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Properties of the linearized quantum optical bus
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A formalism is developed that allows one to calculate the propagation of quantum noise, technical noise, and
signals through a linearizeguantum optical busi.e., a complex composite multibeam optical quantum sys-
tem. General expressions for the output squeezing, the correlation coefficient, and quantum correlation coef-
ficient between output observables and the transfer coefficients are derived and discussed in detddl The
correlation is introduced as a measure of the overall correlation of a set of output quadratures. From its
geometric interpretation a multidimensional uncertainty relation is derib@ect quantum-state preparation
(QSB is introduced as a method complementary to the conventional, indirect QSPmihhmal variance
achievable by direct QSP is shown to provide superior noise suppression, including quantum noise suppres-
sion, than the conditional variance provided by indirect QSP. As an application we calculate and discuss the
properties of a balanced bus of beam splitters with squeezed vacua at the usually unused ports. An important
experimental effect is imperfect beam mode match, which is shown to lead to dramatic effects. A theory is
derived which quantitatively matches measurements. Analytic expressions for the imperfectly modematched
squeezed-light beam splitter including detection losses are given. Finally, a direct method is used to calculate
the input-output matrix for the multiport subthreshold degenerate optical parametric amplifier for arbitrary
parametric and mirror coupling strengths and detuning.
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I. INTRODUCTION guantum-mechanical limits. Second, imperfect modematch
leads to the detection of several modes on a detector, and can
In the early 1980s, tremendous theoretical progress wagad to dramatic interference effects, as is demonstrated later.
achieved in quantum optics, particularly on squeezed light This paper resolves these issues using a linearized ap-
[1,2], quantum amplifier§3], and quantum-nondemolition proach, which is appropriate when weakly fluctuating, bright
(QND) measurementst]. Soon after, paralleling experimen- beams are detected. The contents of this paper are structured
tal results on squeezinip], QND measurements], twin as follows: A formalism that allows the composition of indi-
beams[7], and quantum amplifierf8] were accomplished. vidual quantum optical systems and the presence of technical
These advances sparked the definition and use of characteteise is derivedSecs. Il and I} and used to predict the
istic quantities to gauge the performance of the realized sysqueezingSec. V), the transfer coefficientéSec. V), and
tems[9,10]. Recently, more complex systems have been rethe correlation of beam operatgiSec. V). The total corre-
alized that inject the output of one quantum optical systemation is defined and introduced as a measure of the overall
into a second quantum systdil,12. correlation present in a multimode system, and used to de-
All of this work investigated basic quantum optical prop- rive a multidimensional uncertainty relatiqf®ec. VI). A
erties, such as the squeezing of the output beams, the cornmethod for quantum-state preparati@SP is presented,
lation coefficients between various operators, or the transfewhich provides superior noise reduction in comparison to the
coefficients. As experiments became more complex and thettonventional approactsec. VIIl). As an application, a bal-
explorations were carried out in more detail, the existinganced quantum optical bus consisting of beam splitters with
theory needed to be extended in order to answer two majasqueezed vacua at the usually unused ports is ana(@esd
questions: IX). The theoretical model is further generalized to include
(i) How can quantum optical properties of composite sysimperfect modematch using a multimode description of a
tems be predicted, knowing the properties of the individuakingle bean{Sec. X. Finally a derivation of a general input-
systems? The answer must take into account that one systesatput(I0) matrix for a degenerate optical parametric ampli-
may generate correlated and/or squeezed beams that are fier is presentedSec. X). The paper closes with a summary
put beams of a following system. and conclusiongSec. Xll). For some parts of this paper, a
(i) How can the results of nonideal “real life” experi- more detailed discussion can be found in Ré&B].
ments be predicted? Apart from optical losses, two more Recently, a series of publications on QND measurements
effects are present in general and may affect the detection dfas appeared which focuses on experimental techniques,
guantum optical properties significantly: First, technicalmeasurement results, and their comparisons to theoretical
noise, e.g., from the laser source, is detected in addition tpredictions[12,14,13. In these references the correspon-
quantum noise and increases the noise level beyondence between experiment and theory was remarkable. A
thorough explanation of the theory used was not possible due
to space limitations. In this paper the successfully applied
*URL: http://quantum-optics.physik.uni-konstanz.de theoretical model is explained in detail.
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time dependent ——= —> SXp(@)=Cpy( @) SX 4(w) +Cy(®) Y 4(w), (39
_coherent '_? Sji : Skj : ; ’ ’ ’ ’ ’
input beams : : : OYp(w) =dpg(@) 6Xg(w)+dpg(w)SYg(w) . (3b)
indices indices indices

The fluctuation angular frequency is denoted dand the
(Einstein sum convention of free indices that occur in pairs
FIG. 1. Block diagram of the general quantum optical bus. IS used. Comparing these equations to their Hermitian con-
jugates, it can be seen thzﬁg(w) =Chg(— @) and the analo-
Il. INPUT-OUTPUT FORMALISM gous relations foc', d, andd’ hold, and that all four ma-
FOR THE QUANTUM OPTICAL BUS trices are real fow=0. By selecting appropriate input and
, , N , output quadratures, it is in many cases possible to simplify
To keep the notation of various quantities as simple aghese expressions significantly and obtain decoupled equa-
possible, we adopt the following convention: The name of;,s for the quadratures, i.&),=0=d},. Then the ampli-

the index .Of a quantity, e.g., th_e a_mplitude of a c_ertain bez_a ude and phase quadratures propagate independently of each
characterizes where the quantity is located within the optic ther

gzzil’n checz:gtf E(I:%I i sl'?epr;t ?:Jaa:wr:;g?risatrﬁelsngeﬁi\?lt\i/;ligs] In general Ay, are steady-state solutions depending on the
to those indexedpb' andy’ Whjilch are again transfgrmed b system Sy and its Inputs. However, i, operates fully
yandj, g Y linear, relations(3) also hold for the full quadratures, not

H ' H ’
the next optical sys_terﬁkj to quantities indexed l_)kandk ' only for their fluctuations, and the following relation allows
Whenever properties are discussed that are independent determine the carrier of an output:

the position within the optical bus, indicgsandg’ denote
input beams 08,4, andh andh’ denote the output beams. Ah:(chg(0)+id,qg(O))Re(Ag)wL(cgg(O)Jr idpg(0))IM(Ag).

We consider the initial conditions that afiput beams of (4)
the first systentindexed byi) are in time-dependent coherent . . +
states|a;(t)), where a;(t) is a time-dependent complex The fundamental commutation relatiori®(t),a,,(t')]
function that describes an intentional modulation or technicak 644 6(t—t") and [ag(t),ag,(t’)]=[ag(t),a;,(t’)]zo of
noise. This is the special caBe(,t) = 6°(8— ;(t)) of the  the raising and lowering operators express the boson charac-
Glauber-Sudarshan distribution which directly relates to thaer of the light field. Usingf(w)=/"_f(t)e '“'dt/27 for

most  general time-dependent  density  operatothe fourier transformation, the commutator relations
I1B8){B|Pi(B,t)d?B for an input state. This is a good as-

if 33 kK

sumption for many experiments because the vacuum state is [ag(w),a;(w')] = 8gg N0+ ") [2m,

given by «;(t)=0 and the output of a laser driven well ; (5a)

above threshold is a coherent state. This description allows [ag(@),ag (o) ]=[a)(w),ag(w")]=0,

us to include quantum and technical noise as well as an in-

tentional signal. The connection to the lowering operars [Xg(@),Yg(0")]=i64y d(w+w’)/4m,

is then (5b)
[Xg(w)yxg’(w,)]:[Yg(w)ng’(w,)]:O

ai(H)]ai(t))=a;(t)|ai(t)). (1) follow, which also hold analogously for the fluctuation op-

erators. To ensure that an optical system transforms input
Working in the corotating frame, the carrier of a beam ishoson fields to output boson fields, the four 10 matrices must
given by the time average of the quantum mechanical expe@PeY further restrictions. Using Eqs3) and (5b) and o’
tation valueA,=(ay(t)). Then the fluctuations of the low- :._d“.” the following matrix consistency relations are de-
ering operator and the fluctuations of the coherent excitatioh’V€®:

can be defined agay(t)=ay(t)—Ay and day(t)= ay(t) c(w)d(w)—c'(w)d'T(0)=1,
— Ay, respectively. The Hermitian quadrature operators are
defined by X4(t)=(ag(t)+aj(t))/2 and Y4(t)=(ay(t) cl(w)c'(w)=c'(w)cl(w), (6)
—a;(t))/Zi, and likewise for the fluctuation quadrature op- + ) .
eratorsdX,(t) and 8Y(t), leading to d(w)d"(w)=d'(w)d' (o).
A consequence of these equations is the conservation of
Xq(t) = 6X4(t) + Re(Ay), (28  phase-space volume, as discussed later in this paper. For de-
coupled quadratures the important relation
Yq(t) =Y 4(t) +1Im(Ay), (2b) c Yw)=dN(w) (7)

results, allowing one to deduce the properties of one quadra-
ture type from the other. In addition this demonstrates the
inverse properties of actions on the quadratures single

The optical systen$,q transforms these input beams to out- beam: amplification of the phase comes together with deam-
put beams. In this paper we investigate systems that allow plification of the amplitude, which eventually leads to
linearized treatment of the fluctuations, which leads to IOsqueezed light. For phase-insensitive amplification at least
relations[2] of the forms two beams must be coupled.

ag(t) =Ag+ 8Xg(t) +i8Yy(t). (20)
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Ill. PHOTODETECTION AND PHOTOCURRENT K (@,0")=(iH(@)in (@)
CORRELATIONS

={j i (o)) + (X )
The statistical properties of beams are usually investi- (in(@))* (i (@) + (Xgi(@)Xpri(@)
gated experimentally by photodetection. The photocurrents +iXpi(@)Ynri(@) = iypi(©)Xpi(o)
are calculated by . ,
+Yhi(@)Yhi(w)d(w—w’)/8m,  (14)
in(t)=ag(t)an(t)

— (i)
~|Anf2+ 2 R AR 8Xn(D) + 2 IM(A) SYR(D), (8§ (@)= n(@in(w)

where the electronic charge is set to unity, and terms qua- =[in(@)[2+ 2 |Xni(@) +iypi()|25(0)/8,
dratic in the fluctuations have been dropped, leading to a '

linear relation between the fluctuations of the current and the (15
guadratures of the detected beam. These dropped terms are

negligible if the fluctuations are small with respect to the (in(@))=118(®) +Xpi(w)(Re da;)(w)

carrier, i.e., for a weakly modulated, bright beam. This ap-
proximation is not applicable for single photon detection or
for pulsed systems. Fourier transforming the currents an
using Eq.(3) results in

*¥hi(@)(Im Saj)(w). (16)

ﬂlote that there is an explicit reference to the input beams via
the indexi, since their quantum properties are known by Eq.
; _ (1). The terms in Eq(15) may be interpreted as follows: The
In(@)=1hd(0) +2ReAn) OXn( @) +2 IM(An) 6Yh() first term is the power spectral density of the classical pho-
=1h0(w) + Xpg( ) OXg(w) +Yng( @) 8Y4(w), (9)  tocurrent(16), wherel,5(w) generates the power of the dc
photocurrent and the second and third terms in(&6). gen-
with the mean current erate the ac photo current due to a classical modulation of the
input beam caused by the Fourier component$af. The
Ih=]|An|?, (10 second term in Eq(15) is the quantum noise that originates
from the commutation relations and that is present even
Xpg(@)=2 REAp)Cpg(w)+2 Im(Ah)d,Qg(w), (11 when §a;=0. The appearance of th#&functions reflects the
integration of the electrical current over all times in the Fou-
and rier transform.
These expressions are very general, and include all the
Yhglw)=2 Re(Ah)c,Qg(w)+2 IM(Ap)dpg(w). (12 guantum mechanics that is necessary to proceed further.
Many systems, however, show their optimum properties
A spectrum analyzer measures the electric power spectrathen the quadratures are decoupled, cé=d’=0. In the
density P,,(w) of this current at a specific frequenay?2. rest of this paper, we will focus on these systems. When two
In classical physics, this power density is proportional toof these systems$,; and S;;, are combinedg,;=c;Cj; ,
lin(w)|?. This can be generalized to the quantum mechanicad,; = d,;d;; andcy;=d;=0 result for the composite system
expectation valueP,(w)=(il(w)is(»)) for the product S,. To ensure that the photodetectors only register
state of the input beams. There is no ordering ambiguityone quadrature, we consid¥y, andY,, to be the amplitude
sinceip(w) andiﬁ(w’) commute. Also, the constant of pro- and phase quadratures, respectively. This is expressed in
portionality has been dropped as only ratios of power densilm(A,)=0 as seen from Ed8). Im(A,)=0, and
ties will be used. In the following, the more general second-
order expectation valueKpy (w,0')=(i{(®)in (o)) is An=Cng(0)Aq (17
calculated, which also allows one to calculate the correlation ) )
of the output currents. Some identities are very handy tdollows from Im(A;)=0 and Egs.(4) if the systemS;, is
evaluate these quantities{5X;(w))=(Reda)(w) and fully linear. The_n ImAh)zo_can be achieved by injecting the
(8Yi(w))=(Im Sa;)(w), Where the notation indicates that iNPUt beams with appropriate phase, Ag=0. In practice,
(Re da;)(w) is the Fourier transform of the real part of this is done using servo control systems. In addition, we
Sa;(t), not vice versa. Note that the indéxdenotes refer- assume w,w’#0, from which 6Xy(w)=X,(w) and
ence to the coherent input beams. To evaluate second—ordlé?/h(w):Yh(w) follow. Significant simplifications arise and

expectation values such as ead to
(8Xi(@) X/ (0'))=(Re a))(w)(Re a;/)(w') h(@)=Xng(@)Xg(),
+ 6w+ o')/8m, (13 Xng( @) = 2AnChg(®), Yhg(@)=0, (18)
t_he quadratures are _decgr_npose_d into creation and annihila— Kine (@,0") = 4AnAm( Xn( @)X (0'))
tion operators, and simplified using the commutator relation
(5a), leading to the second term in E4.3) that will generate =AvAL (ME (w)Mmp (') 8(0)

the quantum noise. Taking everything together, the results .
are +cti(w)eyi(w)d(w—o')2m, (19
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tions. S,<1 indicates the generation of squeezed light and
Pr(@)=1p [my(@)|2+ 2 [chi(w)|?| 8(0)/2m, (20) requires low classical noise and use of a system with
' Silchil?2< 1. Note that in experiments squeezing usually de-
where notes noisesuppressionS, *.
At this point we wish to point out a peculiarity: Quantum
m;(w)=+/81/5(0)(Re da;)(w), My(w)=Ccpi(w)M(w). concepts are used here for the definition of the initial state
and for the photodetection process which involves the com-
(21) X . ;
mutation relations. The propagation of the operators, as ex-
The important quantityn; denotes classical amplitude fluc- pressed in the 10 relations, is classical: The operators them-
tuations of;(t) due to intentional modulation or technical selves propagate just as their classical analogs, i.e., their
noise. It is normalized such that; = 1 represents equal spec- quantum-mechanical average values. However, an IO matrix
tral power densities of the classical and the quantum noisthat satisfies the conditioiey,|><1 is a necessary condition
for a time-dependent coherent state. The appearanépf for a system that generates squeezed light. This demonstrates
in the denominator is unusual, but can be motivated as folthat even the classical part of a system, i.e., its input-output
lows: If Fourier transformation is not taken for all times but relations, can be responsible for nonclassical properties of
only from —T to + T, we haves(0)=2T and (Redx)(w) is  the whole system, such as the detection of squeezed light.
proportional toyT for white noise, which ensures tha( )

is well-behaved asT—ow. As expected, only amplitude V. TRANSFER COEFEICIENTS

guadratures,,, classical amplitude modulations Re; and o

the 10 matrixcy; enter the previous relations, whereas their A. Definition

counterpartsy,, Im ée; anddy,; do not contribute. The transfer coefficients are of central interest for the

~ Based on the previous equations, we now turn to quantigyality of information transmission. They are defined as the
ties s.u.ch as squeezing, transfer poefﬁmepts, and correlatiGfaction of the input signal-to-noise power rat®NR) that is
coefficients which are of crucial interest in theory and ex-transferred to the output of the optical syst€®}. For this
periment. From here on, equations will be presented in thgrpose, a separation of the total modulatiog= m‘g+m§
frequency domain, and the arguments often omitted. into broadband technical noisej; and the intentional sinu-
soidal signal modulatiomn; is required. The photocurrent
IV. SQUEEZING power, when averaged over a certain bandwidth, is propor-

To calculate the squeezing of an output bdarthe actual  tional t°t| my| 2+ mg |2+ 2| cyil?, because the cross term be-
noise power density?, of the detector current is compared tweenmy andmg can be shown to be negligible. Therefore
to the noise power densifj;, sq of an unmodulated, coher- the signal to noise ratio of a signal on beanRy,, is
ent beam of the same intensity and wavelength which defines
the standard quantum limi{SQL). As the current fluctua- Ry = _h (23)
. R . . K h
tions are proportional to the amplitude fluctuations, this ap-
proach is equivalent to calculating the squeezing by compar- '
ing the variances of the amplitude fluctuations instead of the
currents. To calculat®, sq, de;=0 is used for unmodu- whereS;,, must obviously be measured with the signal modu-
lated input beams, and the “identity” optical system is con-lation turned off. For the measurement of the transfer coef-
sidered, cy=dy;= 3y, ¢'=d’=0, which leads toPy, 5o ficient T,; from beamj to beamk a signal is only applied to
=1,8(0)/27. Therefore the degree of squeezing is the input beamj, therefore|mi|=|c,;|’/m?|? holds. The

general transfer coefficient is then

P (8X)0Xp) )
Ph.soL <5XE5Xh>SQL ka%: |ijs|k Sj.
j

ShE
(24)

=|mp|2+ 2 [l . . . . .
i This relation leads to the important interpretation that the

2 transfer coefficient is the fraction of the output noise of beam
+ lenil? (220  kthatis due to inpug. This relation can be used to determine
i the modulus of any coefficient of the 10 matdy;, since the

squeezings can be measured independently.
where the definitions ofn, and the sum convention is made

explicit. The two noise terms in this expression represent
technical or modulation noise and the quantum noise, respec-
tively, transferred from the input beams to the output beam For information transmission purposes it is essential to
h. An important difference between modulation or technicalknow how well the SNR can be transmitted from the emitter
noise and quantum noise is that modulation noise can inteto the individual receivers. A suitable quantity is the total
fere destructively, whereas quantum noise is always preseritansfer coefficient

This difference is expressed by a coherent sum of the modu-

Iatior_1 amplitude contributions from diffe_rent input beams TtotjEE Ty (25)
and incoherent sums for the quantum noise power contribu- Tk

E‘Z Chilm;

B. Total transfer coefficient and phase sensitivity
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which measures how efficient information can be transferrec limit which coincides withLgg for n=2 and exceedkgg
from a specific inpuj to all outputsk. for n>2.

This quantity is difficult to investigate in general form.  The concept of phase sensitivity has proven very success-
Some insight can be gained by considering phase-insensitiviel for a categorization of two-beam systems. However, one
systems. These systems, like the beam splitter or the nondhas to realize that a combination of phase-insensitive devices
generate optical parametric amplifi@@PA), operate simi- may still generate squeezed states: One example is a
larly on amplitude and phase noise. In contrast, a degenerateequency-degenerate, type-ll phase-matclipdlarization
OPA reduces the noise of one quadrature at the expense nbndegenerajgOPA that is sandwiched between two appro-
increasing the other’s. A criterion for phase insensitive op-priately aligned wave plates that mix signal and idler beams.
eration of a system is that uncorrelated input beams witlThe complete system is equivalent to two independent de-
phase insensitive noigee., equal phase and amplitude noisegenerate OPA’s which are phase sensitive and generate
for each bearnlead to output beams that still exhibit phase- squeezed light. Therefore the phase-insensitive amplifier,
insensitive noise. From thige,;| =|dy;| can be concluded. which is commonly—and we believe incorrectly—
The maximum total transfer coefficient for any phase-considered a classical device, can also exhibit nonclassical
insensitive system couplinigvo beams is found to be features. The two systems that lead to the crit€2® and

(29) are suitable benchmark systems. Rer3 both criteria

max  To.— 25 26) are different, and it is up to the experimenter to decide which
tot,j T @ 1o

phase insensitive S+ system to use as a reference system.

whereS; andS;, are the squeezings of the two input beams. VI. CORRELATION

This is shown by parametrizing the 10 matrices in accord
with Eq. (7) and maximizing Tiy;. The maximum is
achieved for a system as simple as the balaii66éo reflec- An additional important and experimentally accessible
tivity) beam splitter. It is important to realize that the noisequantity is the correlation coefficient between two beams, in
of the signal input plays an important role: If the second,the following simply termed correlation. The discussion of
“meter”, input is in the vacuum stateSj, = 1), strong tech- its properties can mediate much understanding of quantum
nical noise on the signal inpus(>1) will lead to an almost ~ optical systems. The correlation between the two photocur-
perfect SNR transmissio(;— 1, T,;—2). This, however, rents of beam& andk’ is easily calculated:

is not achieved due to a smart coupling system, but because

A. Definition

the quantum n(_)ise of_the meter inputz which is added to the o= Kk (0, 0) __ Kkk , (30)
23?55 beams, is negligible in comparison to the signal input VKl @,0) Ko (0,0)  VSeSer
Quantum nondemolition measurements rely on phasq;vhere
sensjtive methods that allow one to measure one quadrature
Rire, Phase-sensie operation can therstore be conoluded f e =T M+ i @
25 which satisfiesc .= S;. The coefficients¢,. after the sys-
T‘°"j>1+_]Sj’ (27)  temS; are related to the coefficients;, before the system

by «k=cr.ceirkiir. Thus, a correlationCy.#0 for k
kk kj“k! " Rjj kk

as either the system itself operates phase sensitively or ek’ can bf due to elther a common modulation or to_ the
meter input is squeezed(<1) and therefore phase sensi- condition ¢j;Cyi#0, which expresses a rare and precious
tive. The widely used criteriof,,,;>1 for a quantum optical guantum correlatlo_n ability of the system, as shown below.
tap(QOT) is a special case of f@,= 1 and is inapplicable if For the correlation between two bea']?‘?”d k, the ex-
S;>1. Therefore we suggest use of EQ7) instead of pressions are.analogous to Eag), wherek s repl:_;tced by
Tiot;>1 in future experiments to judge QOT operation. j- In this situation we have;=c,;, «;,; . An interesting spe-
For a general system that couplegwo or morg beams, cial case arises, when the implicit sum of the latter expres-
maximizing T,,; for a phase-insensitive system is a complexsion consists of only one term, i.e. if there is only dfired)
task even fom=3. The limit L for a criterion for phase- beamj’ thatis correlated to beajrand is connected to beam
sensitive operatioff,,;>L is still unclear. The special case k- In this situation, which is sketched below, one obtains
of a signal beam coupled to—1 vacuum beams by beam
splitters(BS) of optimal reflectivity demands I T

== —k o =Ty ol

Ttotyj>LBSEn§/(n_1+S]), (28) J (32)
which can be derived from Eq64). A different phase-
insensitive test system is a high-gain nondegenerate OPAhis equation states that a correlation is propagated through
(NDOPA) with a vacuum idler input followed by—2 beam a system with the same efficiency as a classical signal,
splitters that couple the outputs to vacuum. This suggests namely, the transfer coefficient.
If all beamsj are uncorrelatedy;;, = d;;,S;, all informa-
Tiotj>Lnpora=nS /(S +1), (29 tion is then present in the absolute noise level, i.e., the
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squeezing, and no reference to the initial beaisgequired. correlation of the expectation values, whereas the second is
It is therefore not surprising that significant simplifications related to entanglement. One indicator for entanglement is
arise: the correlation of the quantum fluctuations of two operators
in different Hilbert spaces: If there is no entanglement be-
tween these spaces, then the total state, or more generally the
S=2 lel?s, (33)  total density operator, allows factoring off these two spaces,
! and then the correlation vanishes. Therefore, an observation
of correlated quantum fluctuations requires the presence of
T =1ckil*S;/S¢ (as beforg, (34 entanglement.
Let us investigate the quantum correlations of the photo-
currents. Pure quantum correlations are calculated using
Kie =2 ChiCw;S; and Cie =k /VSSe, (35 (a,by=(AaAb)=(ab)—(a)(b), where quantities of the
: type Aa=a—(a) are investigated to remove classical fluc-
tuations. The superscrif is used to denote that exclusively

k=Cx;S, and [Cyj|*=T,. (36)  quantum properties are considered. The quantum correlation
is then

This leads to the conclusion that measurements of the Q

. . . . K ,
squeezing, the transfer coefficients, and the correlation do o _ kk
not allow one to distinguish between classical and quantum Cyw= \/QiQ, (37
noise. KKk

From Eqs.(33) and(34), it can be concluded that the sum

of the transfer coefficientso one outputis unity, Ty  WHe'®
=3,T,;=1. This is not surprising a§,; can be interpreted as 0 ) - ) ,
the fraction of noise power originating from bedarhat con- K (0,0")=(i} ()i ("))
tributes to the total noise power present in bdaowever, _ N % /i ,
this does not limit the total transfer coefficieTi =Ty, = Kio (0,0 =(ir(@))* (i (o). (38

h f f ffici i . - . .
the sum of transfer coefficientsom one input Using Eq.(14), it is easily seen that the quantum correlation

Equation (36) allows a different interpretation of the . . )
transfer coefficients, namely, that they are the moduludS the same as the correlation when no modulation or tech-
' : nical noise is presentd;=0). The remaining terms origi-

square of the correlation coefficient between input and out- i / . . .
d P Rate from commutation relations which again states their true

quantum nature. Together with E(¢L9), the following is

to that system is essential. A counterexample is two corre- ¢ for the d led di d'in the latter part
lated input beams that are passed unchanged through a S)? 1Sy 0 see Tor the decoupled case discusse € latter pa

tem. Obviously every output is correlated with every input,O the paper:
but two transfer coefficients that are unity, the other two 0 , N ,
VaniSh. Kkk,(w,w ):AkAk’CkiCk’iﬁ(w_w )/277 . (39)
A crucial question is: How can correlation be generated?
There are three different routes to prepare correlated beamsl herefore, entangled states can be generated by a device that
andk’: (i) Two input beams #j’ are already correlated: €xhibits theentanglement property
«jj»#0. (it) Two input beamg andj’ carry different noises:

S;#S;/. (i) The systemS,; possesses thentanglement 3 k#K':cgici #0. (40)
property. 3 k#k': c;‘jck,jqﬁo. If none of these conditions is
satisfied, their negations;;,=S;8;;:, S;=S;» and cj;Cy; The properties of quantum correlation were derived in the

= |cij| 261 Quickly lead toxe =SS , Which states that frequency domain, but the time domain is also of interest.

no output correlation is present. Obviously, the first method/Sing Fourier transformation and E(B9) one can derive

is not constructive, as it makes use of already correlatedi(t),ii(t'))=AA [Cii(w)cpi(w)e " dw/2m.

beams. The second is best illustrated with a simple exampl&:his leads to the quantum correlation coefficient in the time
Consider a modulated beafsqueezing is greater thap 1 domain:

incident on a beam splitter, the other input is the vacuum

state (the squeezing is equal to.1Both output beams are fc’gick,ie*“”(‘*t')dw

then correlated due to their common modulation. However, it Cka,(t,t’): . (47

is shown in the next paragraph that this correlation is of \/ICEiCkidw\/fC:/iCkridw

classical origin. Quantum correlation can only be generated

by (iii). As is to be expected, temporal correlation can be observed

over time differences which are inverse to the bandwidth

o S
B. Quantum correlation and entanglement over whichcyicy; is significant.

One of the most interesting features of quantum mechan-
ics is the concept of entanglement. This section differentiates
between correlation and quantum correlatjas]. The first For an experimenter one important question is whether a
may be caused completely by a classical correlation, i.e., measured correlation is due to entanglement or to technical

C. Testing for quantum correlation
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noise in the system. This section derives bounds for thesqueezing of unity, such as vacuum. This situation applies if
qguantum correlation coefficient, which are experimentallyonly one laser beam that carries technical noise is injected
accessible. All input beams to the system are assumed to lieto a system. Using the inequalitiéa—b|?Z(|a|;|b])?,
uncorrelated, and all beansexcept for beanj, exhibit a  the following holds:

*
‘ 2 ijCer-

2 2= _
:(2 C:jck’jsj)_C:jock’jo(sjo_l) gSkSk’(|Ckk’|+\/TijTk’jos)zu (42)

SSE; |ij|2=Sk(1_Tkj08)v (43

wheree=1-1/S; . For the quantum correlation it inmedi- state under investigation it cannot reveal information about

ately follows that it. The resulting Hermitian matrix is normalized such that a
) diagonal elemenk;,, equals the squeezirsy, of the operator
ClCuri _ Qn:knn=Sh. . . . .
0 §]: Kj¥k'] _ (|Ckkr|+\/Tkj0Tk,jos)2 The total correlation exhibits the following desired prop-
|Ckk,|2= - 1T 1-T . erties:(1) All guadratures and beams are treated equédly.
> legl?2 lewl? ( p®)( <jg?) 0=<C2,<1. (3) C2, is invariant under complex scaling of
j

i each quadrature operat¢d) C2,=1 if any two quadratures
44 are perfectly correlated5) C2, remains invariant if new
Therefore, the presence of a quantum correlation and hena#correlated quadratures are includégl.CZ,=|C;,|? for the
entanglement may be concluded from measurements of thease of two quadratures, wheg; is their correlation coef-
input squeezing, the correlation coefficient, and the transfeficient. Except for the second relation, which is proven be-
coefficients. For small excess input noise, i.e., sraalhe  low, these relations are simple consequences of the defini-
correlation and the quantum correlation are nearly identicaltions. The diagonals of the Hermitian matfy,,, are unity,
CEK,=Ckk,+O(s). As the lower bound foriCka,|2 never and its trace equals its dimension. According to definition
becomes negative, care has to be taken when both terms {46), diagonalizing C,, is interpreted as finding eigen-
the numerator of the lower bound are comparable withinquadratures from linear combinations @f, that are uncor-

measurement error. related in pairs. A consequence is that the eigenvalues of
Chny are positive because they are the variances of the re-
VII. TOTAL CORRELATION spective eigenquadratures. Therefore the determinady pf
A. Definition is positive andC2,<1 holds. Furthermore, the sum of all

(positive eigenvalues equals the trace®f;, . As a conse-
In this section we introduce a quantity that describes theyuence, the determinant is at most unity, from whieh,
full extent of the correlation present in a system. The condi—q follows. This measure does not distinguish between hav-
tional variancevyqy discussed below is not appropriate, as iting two or more perfectly correlated quadratures, as in both
treats the prepared and measured output beams differentlyaseqc, —1. To distinguish these cases, the dimension mi-
and neglects the phase quadratures. There is a different agys the rank of the correlation matrix is a good measure, as it

proach that takes all quadratures into account on the samgnotes the number of perfectly squeezed quadratures that
basis. All quadratures are denoted@y, where the index  ¢an ideally be obtained.

specifies the beam and the quadrature type, e.g., amplitude or The geometric interpretation of the determinant as a mul-
phase. To describe the full correlation present in a system Wggimensional volume offers additional insight. First we mo-
introduce a new quantity, the total correlatiGp,: tivate the concept using a two-dimensional example, where
C2=1—-DetCrer (45) Q; andQ,, are the corre_lated amplitude and phage guadra-
tot hn' tures of a state. The joint measurement probability of the
whereCpyy = i I\ Kk iS the matrix of correlation co- normalizedquadratures is represented in Fig. 2 as a density
efficients between the quadratu@g andQ,, . As the gen-  ©f POINtS.

eral quadratures do not commute, a symmetrized product is 1€ Plotted ellipse is a suitable contour line of the mea-
used for the second moment: surement densityCy,,, is completely specified by the corre-

lation coefficient between the quadratures, ifein the ex-
4w + + ample shown in Fig. 2. The uncorrelated eigenquadratures
Knh'= 5(0) (QnQn+Qn/Qp)- (46) are oriented at 45° and 135° and their variancegafnd%
are given by the eigenvalues @, according to above
The antisymmetric part d@ﬁQh/ is omitted here: Since itis reasoning. The half axes of the ellipse are the square roots of
the commutator of the operators and is independent of ththese eigenvalues. The area of the rotated rectangle that
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N

follows Det ki =Det(Myj«jj My, )=11;S;, and from
Egs. (45 and (46) 1—C2,=DetCy =Det ki /TI,S.
First we conclude that

(1—C$m)1'k[ Sk=fj[ S (49

which asserts that the left-hand side is invariant during the
propagation, which restates the conservation of uncertainty
volume. Next we deduce the multidimensional uncertainty
relation

-21."‘-'.:" . . 1;[8]
IT s

= = =1
Q,/VVarQ, k 1-Ciy 1-Ciy

Q2 /N Var Qz
<

(50

FIG. 2. Representation of the uncertainty volume. For descrip-The first inequality results from the usual two-dimensional

tions, see text. uncertainty relationS;Sy=1 between the amplitude noise
S, and the phase nois®) for each individual beam, which

bounds the ellipse can be expressed compactly bgan be derived from Edq5h). The second arises because the
4.Det C;,r, Which is at most 4 for uncorrelated guadra- total correlation is between zero and 1. The left side of Eq.
tures. Therefore,/Det Cy,, = \/1_Ct20t is the fraction of the (50) is the product of the variances of all quadratures, which
maximum uncertainty volume which is accessed by the norcannot fall below unity. If these quadratures are correlated,
malized quadratures. The total correlation therefore is a medhis product is at least (2 C%,)~*>1. This important state-
sure for the confinement of the uncertainty volume accesseent expresses that the uncertaiptpduct(not volume of
by the normalized quadratures due to correlations present.correlated quadrature observablesstgctly larger than the
uncertainty product of its eigenquadratures or the minimum
uncertainty product. This situation is depicted in Fig. 2: The
uncertainty volume accessed 1Y, and Q, is bounded

The concept of an uncertainty volume is linked to Heisen-c|oser by the rotated rectangle, relating to the eigenquadra-
berg’s uncertainty relation. Using the ideas of Sec. VII A ayyres, than by the square.

generalized uncertainty relation is derived. A linear optical Finally, we consider the special case of decoupled ampli-
system transforms the input quadratu@gsto output quadra-  tyde and phase quadratures. Then both the correlation matrix
turesQ, according to and the 10 matrix decouple, and the total correlation can be
factored to two total correlations for the amplitude and phase

B. Multidimensional uncertainty relation

Q=MiQ;. correlations. The decoupled uncertainty relation now reads
where
|DetM|=1 (47) HSJX HSJY
etMi=L [MssY=—y——=1 (51)
¢ 1-cX 1-c),

This relation reexpresses Eq8a) and(3h), where the con-

dition on the 10 matrix M is seen from the matrix consis- The indices now denote just the beam, whereas the quadra-
tency relations cast in matrix form: ture type is specified explicitly by the superscriptsand Y
g g for amplitude and phase, respectively.
e Sl

—-d’ —d/lc’ -c

T c c
=1, M=(d, d). (48)

VIII. QUANTUM-STATE PREPARATION (QSP)

Equation(47) asserts that the uncertainty volume is kept con- The aim of a quantum state preparator is to provide a
stant during the transformation. guantum state where the variance of a specific observable is
Note that classical noise is still included in this descrip-as small as possible. The border line to successful QSP is
tion. The operation of a modulator that can generate opticatrossed if that variance is below the standard quantum limit.
fluctuations is interpreted as follows: The optical system isThis can be achieved by either directly generating a squeezed
coupled to an additional mode, usually of electric naturestate(*“direct” QSP) or by generating a state and delivering
which is the input for the fluctuations that are transferred toadditional information that can be used to predict the observ-
the optical beam in a process conserving the uncertainty volble for that specific state to better than the SQhdirect”
ume. In the subspace that excludes this additional mode, th@SB. The choice of the attributes “direct” and “indirect”

uncertainty volume may increase. reflects the fact that for indirect QSP additional information
For the derivation of the generalized uncertainty relationis required and obtained by a measurement process in con-
uncorrelated input quadratures are considergd=S;d;; , trast to direct QSP. Sections VIII A and VII B investigate

from which Detx;;, =1II;S; results. From Eqg47) and(46) both indirect and direct QSP’s and their relation.
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A. Indirect QSP: measurement and correction
(@ (®) B

Consider an optical system that generates entangled out- —: - '
put beams. Each measurement of an output beam leads to o™ H>f modulation |—> & o e (A 70
state reduction of the full state, by which the states of the %B/V/ B
other output beams are changed. This is interpreted as state
preparation of these beams. The quality of the state prepara- ain phase control
tion for output bearnk is characterized by the conditional detection

varianceVyy , which is the remaining variance of the ob-
servableX,, having measured all observablg of beams
k' e M specified by sell of (measureflbeams and using the
information from these measurements to predgt Inter-

estingly, QSP doe§ not rely on gntanglement, as any HOiS&ared already exhibits low noisg, before QSP. Further-
may be reduced in one quantity given otheorrelated 416 this noise level can be reduced by the factor 1

guantities—classical or quantum correlation being equally_c(zgspkIM due to the correlation coefficier€qgpyy be-

useful. . -
In the following, a linear system is considered, andtween the prepared observablg and the optimal prediction

Gaussian fluctuations are assumed, which allow importarik'e'\"gk'xk’ derived from the measured observabls .

e . . . k can be transformed t&,— 2’ - M9k’ Xk’ USINg a modu-
simplifications. In particular, the conditional variance doesIator appropriately driven by the measurement resxis
not depend on the specific valu¥g, measured. Also, the » 4pprop y y

conditional variance can then be calculated by minimizin The squeezing of this output beam is then given by the con-

... . . . )
the variance of the sum of the observablg and a linear ditional varianceVyy . This method was applied success

combination of the other measured observables, where tﬁg"y to the tW|'n—beam output of a nondegenerate optical
L I parametric oscillatofOPO by Mertz et al. [18] to generate
coefficientsg,, are optimized:

squeezed light and to demonstrate its QSP aHikity. 3(a)].

FIG. 3. Comparison of two types of QSR) Conventional in-
direct QSP by detection and appropriate modulatibnDirect QSP
by mixing of beamsA and B with an appropriate beam splitter.

Most schemes avoid the optical feed-forward modulator and
Var| X,— > O Xy use electronic noise reduction after the measuremexi td
) k'eM take advantage of quantum noise reducf{iérig.
Vigm=min 5(0)/87 - (52) Indirect QSP effectively uses the transformatiot
9’ — Xsheark= Xk~ 2k’ « Mk’ Xk’ t0 prepare a quadrature of low

variance. IfQ; and Q, of Fig. 2 are considered amplitude
e quadratures, the transformati@py, —Q,—g,Q, pictorially

performed on other beams, i.e., fr={ }. The best condi- corresponds tehearingthe density distribution horizontally.

tional variance can obviously be achieved by measuring alglc.’ rnoepdtlmzlgiht?«,ganse:?;?sg e"'psfn'.g.;'gl' (2 |_snverrt]|gglrly
other output beams. If the intermediate quadratXgsre Igned, 1.€., W varl Qfy is mini using s

uncorrelated, further results can be easily derived. The Optit_ransformatmn)sand equals the conditional variance before

mum linear combination is given b, = x5V, where the transformation. The variance @b remains unchanged
e 9 k2™ Rk YK asQ, is not transformed.
Vi =k and k., is understood as the inverse of the ma-

trix that is indexed only by members M. Then the condi-
tional variance is

The normalization is identical to that of the squeeZifg.
(13)], which requiresV,jy =S, when no measurements ar

B. Direct QSP: rotation in quadrature space

However, there is a better method for Q3Btating in-
Vk\M:Sk_V:/K[rind":Sk(l_Céspkm), (53) stead of shearing. For optimal rotation angle, the ellipse of
Fig. 2 ends up in the vertical position as for shearing trans-
2 gk 1 formation. However, for the price of an increased variance of

=V} ko Vi ISy . 4 o ' . .

Caspiqm=Vic ki Vie IS 9 Q,, this will reduce the variance oD, below the condi-
: - ; : tional variance, and permit improved QSP beyond the reach

This result was previously derived in Rét. nd a cl I - o .

© previously derived ¢10], a osely of conventional indirect QSP. Note that the rotation takes

related discussion can also be found in Réf7]. For the int drat in th lized d
special case of two output beams, where beam 1 is prepar’féace In true quadrature space, notin the normalized quadra-

and beam 2 is measured, this simplifies to the well know ure space depicted in Fig. 2. The beauty of this method is
result V1\{2}231(1—|C12|2),- For the case of three beams, hat the required rotation can be realized by a simple beam

indirect OSP results in splitter, as indicated in Fig.(B). . .
indi Q uits More generally, we define thminimal variance ; as the

|C14%+|C1d%2—2 ReC1,CoiCa lowest squeezing of a single amplitude quadrature that can
= (55  be achieved by rotation of the amplitude quadratures speci-
fied by a seRR:

CZ =
QSP,1{2,3 1— |C23|2

The total correlation(45) is C2,=|C;5?+|Cyq?+|Csy? 5
—2 ReC;,C»C4, for three quadratures. Together with Eq. Var( E gk'xk’)
(55) one finds that the total correlation exceeds the QSP cor- Vo= min k'eR (56)
: 2 2 R™
relation: Cio=Casp. 12,3 rotation o(0)/18m
Interpreting Eq.(53), one finds that good state prepara-
tion, i.e., lowV,y , is achieved when the beam to be pre-This relates directly to expressiai®2) of the conditional
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variance \jy whenR={k}UM is used. The minimization n-1 meter beams

in Vg is constrained to rotations, which satisty, _g|Ty/|? s s

=1. The required rotatiodX,— X0 k== . ROk’ Xk Can be o " "

realized experimentally by mixing beakwith all beams @ signal input

indexed byM = R\{k} using phase control and beam splitters Ss

of appropriate reflectivity.

The relative contributions of the individual quadratures to (user] - [luser] [luser]

the considered output are equal for both indirect and direct

QSP’s. However, the absolute scale is different due to the FIG. 4. Balanced information transmission system. The signal

different constraints in/g and VklM . This leads directly to  inputis distributed to users usingi— 1 beam splitters of indicated
reflectivities. The squeezings of the signal and meter inputSare

1/n 172 1

Vim andS,,, respectively.
Ve=————=Vym, (57)
1+ 2 [P than an electronic bandwidtkiji) a very low insertion loss,
k' eM

and(iv) the possibility to recycle the laser power of the sec-

whereg,, denote the optimized coefficients that apply for onq 0L_|tput from the beam splitter. Theldetection inefficiency
Vigw [Eq. (52]. A geometric interpretation of the quadrature for |nld|rect QSP plays a similar role as imperfect modematch
rotation reveals that the rotation angles are chosen to tranfor direct QSP. o

form the joint probability density such that minimal variance _Finally, implications for the categorization of systems

emerges for the selected output quadrature. Therefore tHnerge: A system that exhibity <1, which is conven-
output quadrature is the eigenquadrature of the secondionally termed the QSP criterion, can be used to generate
moment matrix< with lowest eigenvalue, i.e., minimal noise. Sdueezed light. That system is therefore considered a non-

This leads to the conclusion that the minimal variance iclassical device. However, a system that is incapabliei-of

given by the minimal eigenvalue af d@rectQSP,\'/k‘le, may still pro'vide squeezed Iight using
direct QSP if Vg<<1. Therefore, instead of theonditional
Vr=(min eigenvaluexy»), variance v the minimal variance } should be used to
classify a system as classical{=1) or nonclassical {5
where <1).
k',k"eR. (59
We can compare direct and indirect QSP for the two-beam 'X- APPLICATION: BALANCED QUANTUM OPTICAL
case indicated in Fig. 3. L&, and Sy be the squeezings of BUS CONSISTING OF BEAM SPLITTERS
the beamsA and B’, their correlation is denote@. Their WITH SQUEEZED VACUA
conditional variances are theW g =Sa(1-|C|?) and AT THE USUALLY UNUSED PORTS
Vej(a;=Sg(1—[C|?). The minimal variance/ g, and the One purpose for a quantum optical bus is to transport the
required optimized reflectivitR of the beam splitter are optical information of a signal beam from one emitter to a
2 12 specific number of receivers The simplest way to achieve
:SA+SB Sa—Ss 2 this is to use a sequence of beam splitters to generate the
Via.B] +SaSe|Cl7| . (59 : : .
2 2 number of required outputs for the receivers. We consider an
arbitrary topology of the beam splitters, e.g., linear or binary-
1 Sa—Sg tree-like, but require that every one of the output beams re-
Rt 78— 5,2 172 60 Ceives an equal sh f the i [ i
" — Sg 5 qual share of the input information. To make use
4 2 +SaSg/C] of quantum noise reduction, we consider equally squeezed

vacuum incident at the usually unused input ports of the

We give one example to show the potential of QSP by rotabeam splitters. The fluctuations of all input beams are there-
tion. A high-gain nondegenerate OPA is known to generatéore independent. An example for such a system is given in
twin beams with high correlatio@—1 and identical noise Fig. 4, which was discussed in R¢21]. o
level S=S,=Sg. In this case one expectd; g =5(1 To calculate the properties of this system, it is divided
—|C|) which is lower than both conditional variances by theinto two parts. The first syster§; treats every beam sepa-
factor 1+|C|. In frequency-degenerate systefi2d] direct  rately. The signal, whose squeezing Ss, is passed un-
QSP can therefore outperform indirect QSP by up to 3 dB ofhanged, and every other input which is in the vacuum state
quantum noise reduction. This method may come along withs squeezed, such that the resulting squeezing§is One
a destructive interference of the carriers of the input beamdmportant parameter is the fraction of meter to signal noise
However, when frequency-dependent elements like a cavitg=Sm/Ss. The next systen,; describes the mixing of
are inserted in one input beam, both destructive interferencéiese beams by the beam splitters. This is a unitary transfor-
of the noise and constructive interference of the carriers ignation, and thereforeg;c,/j= 6o and c;cj, = &;;, hold.
possible and minimal noise and maximal output power ard'he requirement of equal signal distribution is implemented
achieved. by |cy;|?=1/n if j=1, which denotes the signal beam. Using

The advantages of direct versus indirect QSP @ea  the expressions of the previous paragraphs, the following
superior noise suppressia(ii,) operation at an optical rather results are obtained for this system:
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S=Ss(o+(1=0)/n), (61 10
l1-0 0.8
|Ckk’| = m for k#k’, (62)
0.6
S 1
Tkl_@‘ no+(l—o)’ 63 04
S 1 0.2
Ttot,l_g = ot (1=o)n’ (64) —
0.0, 2 4 8 16 32
The total transfer coefficienl,, ;, which is the crucial pa- n

rameter for information transmission, goes t@ Hsn be-
comes large. This leads to the surprising result that as far as FIG. 5. Operation characteristics of the balanced quantum opti-
information transmission is considered, instead of using C&l bus as indicated fo8=1 andS,=0.1.

—1 squeezers, it is just as efficient to use a single antiz

; . o from and partially transmitted through the cavity. To our
squeezer, such as a noiseless parametric amplifier, to gener-

: . i : surprise, we found dramatic discrepancies between experi-
ate a signal input beam with a squeezing af,ldnd to use o "
) ' o mental data and the predictions. This problem sparked most
vacuum at all meter input ports. As<<1, this amplified

) ! o . of the contents of this paper.
beam carries excess noise, which increases the noise floor at i : L
The resonator used for this experiment was a monolithic

the input and helps to achieve a godg,,. Interestingly, lithium niobate ring resonator with a free spectral range of

there is no difference whether this excess noise is due t90.19 GHz, a 1.25% transmitting dielectric input coupler,

:2crzans;geth:ssntu;aﬂqo;ﬁcog;]o Iﬁlizfst'oczlngg'Sfé;cév:ﬁ;/e;i' lrj]%pd round trip losses of 0.39%. Frustrated total internal re-
9 P P q I%ection was used to generate an additional coupling that

before it is injected into the beamsplitter array does not affecz . . : .
the SNR at the input, and increases the SNR at each outp%OUId be varied by moving a coupling prism near the crystal

Further calculations provide the results for the remainin urface with a piezoelectric transducer. The optical efficien-
uantities of interest Pfe aring one beam and measurin gzﬂes were 98.5%, 96.3%, 96.6%, and 97% for the propaga-

q L paring ¢ 9 Flon of the input beam, the reflected beam, the transmitted

others, the conditional variance is

beam, and the quantum efficiencies of the photodiodes, re-

spectively. The single-frequency input beam was at a wave-

Voo no 65) length of 1064 nm, and its power was 2.35 mW. This system

Krest 4 — 1" was described in detail in Rdfl4]. The measurements of the

transfer coefficients in Fig. 6 were taken at a frequency of

which goes along with a QSP correlation of 21.5 MHz. The mea;ured transfer coefficient for the reflected

beam showed a striking and unexpected dip at an output
coupling near 0.7%, as indicated by the vertical arrow.

_ — )2 X
c2 _ (n-1)(1-oa) _ (66) Eventually, the imperfect mode match of 90.2% turned
QSPKIrest (n+ g—1)(on—o+1) out as the origin of this unexpected effect. The mode incident
. . Lo 0.8 — r -
Finally, the expression for the total correlation is
- reflection
oz 1 1 . 1-o |" 5 506+
ot 5 (n=1)o+1]| " 67) = theory for ]
b5 perfect imperfect
L . S 04 mode match .
For an intuitive grasp of the dependences the previous func-
tions are plotted in Fig. 5. Interestingl€qspy|rest d€Creases tog Ve
as more beams are included, and eventually vanishes a§ ¢2 transmission
n—oo. As bothVy s and S, approachs,,, by Eq.(53) one &
finds that their quotient, 1 C_éspk“esl, ha_ls to approach unity
and that there is no essential correlation left. 0.0 L

0 5 10 15

resonator outcoupling [%o]
X. EFFECTS OF IMPERFECT MODE MATCH

A. Evidence for dramatic experimental effects FIG. 6. Dependence pf the transfer coeffic_ients as indicate_d on

the resonator outcoupling. Crosses: experimental data. Lines:

During early stages of our experiments on QND measuretheory. The theory that neglects imperfect mode match is wrong by

ments, the transfer coefficients were investigated for a duakn order of magnitude indicated by the vertical arrow near 0.7% of
port resonator, where an input beam was partially reflectedesonator outcoupling.
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on the resonator may be decomposed into the part that meter input
matches the resonant mode and the orthogonal rest, which is M
fully reflected. This causes a very different action of the vacuum >—N
resonator on these modes. The sidebands of the resonant N) vacuum
mode are phase shifted with respect to the carrier, those of
the reflected mode are not. As the modes are orthogonal, T Ns T PDy
each mode generates its own photocurrent on the detector. ~ signal input
However, the photocurrents of the individual modes inter- vacuum »
fere. When all terms are taken into account by the general- ¢
ized theory given below, quantitative agreement between ex-
periment and theory is reached, as demonstrated in Fig. 6. Mm
—>
vacuum
B. Generalized theory ? >

The generalized calculation must account for several or-
thogonal field modes per detector. The detandD’ denote 6 PD
the indices of the modes that are detected by the respective m
detector. According to Eq18), the photocurrent is theiy,
=2yeplk=Zkep2AKCjX;, and the generalization of
Kk (w,w) after Egs.(19) and (31, is

FIG. 7. Mode map for the analysis of the squeezed-light beam
splitter of transmissiof.

because the photocurrent generatedXyis proportional to

Koo =(ipip)= >  Alckad0)/2m. (68 A If there is only one bright modeA,#0) per detector,
keD,k'eD’ these expressions reduce to those of the previous sections.

Provided full linearity of the systems and decoupled quadra-
tures,A is given byA,=c,;(0)A; [Eq. (17)]. Analogous to

the previous arguments the expressions can be calculated for
the squeezin@y of the detected radiation, the transfer coef-
ficient Tp; from the input modg to that detector and the
correlation coefficienCpp between two detected currents:

C. Application: the squeezed-light beam splitter

A seemingly simple device is the conventional beam split-
ter. However, complex expressions result if imperfect mode-
match, arbitrary squeezing and technical noise, finite beam
powers, and detection losses are included. This system was
investigated experimentally in detail in R¢fl5]. Here we
Sp= 2 AkAk’Kkk’/ E A2 (69) present details qf _the underlying m_odell. _

kK <D KeD We start by giving a mode map in Fig. 7 that includes all
required elements and modes. This diagram represents or-
thogonal transverse modes by separate parallel lines. The

2
Tpj=S; > A / Sy >, AZ (70)  upmost mirror is a “Gedanken mirror” that separates the
keD keD part of the meter input that is not modematched to the signal
input. Its power transmission equals the mode match of the
Kpp: two beams, i.e., the modulus square of the field overlap in-
Cop'= (71)  tegral. The squeezings and the powers of the signal and the

VKppKp/p/ meter input ares;, S,,,, Ps, andP,,, respectively. Only the
central mirror actually exists in the experiment, and provides
If the input beamg for the systens,; are uncorrelated then a transmissiol. The quantum efficiencies of the photode-
two expressions simplify to tectors PD and PDQ, are simulated by mirrors of transmis-
sion 55 and 7,,. Choosing a specific phase convention, e.g.,

2 m )
. 2 the 10 coefficient for the meter input to the non-mode-
S 2 2 Al S / 2 Ak and (72 ed field incident on PDis \7o(1—M)(1-T). The
experiment uses a servo loop that maximizes the output
N power at one detector to control the relative phase between
Ej: ng AkCij k,ED/ AwCij|S signal and meter input. This ensures that the amplitude and

phase quadratures decouple throughout the system, and pro-
vides optimum performance using an amplitude squeezed
meter input. Then the quantities for the squeezﬂﬁb‘, as
measured at PD the correlatiorC,,,, between the two pho-

(73 tocurrents and the transfer coefficidntfrom signal input to

Vi3
PD; result in

Note that also these equations can be generated from the
ones that neglect input squeezing by the substitutign
—¢jy/S;. Also, the carriersh, appear as weighting factors,

CDD’:

2 Ak’Ck’j

k'eD’

2
S;

T

keD i

S¢"=Ng /Ny S=Sp=1° (74)
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7sTm Xcl)m X9
c2.= [RT(M—MS,+S,—1)
5™ NgNp, " X, \/ XEl| Xp parametric Xe \/ xou
I interaction 2
+AVMRT(2T-1)(S—S) T T,
+A’RT(M—MS+S,—1)]%, (75
Te= 7 TS(VT+AVMR)?/N;, (76)
where 3 X
A== VPn/Ps R=1-T, FIG. 8. Ring resonator with three coupling mirrors and paramet-
ric interaction.
Ns=(VMT+AVR[ 1+ 7RG+ TS~1)]
+(1-M)T[1+ 54(T—A?R)(Ss—1)]. (77) XI. CALCULATION OF THE 10 MATRIX
_ _ _ S FOR THE DEGENERATE OPTICAL PARAMETRIC
N, is the normalized noise power of the radiation incident at AMPLIFIER DOPA
the detector PD. The expressions foBy" and the transfer
coefficientT, from the signal input to PR result from the In this section the 10 matrix for a resonant system, the

substitutionsR—T, s> 7y, andA——A. The sign ofA  yeqanerate OPADOPA) is explicitly calculated. This serves
reflects the choice of the relative phase between both inputg, o purposes: First, it demonstrates how optical feedback

either O orm. : :
Most notable is the special case where the beam splitter itst]at leads to resonant systems can be integrated to this for-

— 7 alism. Second, this approach avoids using the good cavity
such thatyT + AJMR=0. Then a complete destructive in- limit or assuming weak interactions. Third, the results are

terference of the carrier of the signal beam propagating to- . o : -
ward Py occurs. lIts fluctuations lead to no photocurrent,req.u're‘j for the specific calcula_tlons presented in F'g.' 6
and the current from the non-mode-matched part of the meté’}'h'Ch compares theory to experiment and shows that finite
input dominates, causing, to vanish. In that case the Mde maich can lead to dramatic effects. ,
squeezing at PDalso results only from the latter beam: ~ COnSider the ring resonator setup of Fig. 8 with three
Sgut_ 1=(S,—1)(1— M)Rs. coupling mirrors of arpnrgry power reerprté’s_, T,, and

The dramatic degradation of the transfer coefficient in'3» @nd one parametric interaction region. If the degenerate
Fig. 6 is caused by a similar effect, namely, the impedanc®a&rametric interaction is driven by a pump wave of appro-
matching of the mode-matched part to the resonator that odfiate phase, it will decouple the amplitude and phase
curs at a specific resonator outcoupling. However, the situgduadraturesX and Y and lead to parametric amplification
tion is more complex as the non-mode-matched part alséactors ofe” P2 andeP’, respectively. The parametric ggin
carries information from the signal beam, in contrast to thedepends on the pump powey, and the nonlinearity’ of the

case of the squeezed-light beam splitter. interaction:p=2+P,I". This choice of pump phase will lead
For a perfect mode matchvl =1, the previous results to an amplitude-squeezed output state. The following calcu-
simplify to lations are sufficient for the amplitudes, the expressions for

the phases are obtained by reversing the sign @fenoting
the field operators as indicated in Fig. 8,=e P"2X,, re-
sults, which holds both in the time and in the frequency

S"=1+7yRS+ TS~ 1),

out__ —
Sm =1+ 7m(TSnFRS—1), (78) domain. The cavity round trip time is taken care of by
Xp(t)=Xa(t—7) which fourier transforms to X,(w)
RT(S.— 2 b al! b
Cgmz 7 ”m SOU(S;H Sm) , (79 =X, (w)e "7, whereris the cavity round trip time ana is
s tSm the detuning from resonance. For the first mirror the quadra-
— out__
Te= TSI, Tr= 7RSS (80) tures are connected b¥,=tX;+r;X, and X7 =t;X,

—r,X;, wherer,=1-T, andt,= /T, have been set. The

Here the amplitude ratid\ of both beams becomes irrel- other two mirrors work analogously, noting that the intrac-
evant. Experimentally, quantitative agreement between exavity field is reflected with positive sign to ensure resonance
periment and theory is found only after taking the finite at «=0. This determines completely the operation of the

mode match into account. system, and the result in the frequency domain is
|
Xa: R(Xltl+X2rlr3t2+ X3I’1t3), (81)
XMt —r1+RFrrat? RFt, RFratyts Xy
Xcz)Ut = Rr3t1t2 _r2+RFr1r3t§ Rt2t3 X2 ’ (82)

XgUt Rtlt3 RFrlt2t3 _r3+ RFrlrztg X3
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whereF=e P2 17 agndR=(1—Frr,r3) . coefficients[Eq. (24)] and the correlation coefficien{&q.

Note that this result does not require the assumptions of30)]. A discussion of the connection between transfer coef-
small transmissions, i.e., the good cavity limit, nor smallficients and phase sensitivity results in a generalized criterion
detunings, nor small parametric gain, as long as the system fer phase sensitivityEq. (27)] for the case of two beams. An
operated below threshold. Note that rate equations, which a@nalysis of the correlation coefficient results in a necessary
first order approximations, are avoided. A check of the con€ondition [Eq. (40)] for a system that generates entangled
sistency relationg7) usesd as the same matrix asexcept states. Further relatiof&q. (44)] allow one to conclude that
for a sign change ip. The positive outcome is not surprising states are entangled from experimental data even when tech-
since the constituents of this resonator, i.e., mirrors, timeaiical noise is present.
delay, and the parametric interaction pass the test individu- The total correlation is introduced as a measure of the
ally. overall correlation of a set of output quadratuf&s. (45)]

The well-known equations for the good cavity limit are and is interpreted geometrically. From this, a multidimen-
obtained by multiplying all transmissiorsandp with a size  sional uncertainty relation is derivé¢éq. (50)]. Next, quan-
parameter, and taking the leading order when this parametéum state preparation is reviewed: The conventional ap-
is small. The intuitive result for the 10 reIatich}’“t= c;iXjis  proach of detection of one quadrature and modification of

another is termed “indirect” and its optimal performance is

calculatedEq. (53)]. A different approach is to use beam
i=HRG— 65, (83)  splitters to superimpose quadratures and to minimize the

noise on one particular quadrature. This method is termed
o ] “direct” QSP, and an analysis shows that the achievable
where the simplified resonance term iR=2/" minimal variancdEq. (56)] is always smaller than the con-
[L(1+iw/w)]. The total round-trip power losses ate itional variance of indirect QSFEQ. (57)]. For the case of
=T;+T,+Ts+p, and the cavity linewidth Afewuvm  two beams up to 3 dB of additional noise suppression can be
(FWHM is full width at half maximum is connected to the  accomplished. Consequently it is argued that the minimal
amplitude decay ratev.=L/27 by Afpwyy=wc/m. The  yariance should be used as a criterion for QSP, rather than
OPO threshold is reached|@{ =T, + T,+T5. Interestingly,  the conditional variance. As an application, a balanced quan-
relation (83) passes the consistency te3), although the tum optical bus consisting of beam splitters with squeezed
individual elements of the resonator no longer conserve thgacua at the usually unused ports is analyfgds. (61)—
commutation relations in the good cavity limit. The reason is(g7)].
that the general matrix satisfies the consistency relations to Finite beam mode match has been shown experimentally
any order, particularly to the leading one. to lead to dramatic effectéFig. 6). To describe these, our

From the IO coefficientsEq. (83)] one quickly calculates theoretical model is further generalized to include imperfect
the output squeezing, the correlations, the transfer coeffimode match using a multimode description of a single beam.
cients, and the conditional variance using E(@3f) and  The possible interference between the photocurrents of the
(53f). These results have previously been calculated in abndividual modes on a single detector results in fairly com-
sence of technical noise at the inpug< 1) by Smithetal.  plex equations for the squeezifiq. (69)], the transfer co-
[22]. efficients[Eq. (70)] and the correlatiofiEq. (71)]. Expres-

Note that all of these quantities includidd rwm depend  sjons for the imperfectly modematched squeezed-light beam
on the parametric gaip. This directly leads to a narrowing  spilitter including detection losses are gi&mys.(74)—(80)].
of the cavity linewidth for the antisqueeze@mplified  Finally, a direct and intuitive derivation of a general IO ma-

quadrature and to an increased bandwidth of the squeezeg for a degenerate optical parametric amplifier is presented
(deamplified quadrature. This effect has been observedgq. (82)].

clearly in our laboratory23].
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