careful in

using such formulas: Giannitrapani considers the symmetric
version of the classical arrival tim@), i.e., an operator de-
Q|xD(¢)=J le(t,x,y)[*dt dx dy: (5 fined in such a way that the sign pf in front of Eq.(6) has
1xD been deletedcf. also[5]). Using rather complicated argu-

The importance of this representation consists in the fact thdP"€"ts he. proves that this operator is not sglf-adjgint. This is
it gives the generalized eigenfunction expansion of the quanot surprising: In ourp(s,py,py) representation this opera-

tum stateys with respect to the operatdy. Indeed, its eigen- " is equal to
functions are simply Dira@ functions in the variablée. P

The transition from a plan®, to another pland®,, was Te=—isgns)hi— (8
also studied within this representation. There is absolutely Js
nothing nonconventional in the fact that such transition op- . .

. : and one sees immediately that such an operatonbalf-

erators form a group and the generator of this group is noth- " . . : e N .
) > - adjoint extension because its deficiency indices are different
ing but the momentum operatpg . Hence such a transition  (ng arguments based on the Pauli theorem are necgs€ary
may be formu’lyated as an “evolution on a family @ the other hand, the axiomatic approach proposddjiteads
=const planes”(as mentioned by Delgado and Mugaith  ynjquely to aperfectly self-adjointoperator(4) (the same
p, being the Hamiltonian of such an evolution. Here the onlytechniques were later used [6] in order to prove the

nonconventional aspect was the use of the akovepresen- uniqueness of the Newton-Wigner position operator in rela-
tation. To obtain the explicit formula fqu, in this represen- tivistic quantum mechanigs

tation, we had to express it in terms of momer&af)(,fay), _ Both Refs.[2] and[3] confir_m th(_a main theorem proved
in [1]: The above constructiois unique Indeed, formulas

)

and Muga, was based on a misunderstanding of this simpig°S€d in[1]. On the other hand, Ref2] constructs an ap-
proximation(in a certain sengeof the “classical” formula

On the other hand, any quantum stéaidether described by self-adjoint operators. Again, ogrrepresentation simpli-
in my representation as a functiqn or in the position rep- fies this construction Considerably: It is sufficientsimooth
resentation as theonventionawave functiony) undergoes Out the singular vector field(8) within the interval s
the standard‘chronological evolution” from timet; to t,, e[ — €,€] and define the operatdr, as a Lie derivative o
described by the Schdinger equation. There is absolutely with respect to this smooth field. Keeping in mind the fact,
no contradiction between these two different evolutionsthat the wave function igot a scalar but a half density, we
They are used to answdlifferentphysical questions. immediately obtain formul#37) of [2].

In addition, formula(4) may be recalculated from one  Although, there is no room to modify the mathematically
representation to anothée.g., to the momentum representa- unique definition of the probabilit®, .. 5 () within the stan-
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dard mathematical framework of quantum mechafsgec- conventional quantum mechanidst this point the time op-
tral measures, self-adjoint operators, etihe problem is still ~ eratoris already definedvithout any nonconventional tools.
open from the physical point of view. Indeed, the probabilis-The remaining part of the paper is devoted to the analysis of
tic interpretation of quantum mechanics is based on shotthe properties of the quantum mechanical observahie-
measurements of the type, What is the probability that théined this way. In Sec6 | prove that it possesses the correct
particle will be found within the three-dimensional voluie classical limit. Finally, in Sec7 | show how to diagonalize it
preciselyat a given time instant? How to relate them to (or to find its complete set of eigenvectprEor this techni-
long measurements, corresponding to time intervatther  cal purpose the nonconventional representatipasid ¢ are
than to time instants, is by no means obvious. From this introduced. There is no doubt that these are new representa-
point of view the result of Ref§2—4] are very interesting. tions of aconventional wave functiorn the first formula of

| want to stress that the classification “nonconventionalthis section(p. 370 | define the wave function in this new
wave function... whose relation to the conventional wave representation starting from the wave function in the conven-
function is unclear” could only be conceived by somebodytional momentum representation. As a conclusion | claim
who did not read my paper carefull§]. Indeed, the compo- that the complete construction of my arrival time in the con-
sition of the paper is following. In Sec. 1 the Heisenbergtext of the absolutely conventional quantum mechanics is
energy-time uncertainty principle is discussed. In Sec. 2 tontained in the first six sections of RéL].
propose to understand the quantly appearing in this prin- In the remaining part of the paper | also analyze the rela-
ciple as the “average deviation of the time of passingtion between arrival times corresponding to different planes
through the planeQ” (or “arrival time” in modern lan-  (different values of the variablé). Delgado and Mugé#3]
guage; see page 36Moreover, | analyze the physical ori- do not like this analysis and remark that the wave function in
gin of this uncertainty. Section 3 contains the proof that thethe ¢ representation “evolves on a family &f= const planes
three naive ways of defining the above arrival timecon-  instead of evolving in time according to the Sctiirmger
ventionalwave mechanics are incorrect. In Seécl show  equation.” | stress, however, that this nonconventional evo-
how the arrival time can be defined axiomatically in classicallution does not contradict the Scliinger evolution because
statistical mechanics. In Seb | prove that the same set of both evolutions describe different aspects of quantum me-
axioms may be taken as the definition of the arrival time inchanics.
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