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Properties of the linearized quantum optical bus

Robert Bruckmeier and Stephan Schiller
Fakultät für Physik, Universita¨t Konstanz,* 78457 Konstanz, Germany

~Received 7 May 1998!

A formalism is developed that allows one to calculate the propagation of quantum noise, technical noise, and
signals through a linearizedquantum optical bus, i.e., a complex composite multibeam optical quantum sys-
tem. General expressions for the output squeezing, the correlation coefficient, and quantum correlation coef-
ficient between output observables and the transfer coefficients are derived and discussed in detail. Thetotal
correlation is introduced as a measure of the overall correlation of a set of output quadratures. From its
geometric interpretation a multidimensional uncertainty relation is derived.Direct quantum-state preparation
~QSP! is introduced as a method complementary to the conventional, indirect QSP. Theminimal variance
achievable by direct QSP is shown to provide superior noise suppression, including quantum noise suppres-
sion, than the conditional variance provided by indirect QSP. As an application we calculate and discuss the
properties of a balanced bus of beam splitters with squeezed vacua at the usually unused ports. An important
experimental effect is imperfect beam mode match, which is shown to lead to dramatic effects. A theory is
derived which quantitatively matches measurements. Analytic expressions for the imperfectly modematched
squeezed-light beam splitter including detection losses are given. Finally, a direct method is used to calculate
the input-output matrix for the multiport subthreshold degenerate optical parametric amplifier for arbitrary
parametric and mirror coupling strengths and detuning.
@S1050-2947~99!02101-0#
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I. INTRODUCTION

In the early 1980s, tremendous theoretical progress
achieved in quantum optics, particularly on squeezed li
@1,2#, quantum amplifiers@3#, and quantum-nondemolition
~QND! measurements@4#. Soon after, paralleling experimen
tal results on squeezing@5#, QND measurements@6#, twin
beams@7#, and quantum amplifiers@8# were accomplished
These advances sparked the definition and use of chara
istic quantities to gauge the performance of the realized
tems@9,10#. Recently, more complex systems have been
alized that inject the output of one quantum optical syst
into a second quantum system@11,12#.

All of this work investigated basic quantum optical pro
erties, such as the squeezing of the output beams, the c
lation coefficients between various operators, or the tran
coefficients. As experiments became more complex and t
explorations were carried out in more detail, the exist
theory needed to be extended in order to answer two m
questions:

~i! How can quantum optical properties of composite s
tems be predicted, knowing the properties of the individ
systems? The answer must take into account that one sy
may generate correlated and/or squeezed beams that a
put beams of a following system.

~ii ! How can the results of nonideal ‘‘real life’’ experi
ments be predicted? Apart from optical losses, two m
effects are present in general and may affect the detectio
quantum optical properties significantly: First, technic
noise, e.g., from the laser source, is detected in additio
quantum noise and increases the noise level bey
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quantum-mechanical limits. Second, imperfect modema
leads to the detection of several modes on a detector, and
lead to dramatic interference effects, as is demonstrated l

This paper resolves these issues using a linearized
proach, which is appropriate when weakly fluctuating, brig
beams are detected. The contents of this paper are struc
as follows: A formalism that allows the composition of ind
vidual quantum optical systems and the presence of techn
noise is derived~Secs. II and III! and used to predict the
squeezing~Sec. IV!, the transfer coefficients~Sec. V!, and
the correlation of beam operators~Sec. VI!. The total corre-
lation is defined and introduced as a measure of the ove
correlation present in a multimode system, and used to
rive a multidimensional uncertainty relation~Sec. VII!. A
method for quantum-state preparation~QSP! is presented,
which provides superior noise reduction in comparison to
conventional approach~Sec. VIII!. As an application, a bal-
anced quantum optical bus consisting of beam splitters w
squeezed vacua at the usually unused ports is analyzed~Sec.
IX !. The theoretical model is further generalized to inclu
imperfect modematch using a multimode description o
single beam~Sec. X!. Finally a derivation of a general input
output~IO! matrix for a degenerate optical parametric amp
fier is presented~Sec. XI!. The paper closes with a summa
and conclusions~Sec. XII!. For some parts of this paper,
more detailed discussion can be found in Ref.@13#.

Recently, a series of publications on QND measureme
has appeared which focuses on experimental techniq
measurement results, and their comparisons to theore
predictions @12,14,15#. In these references the correspo
dence between experiment and theory was remarkable
thorough explanation of the theory used was not possible
to space limitations. In this paper the successfully appl
theoretical model is explained in detail.
750 ©1999 The American Physical Society
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PRA 59 751PROPERTIES OF THE LINEARIZED QUANTUM OPTICAL BUS
II. INPUT-OUTPUT FORMALISM
FOR THE QUANTUM OPTICAL BUS

To keep the notation of various quantities as simple
possible, we adopt the following convention: The name
the index of a quantity, e.g., the amplitude of a certain be
characterizes where the quantity is located within the opt
bus in accord to Fig. 1. Input quantities are indexed witi
andi 8, the first optical systemSji transforms these quantitie
to those indexed byj and j 8, which are again transformed b
the next optical systemSk j to quantities indexed byk andk8.
Whenever properties are discussed that are independe
the position within the optical bus, indicesg andg8 denote
input beams ofShg , andh andh8 denote the output beams

We consider the initial conditions that allinput beams of
the first system~indexed byi! are in time-dependent cohere
states ua i(t)&, where a i(t) is a time-dependent comple
function that describes an intentional modulation or techn
noise. This is the special casePi(b,t)5d2

„b2a i(t)… of the
Glauber-Sudarshan distribution which directly relates to
most general time-dependent density opera
* ub&^buPi(b,t)d2b for an input state. This is a good a
sumption for many experiments because the vacuum sta
given by a i(t)50 and the output of a laser driven we
above threshold is a coherent state. This description all
us to include quantum and technical noise as well as an
tentional signal. The connection to the lowering operatorsai
is then

ai~ t !ua i~ t !&5a i~ t !ua i~ t !&. ~1!

Working in the corotating frame, the carrier of a beam
given by the time average of the quantum mechanical exp
tation valueAg[^ag(t)&. Then the fluctuations of the low
ering operator and the fluctuations of the coherent excita
can be defined asdag(t)[ag(t)2Ag and dag(t)[ag(t)
2Ag , respectively. The Hermitian quadrature operators
defined by Xg(t)[(ag(t)1ag

†(t))/2 and Yg(t)[(ag(t)
2ag

†(t))/2i , and likewise for the fluctuation quadrature o
eratorsdXg(t) anddYg(t), leading to

Xg~ t !5dXg~ t !1Re~Ag!, ~2a!

Yg~ t !5dYg~ t !1Im~Ag!, ~2b!

ag~ t !5Ag1dXg~ t !1 idYg~ t !. ~2c!

The optical systemShg transforms these input beams to ou
put beams. In this paper we investigate systems that allo
linearized treatment of the fluctuations, which leads to
relations@2# of the forms

FIG. 1. Block diagram of the general quantum optical bus.
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dXh~v!5chg~v!dXg~v!1chg8 ~v!dYg~v!, ~3a!

dYh~v!5dhg8 ~v!dXg~v!1dhg~v!dYg~v! . ~3b!

The fluctuation angular frequency is denoted byv and the
~Einstein! sum convention of free indices that occur in pa
is used. Comparing these equations to their Hermitian c
jugates, it can be seen thatchg* (v)5chg(2v) and the analo-
gous relations forc8, d, andd8 hold, and that all four ma-
trices are real forv50. By selecting appropriate input an
output quadratures, it is in many cases possible to simp
these expressions significantly and obtain decoupled e
tions for the quadratures, i.e.,chg8 505dhg8 . Then the ampli-
tude and phase quadratures propagate independently of
other.

In general,Ah are steady-state solutions depending on
systemShg and its inputs. However, ifShg operates fully
linear, relations~3! also hold for the full quadratures, no
only for their fluctuations, and the following relation allow
to determine the carrier of an output:

Ah5„chg~0!1 idhg8 ~0!…Re~Ag!1„chg8 ~0!1 idhg~0!…Im~Ag!.
~4!

The fundamental commutation relations@ag(t),ag8
† (t8)#

5dgg8d(t2t8) and @ag(t),ag8(t8)#5@ag
†(t),ag8

† (t8)#50 of
the raising and lowering operators express the boson cha
ter of the light field. Usingf (v)[*2`

` f (t)e2 ivtdt/2p for
the fourier transformation, the commutator relations

@ag~v!,ag8
†

~v8!#5dgg8d~v1v8!/2p,

~5a!
@ag~v!,ag8~v8!#5@ag

†~v!,ag8
†

~v8!#50,

@Xg~v!,Yg8~v8!#5 idgg8d~v1v8!/4p,
~5b!

@Xg~v!,Xg8~v8!#5@Yg~v!,Yg8~v8!#50

follow, which also hold analogously for the fluctuation o
erators. To ensure that an optical system transforms in
boson fields to output boson fields, the four IO matrices m
obey further restrictions. Using Eqs.~3! and ~5b! and v8
52v, the following matrix consistency relations are d
rived:

c~v!d†~v!2c8~v!d8†~v!51,

c~v!c8†~v!5c8~v!c†~v!, ~6!

d~v!d8†~v!5d8~v!d†~v!.

A consequence of these equations is the conservation
phase-space volume, as discussed later in this paper. Fo
coupled quadratures the important relation

c21~v!5d†~v! ~7!

results, allowing one to deduce the properties of one qua
ture type from the other. In addition this demonstrates
inverse properties of actions on the quadratures of asingle
beam: amplification of the phase comes together with de
plification of the amplitude, which eventually leads
squeezed light. For phase-insensitive amplification at le
two beams must be coupled.
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752 PRA 59ROBERT BRUCKMEIER AND STEPHAN SCHILLER
III. PHOTODETECTION AND PHOTOCURRENT
CORRELATIONS

The statistical properties of beams are usually inve
gated experimentally by photodetection. The photocurre
are calculated by

i h~ t !5ah
†~ t !ah~ t !

'uAhu212 Re~Ah!dXh~ t !12 Im~Ah!dYh~ t !, ~8!

where the electronic charge is set to unity, and terms q
dratic in the fluctuations have been dropped, leading t
linear relation between the fluctuations of the current and
quadratures of the detected beam. These dropped term
negligible if the fluctuations are small with respect to t
carrier, i.e., for a weakly modulated, bright beam. This a
proximation is not applicable for single photon detection
for pulsed systems. Fourier transforming the currents
using Eq.~3! results in

i h~v!5I hd~v!12 Re~Ah!dXh~v!12 Im~Ah!dYh~v!

5I hd~v!1xhg~v!dXg~v!1yhg~v!dYg~v!, ~9!

with the mean current

I h[uAhu2, ~10!

xhg~v![2 Re~Ah!chg~v!12 Im~Ah!dhg8 ~v!, ~11!

and

yhg~v![2 Re~Ah!chg8 ~v!12 Im~Ah!dhg~v!. ~12!

A spectrum analyzer measures the electric power spe
densityPh(v) of this current at a specific frequencyv/2p.
In classical physics, this power density is proportional
u i h(v)u2. This can be generalized to the quantum mechan
expectation valuePh(v)5^ i h

†(v) i h(v)& for the product
state of the input beams. There is no ordering ambigu
sincei h(v) and i h

†(v8) commute. Also, the constant of pro
portionality has been dropped as only ratios of power de
ties will be used. In the following, the more general seco
order expectation valueKhh8(v,v8)[^ i h

†(v) i h8(v8)& is
calculated, which also allows one to calculate the correla
of the output currents. Some identities are very handy
evaluate these quantities:̂ dXi(v)&5(Redai)(v) and
^dYi(v)&5(Im dai)(v), where the notation indicates tha
(Redai)(v) is the Fourier transform of the real part o
da i(t), not vice versa. Note that the indexi denotes refer-
ence to the coherent input beams. To evaluate second-o
expectation values such as

^dXi~v!dXi 8~v8!&5~Re a i !~v!~Re a i 8!~v8!

1d i i 8d~v1v8!/8p, ~13!

the quadratures are decomposed into creation and ann
tion operators, and simplified using the commutator relat
~5a!, leading to the second term in Eq.~13! that will generate
the quantum noise. Taking everything together, the res
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Khh8~v,v8![^ i h
†~v!i h8~v8!&

5^ i h~v!&* ^ i h8~v8!&1„xhi* ~v!xh8 i~v!

1 ixhi* ~v!yh8 i~v!2 iyhi* ~v!xh8 i~v!

1yhi* ~v!yh8 i~v!…d~v2v8!/8p, ~14!

Ph~v![^ i h
†~v!i h~v!&

5u^ i h~v!&u21(
i

uxhi~v!1 iyhi~v!u2d~0!/8p,

~15!

^ i h~v!&5I hd~v!1xhi~v!~Re da i !~v!

1yhi~v!~ Im da i !~v!. ~16!

Note that there is an explicit reference to the input beams
the indexi, since their quantum properties are known by E
~1!. The terms in Eq.~15! may be interpreted as follows: Th
first term is the power spectral density of the classical p
tocurrent~16!, whereI hd(v) generates the power of the d
photocurrent and the second and third terms in Eq.~16! gen-
erate the ac photo current due to a classical modulation of
input beam caused by the Fourier components ofda i . The
second term in Eq.~15! is the quantum noise that originate
from the commutation relations and that is present e
whenda i50. The appearance of thed functions reflects the
integration of the electrical current over all times in the Fo
rier transform.

These expressions are very general, and include all
quantum mechanics that is necessary to proceed furt
Many systems, however, show their optimum propert
when the quadratures are decoupled, i.e.,c85d850. In the
rest of this paper, we will focus on these systems. When
of these systems,Sk j and Sji , are combined,cki5ck jcji ,
dki5dk jdji andcki8 5dki8 50 result for the composite system
Ski . To ensure that the photodetectors only regis
one quadrature, we considerXh andYh to be the amplitude
and phase quadratures, respectively. This is expresse
Im(Ah)50 as seen from Eq.~8!. Im(Ah)50, and

Ah5chg~0!Ag ~17!

follows from Im(Ag)50 and Eqs.~4! if the systemShg is
fully linear. Then Im(Ah)50 can be achieved by injecting th
input beams with appropriate phase, Im(Ag)50. In practice,
this is done using servo control systems. In addition,
assume v,v8Þ0, from which dXh(v)5Xh(v) and
dYh(v)5Yh(v) follow. Significant simplifications arise and
lead to

i h~v!5xhg~v!Xg~v!,

xhg~v!52Ahchg~v!, yhg~v!50, ~18!

Khh8~v,v8!54AhAh8^Xh~v!Xh8~v8!&

5AhAh8„mh* ~v!mh8~v8!d~0!

1chi* ~v!ch8 i~v!d~v2v8!…/2p, ~19!
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PRA 59 753PROPERTIES OF THE LINEARIZED QUANTUM OPTICAL BUS
Ph~v!5I hS umh~v!u21(
i

uchi~v!u2D d~0!/2p, ~20!

where

mi~v![A8p/d~0!~Re da i !~v!, mh~v![chi~v!mi~v!.

~21!

The important quantitymi denotes classical amplitude fluc
tuations ofa i(t) due to intentional modulation or technic
noise. It is normalized such thatmi51 represents equal spe
tral power densities of the classical and the quantum n
for a time-dependent coherent state. The appearance ofd~0!
in the denominator is unusual, but can be motivated as
lows: If Fourier transformation is not taken for all times b
only from 2T to 1T, we haved(0)52T and (Redai)(v) is
proportional toAT for white noise, which ensures thatmi(v)
is well-behaved asT→`. As expected, only amplitude
quadraturesXh , classical amplitude modulations Redai and
the IO matrixchi enter the previous relations, whereas th
counterpartsYh , Im dai anddhi do not contribute.

Based on the previous equations, we now turn to qua
ties such as squeezing, transfer coefficients, and correla
coefficients which are of crucial interest in theory and e
periment. From here on, equations will be presented in
frequency domain, and the argumentv is often omitted.

IV. SQUEEZING

To calculate the squeezing of an output beamh, the actual
noise power densityPh of the detector current is compare
to the noise power densityPh,SQL of an unmodulated, coher
ent beam of the same intensity and wavelength which defi
the standard quantum limit,~SQL!. As the current fluctua-
tions are proportional to the amplitude fluctuations, this
proach is equivalent to calculating the squeezing by com
ing the variances of the amplitude fluctuations instead of
currents. To calculatePh,SQL, da i50 is used for unmodu-
lated input beams, and the ‘‘identity’’ optical system is co
sidered,chi5dhi5dhi , c85d850, which leads toPh,SQL
5I hd(0)/2p. Therefore the degree of squeezing is

Sh[
Ph

Ph,SQL
5

^dXh
†dXh&

^dXh
†dXh&SQL

5umhu21(
i

uchiu2

[U(
i

chimiU2

1(
i

uchiu2, ~22!

where the definitions ofmh and the sum convention is mad
explicit. The two noise terms in this expression repres
technical or modulation noise and the quantum noise, res
tively, transferred from the input beams to the output be
h. An important difference between modulation or techni
noise and quantum noise is that modulation noise can in
fere destructively, whereas quantum noise is always pres
This difference is expressed by a coherent sum of the mo
lation amplitude contributions from different input beam
and incoherent sums for the quantum noise power contr
se
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tions. Sh,1 indicates the generation of squeezed light a
requires low classical noise and use of a system w
( i uchiu2,1. Note that in experiments squeezing usually d
notes noisesuppression, Sh

21.
At this point we wish to point out a peculiarity: Quantu

concepts are used here for the definition of the initial st
and for the photodetection process which involves the co
mutation relations. The propagation of the operators, as
pressed in the IO relations, is classical: The operators th
selves propagate just as their classical analogs, i.e.,
quantum-mechanical average values. However, an IO ma
that satisfies the conditionuchiu2,1 is a necessary conditio
for a system that generates squeezed light. This demonst
that even the classical part of a system, i.e., its input-ou
relations, can be responsible for nonclassical properties
the whole system, such as the detection of squeezed lig

V. TRANSFER COEFFICIENTS

A. Definition

The transfer coefficients are of central interest for t
quality of information transmission. They are defined as
fraction of the input signal-to-noise power ratio~SNR! that is
transferred to the output of the optical system@9#. For this
purpose, a separation of the total modulationmg5mg

t 1mg
s

into broadband technical noisemg
t and the intentional sinu-

soidal signal modulationmg
s is required. The photocurren

power, when averaged over a certain bandwidth, is prop
tional to umh

su21umh
t u21( i uchiu2, because the cross term b

tweenmg
t andmg

s can be shown to be negligible. Therefo
the signal to noise ratio of a signal on beamh, Rh , is

Rh5
umh

su2

umh
t u21(

i
uchiu2

5
umh

su2

Sh
, ~23!

whereSh must obviously be measured with the signal mod
lation turned off. For the measurement of the transfer co
ficient Tk j from beamj to beamk a signal is only applied to
the input beamj, therefore umk

su25uck ju2umj
su2 holds. The

general transfer coefficient is then

Tk j[
Rk

Rj
5

uck ju2Sj

Sk
. ~24!

This relation leads to the important interpretation that
transfer coefficient is the fraction of the output noise of be
k that is due to inputj. This relation can be used to determin
the modulus of any coefficient of the IO matrixck j , since the
squeezings can be measured independently.

B. Total transfer coefficient and phase sensitivity

For information transmission purposes it is essential
know how well the SNR can be transmitted from the emit
to the individual receivers. A suitable quantity is the to
transfer coefficient

Ttot,j[(
k

Tk j , ~25!
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754 PRA 59ROBERT BRUCKMEIER AND STEPHAN SCHILLER
which measures how efficient information can be transfer
from a specific inputj to all outputsk.

This quantity is difficult to investigate in general form
Some insight can be gained by considering phase-insens
systems. These systems, like the beam splitter or the no
generate optical parametric amplifier~OPA!, operate simi-
larly on amplitude and phase noise. In contrast, a degene
OPA reduces the noise of one quadrature at the expens
increasing the other’s. A criterion for phase insensitive o
eration of a system is that uncorrelated input beams w
phase insensitive noise~i.e., equal phase and amplitude noi
for each beam! lead to output beams that still exhibit phas
insensitive noise. From this,uck ju5udk ju can be concluded
The maximum total transfer coefficient for any phas
insensitive system couplingtwo beams is found to be

max
phase insensitive

Ttot,j5
2Sj

Sj 81Sj
, ~26!

whereSj andSj 8 are the squeezings of the two input beam
This is shown by parametrizing the IO matrices in acco
with Eq. ~7! and maximizing Ttot,j . The maximum is
achieved for a system as simple as the balanced~50% reflec-
tivity ! beam splitter. It is important to realize that the noi
of the signal input plays an important role: If the secon
‘‘meter’’, input is in the vacuum state (Sj 851), strong tech-
nical noise on the signal input (Sj@1) will lead to an almost
perfect SNR transmission (Tk j→1, Ttot,j→2). This, however,
is not achieved due to a smart coupling system, but beca
the quantum noise of the meter input, which is added to
output beams, is negligible in comparison to the signal in
noise.

Quantum nondemolition measurements rely on pha
sensitive methods that allow one to measure one quadra
precisely to the expense of adding noise on the other qua
ture. Phase-sensitive operation can therefore be conclud

Ttot,j.
2Sj

11Sj
, ~27!

as either the system itself operates phase sensitively o
meter input is squeezed (Sj 8,1) and therefore phase sens
tive. The widely used criterionTtot,j.1 for a quantum optica
tap~QOT! is a special case of forSj51 and is inapplicable if
Sj.1. Therefore we suggest use of Eq.~27! instead of
Ttot,j.1 in future experiments to judge QOT operation.

For a general system that couplesn ~two or more! beams,
maximizingTtot,j for a phase-insensitive system is a comp
task even forn53. The limit L for a criterion for phase-
sensitive operationTtot,j.L is still unclear. The special cas
of a signal beam coupled ton21 vacuum beams by beam
splitters~BS! of optimal reflectivity demands

Ttot,j.LBS[nSj /~n211Sj !, ~28!

which can be derived from Eq.~64!. A different phase-
insensitive test system is a high-gain nondegenerate O
~NDOPA! with a vacuum idler input followed byn22 beam
splitters that couple the outputs to vacuum. This sugges

Ttot,j.LNDOPA[nSj /~Sj11!, ~29!
d
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a limit which coincides withLBS for n52 and exceedsLBS
for n.2.

The concept of phase sensitivity has proven very succ
ful for a categorization of two-beam systems. However, o
has to realize that a combination of phase-insensitive dev
may still generate squeezed states: One example
frequency-degenerate, type-II phase-matched~polarization
nondegenerate! OPA that is sandwiched between two appr
priately aligned wave plates that mix signal and idler beam
The complete system is equivalent to two independent
generate OPA’s which are phase sensitive and gene
squeezed light. Therefore the phase-insensitive ampli
which is commonly—and we believe incorrectly—
considered a classical device, can also exhibit nonclass
features. The two systems that lead to the criteria~28! and
~29! are suitable benchmark systems. Forn>3 both criteria
are different, and it is up to the experimenter to decide wh
system to use as a reference system.

VI. CORRELATION

A. Definition

An additional important and experimentally accessib
quantity is the correlation coefficient between two beams
the following simply termed correlation. The discussion
its properties can mediate much understanding of quan
optical systems. The correlation between the two photoc
rents of beamsk andk8 is easily calculated:

Ckk85
Kkk8~v,v!

AKkk~v,v!Kk8k8~v,v!
5

kkk8

ASkSk8

, ~30!

where

kkk8[mk* mk81cki* ck8 i , ~31!

which satisfieskkk5Sk . The coefficientskkk8 after the sys-
tem Sk j are related to the coefficientsk j j 8 before the system
by kkk85ck j* ck8 j 8k j j 8 . Thus, a correlationCkk8Þ0 for k
Þk8 can be due to either a common modulation or to
condition cki* ck8 iÞ0, which expresses a rare and precio
quantum correlation ability of the system, as shown belo

For the correlation between two beamsj and k, the ex-
pressions are analogous to Eq.~30!, wherek8 is replaced by
j. In this situation we havekk j5ck j8

* k j 8 j . An interesting spe-
cial case arises, when the implicit sum of the latter expr
sion consists of only one term, i.e. if there is only one~fixed!
beamj 8 that is correlated to beamj and is connected to beam
k. In this situation, which is sketched below, one obtains

~32!

This equation states that a correlation is propagated thro
a system with the same efficiency as a classical sig
namely, the transfer coefficient.

If all beamsj are uncorrelated,k j j 85d j j 8Sj , all informa-
tion is then present in the absolute noise level, i.e.,
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squeezing, and no reference to the initial beamsi is required.
It is therefore not surprising that significant simplificatio
arise:

Sk5(
j

uck ju2Sj , ~33!

Tk j5uck ju2Sj /Sk ~as before!, ~34!

kkk85(
j

ck j* ck8 jSj and Ckk85kkk8 /ASkSk8, ~35!

kk j5ck j* Sj and uCk ju25Tk j . ~36!

This leads to the conclusion that measurements of
squeezing, the transfer coefficients, and the correlation
not allow one to distinguish between classical and quan
noise.

From Eqs.~33! and~34!, it can be concluded that the su
of the transfer coefficientsto one output is unity, Tk,tot
[(jTkj51. This is not surprising asTk j can be interpreted a
the fraction of noise power originating from beamj that con-
tributes to the total noise power present in beamk. However,
this does not limit the total transfer coefficientTtot,j[(kTkj ,
the sum of transfer coefficientsfrom one input.

Equation ~36! allows a different interpretation of th
transfer coefficients, namely, that they are the modu
square of the correlation coefficient between input and o
put fluctuations. The assumption of uncorrelated input bea
to that system is essential. A counterexample is two co
lated input beams that are passed unchanged through a
tem. Obviously every output is correlated with every inp
but two transfer coefficients that are unity, the other t
vanish.

A crucial question is: How can correlation be generate
There are three different routes to prepare correlated beak
and k8: ~i! Two input beamsj Þ j 8 are already correlated
k j j 8Þ0. ~ii ! Two input beamsj and j 8 carry different noises:
SjÞSj 8 . ~iii ! The systemSk j possesses theentanglement
property: ' kÞk8: ck j* ck8 jÞ0. If none of these conditions i
satisfied, their negationsk j j 85Sjd j j 8 , Sj5Sj 8 and ck j* ck8 j

5uck ju2dkk8 quickly lead tokkk85Skdkk8 , which states that
no output correlation is present. Obviously, the first meth
is not constructive, as it makes use of already correla
beams. The second is best illustrated with a simple exam
Consider a modulated beam~squeezing is greater than 1!
incident on a beam splitter, the other input is the vacu
state~the squeezing is equal to 1!. Both output beams are
then correlated due to their common modulation. Howeve
is shown in the next paragraph that this correlation is
classical origin. Quantum correlation can only be genera
by ~iii !.

B. Quantum correlation and entanglement

One of the most interesting features of quantum mech
ics is the concept of entanglement. This section differentia
between correlation and quantum correlation@16#. The first
may be caused completely by a classical correlation, i.e
e
o

m

s
t-
s

e-
ys-
,

?
s

d
d

le:

it
f
d
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s
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correlation of the expectation values, whereas the secon
related to entanglement. One indicator for entanglemen
the correlation of the quantum fluctuations of two operat
in different Hilbert spaces: If there is no entanglement b
tween these spaces, then the total state, or more generall
total density operator, allows factoring off these two spac
and then the correlation vanishes. Therefore, an observa
of correlated quantum fluctuations requires the presenc
entanglement.

Let us investigate the quantum correlations of the pho
currents. Pure quantum correlations are calculated u
^a,b&[^DaDb&5^ab&2^a&^b&, where quantities of the
type Da[a2^a& are investigated to remove classical flu
tuations. The superscriptQ is used to denote that exclusive
quantum properties are considered. The quantum correla
is then

Ckk8
Q [

Kkk8
Q

AKkk
Q Kk8k8

Q
, ~37!

where

Kkk8
Q

~v,v8![^ i k
1~v!,i k8~v8!&

5Kkk8~v,v8!2^ i k~v!&* ^ i k8~v8!&. ~38!

Using Eq.~14!, it is easily seen that the quantum correlati
is the same as the correlation when no modulation or te
nical noise is present (da i50). The remaining terms origi-
nate from commutation relations which again states their t
quantum nature. Together with Eq.~19!, the following is
easy to see for the decoupled case discussed in the latte
of the paper:

Kkk8
Q

~v,v8!5AkAk8cki* ck8 id~v2v8!/2p . ~39!

Therefore, entangled states can be generated by a device
exhibits theentanglement property

' kÞk8:cki* ck8 iÞ0. ~40!

The properties of quantum correlation were derived in
frequency domain, but the time domain is also of intere
Using Fourier transformation and Eq.~39! one can derive

^ i k(t),i k8(t8)&5AkAk8*cki* (v)ck8 i(v)e2 iv(t2t8)dv/2p.
This leads to the quantum correlation coefficient in the ti
domain:

Ckk8
Q

~ t,t8!5
*cki* ck8 ie

2 iv~ t2t8!dv

A*cki* ckidvA*ck8 i
* ck8 idv

. ~41!

As is to be expected, temporal correlation can be obser
over time differences which are inverse to the bandwi
over whichcki* ck8 i is significant.

C. Testing for quantum correlation

For an experimenter one important question is whethe
measured correlation is due to entanglement or to techn
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noise in the system. This section derives bounds for
quantum correlation coefficient, which are experimenta
accessible. All input beams to the system are assumed t
uncorrelated, and all beamsj except for beamj 0 exhibit a
i-
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squeezing of unity, such as vacuum. This situation applie
only one laser beam that carries technical noise is injec
into a system. Using the inequalitiesua2bu2 <

>(uau1
2ubu)2,

the following holds:
U(
j

ck j* ck8 jU2

5US (
j

ck j* ck8 jSj D 2ck j0
* ck8 j 0

~Sj 0
21!U <

2>
SkSk8~ uCkk8u1

2ATk j0
Tk8 j 0

«!2, ~42!

Sk
Q[(

j
uck ju25Sk~12Tk j0

«!, ~43!
out
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where«[121/Sj 0
. For the quantum correlation it immed

ately follows that

uCkk8
Q u25

U(
j

ck j* ck8 jU2

(
j

uck ju2(
j

uck8 j u2
<
>

~ uCkk8u1
2ATk j0

Tk8 j 0
«!2

~12Tk j0
«!~12Tk8 j 0

«!
.

~44!

Therefore, the presence of a quantum correlation and he
entanglement may be concluded from measurements o
input squeezing, the correlation coefficient, and the tran
coefficients. For small excess input noise, i.e., small«, the
correlation and the quantum correlation are nearly identi
Ckk8

Q
5Ckk81O(«). As the lower bound foruCkk8

Q u2 never
becomes negative, care has to be taken when both term
the numerator of the lower bound are comparable wit
measurement error.

VII. TOTAL CORRELATION

A. Definition

In this section we introduce a quantity that describes
full extent of the correlation present in a system. The con
tional varianceVkuM discussed below is not appropriate, as
treats the prepared and measured output beams differe
and neglects the phase quadratures. There is a differen
proach that takes all quadratures into account on the s
basis. All quadratures are denoted byQh , where the indexh
specifies the beam and the quadrature type, e.g., amplitud
phase. To describe the full correlation present in a system
introduce a new quantity, the total correlationCtot :

Ctot
2 [12Det Chh8 , ~45!

whereChh8[khh8 /Akhhkh8h8 is the matrix of correlation co-
efficients between the quadraturesQh andQh8 . As the gen-
eral quadratures do not commute, a symmetrized produ
used for the second moment:

khh8[
4p

d~0!
^Qh

†Qh81Qh8Qh
†&. ~46!

The antisymmetric part ofQh
†Qh8 is omitted here: Since it is

the commutator of the operators and is independent of
ce
he
er

l:

in
n

e
i-
t
tly,
ap-

e

or
e
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e

state under investigation it cannot reveal information ab
it. The resulting Hermitian matrixk is normalized such that a
diagonal elementkhh equals the squeezingSh of the operator
Qh :khh5Sh .

The total correlation exhibits the following desired pro
erties:~1! All quadratures and beams are treated equally.~2!
0<Ctot

2 <1. ~3! Ctot
2 is invariant under complex scaling o

each quadrature operator.~4! Ctot
2 51 if any two quadratures

are perfectly correlated.~5! Ctot
2 remains invariant if new

uncorrelated quadratures are included.~6! Ctot
2 5uC12u2 for the

case of two quadratures, whereC12 is their correlation coef-
ficient. Except for the second relation, which is proven b
low, these relations are simple consequences of the de
tions. The diagonals of the Hermitian matrixChh8 are unity,
and its trace equals its dimension. According to definiti
~46!, diagonalizing Chh8 is interpreted as finding eigen
quadratures from linear combinations ofQh that are uncor-
related in pairs. A consequence is that the eigenvalue
Chh8 are positive because they are the variances of the
spective eigenquadratures. Therefore the determinant ofChh8
is positive andCtot

2 <1 holds. Furthermore, the sum of a
~positive! eigenvalues equals the trace ofChh8 . As a conse-
quence, the determinant is at most unity, from whichCtot

2

>0 follows. This measure does not distinguish between h
ing two or more perfectly correlated quadratures, as in b
casesCtot51. To distinguish these cases, the dimension
nus the rank of the correlation matrix is a good measure, a
denotes the number of perfectly squeezed quadratures
can ideally be obtained.

The geometric interpretation of the determinant as a m
tidimensional volume offers additional insight. First we m
tivate the concept using a two-dimensional example, wh
Q1 and Q2 are the correlated amplitude and phase quad
tures of a state. The joint measurement probability of
normalizedquadratures is represented in Fig. 2 as a den
of points.

The plotted ellipse is a suitable contour line of the me
surement density.Chh8 is completely specified by the corre
lation coefficient between the quadratures, i.e.,15

17 in the ex-
ample shown in Fig. 2. The uncorrelated eigenquadratu
are oriented at 45° and 135° and their variances of32

17 and2
17

are given by the eigenvalues ofChh8 according to above
reasoning. The half axes of the ellipse are the square roo
these eigenvalues. The area of the rotated rectangle
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bounds the ellipse can be expressed compactly
4ADet Chh8, which is at most 4 for uncorrelated quadr
tures. Therefore,ADet Chh85A12Ctot

2 is the fraction of the
maximum uncertainty volume which is accessed by the n
malized quadratures. The total correlation therefore is a m
sure for the confinement of the uncertainty volume acces
by the normalized quadratures due to correlations prese

B. Multidimensional uncertainty relation

The concept of an uncertainty volume is linked to Heise
berg’s uncertainty relation. Using the ideas of Sec. VII A
generalized uncertainty relation is derived. A linear opti
system transforms the input quadraturesQj to output quadra-
turesQk according to

Qk5Mk jQj ,

where

uDet M u51. ~47!

This relation reexpresses Eqs.~3a! and ~3b!, where the con-
dition on the IO matrix M is seen from the matrix consi
tency relations cast in matrix form:

S c
2d8

c8
2dD S d

c8
2d8
2c D †

51, M5S c
d8

c8
d D . ~48!

Equation~47! asserts that the uncertainty volume is kept co
stant during the transformation.

Note that classical noise is still included in this descr
tion. The operation of a modulator that can generate opt
fluctuations is interpreted as follows: The optical system
coupled to an additional mode, usually of electric natu
which is the input for the fluctuations that are transferred
the optical beam in a process conserving the uncertainty
ume. In the subspace that excludes this additional mode
uncertainty volume may increase.

For the derivation of the generalized uncertainty relat
uncorrelated input quadratures are considered,k j j 85Sjd j j 8 ,
from which Detk j j 85P jSj results. From Eqs.~47! and~46!

FIG. 2. Representation of the uncertainty volume. For desc
tions, see text.
y
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follows Det kkk85Det(Mk j
1k j j 8Mk8 j 8)5P jSj , and from

Eqs. ~45! and ~46! 12Ctot
2 5Det Ckk85Det kkk8 /PkSk .

First we conclude that

~12Ctot
2 !)

k
Sk5)

j
Sj ~49!

which asserts that the left-hand side is invariant during
propagation, which restates the conservation of uncerta
volume. Next we deduce the multidimensional uncertai
relation

)
k

Sk5

)
j

Sj

12Ctot
2 >

1

12Ctot
2 >1. ~50!

The first inequality results from the usual two-dimension
uncertainty relationSg

XSg
Y>1 between the amplitude nois

Sg
X and the phase noiseSg

Y for each individual beam, which
can be derived from Eq.~5b!. The second arises because t
total correlation is between zero and 1. The left side of E
~50! is the product of the variances of all quadratures, wh
cannot fall below unity. If these quadratures are correlat
this product is at least (12Ctot

2 )21.1. This important state-
ment expresses that the uncertaintyproduct ~not volume! of
correlated quadrature observables isstrictly larger than the
uncertainty product of its eigenquadratures or the minim
uncertainty product. This situation is depicted in Fig. 2: T
uncertainty volume accessed byQ1 and Q2 is bounded
closer by the rotated rectangle, relating to the eigenqua
tures, than by the square.

Finally, we consider the special case of decoupled am
tude and phase quadratures. Then both the correlation m
and the IO matrix decouple, and the total correlation can
factored to two total correlations for the amplitude and ph
correlations. The decoupled uncertainty relation now rea

)
k

Sk
XSk

Y5

)
j

Sj
X

12Ctot
X2

)
j

Sj
Y

12Ctot
Y2 >1. ~51!

The indices now denote just the beam, whereas the qua
ture type is specified explicitly by the superscriptsX and Y
for amplitude and phase, respectively.

VIII. QUANTUM-STATE PREPARATION „QSP…

The aim of a quantum state preparator is to provide
quantum state where the variance of a specific observab
as small as possible. The border line to successful QS
crossed if that variance is below the standard quantum lim
This can be achieved by either directly generating a squee
state~‘‘direct’’ QSP! or by generating a state and deliverin
additional information that can be used to predict the obse
able for that specific state to better than the SQL~‘‘indirect’’
QSP!. The choice of the attributes ‘‘direct’’ and ‘‘indirect’’
reflects the fact that for indirect QSP additional informati
is required and obtained by a measurement process in
trast to direct QSP. Sections VIII A and VII B investiga
both indirect and direct QSP’s and their relation.

-
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A. Indirect QSP: measurement and correction

Consider an optical system that generates entangled
put beams. Each measurement of an output beam leads
state reduction of the full state, by which the states of
other output beams are changed. This is interpreted as
preparation of these beams. The quality of the state prep
tion for output beamk is characterized by the conditiona
varianceVkuM , which is the remaining variance of the ob
servableXk , having measured all observablesXk8 of beams
k8PM specified by setM of ~measured! beams and using th
information from these measurements to predictXk . Inter-
estingly, QSP does not rely on entanglement, as any n
may be reduced in one quantity given othercorrelated
quantities—classical or quantum correlation being equ
useful.

In the following, a linear system is considered, a
Gaussian fluctuations are assumed, which allow impor
simplifications. In particular, the conditional variance do
not depend on the specific valuesXk8 measured. Also, the
conditional variance can then be calculated by minimiz
the variance of the sum of the observableXk and a linear
combination of the other measured observables, where
coefficientsgk8 are optimized:

VkuM5min
gk8

VarS Xk2 (
k8PM

gk8Xk8D
d~0!/8p

. ~52!

The normalization is identical to that of the squeezing@Eq.
~13!#, which requiresVkuM5Sk when no measurements a
performed on other beams, i.e., forM5$ %. The best condi-
tional variance can obviously be achieved by measuring
other output beams. If the intermediate quadraturesXj are
uncorrelated, further results can be easily derived. The o
mum linear combination is given bygk85kk8k9

21 Vk9 , where
Vk8[kk8k andkk8k9

21 is understood as the inverse of the m
trix that is indexed only by members ofM. Then the condi-
tional variance is

VkuM5Sk2Vk8
* kk8k9

21 Vk95Sk~12CQSP,kuM
2 !, ~53!

CQSP,kuM
2 [Vk* kk8k9

21 Vk9 /Sk . ~54!

This result was previously derived in Ref.@10#, and a closely
related discussion can also be found in Ref.@17#. For the
special case of two output beams, where beam 1 is prep
and beam 2 is measured, this simplifies to the well kno
result V1u$2%5S1(12uC12u2). For the case of three beam
indirect QSP results in

CQSP,1u$2,3%
2 5

uC12u21uC13u222 ReC12C23C31

12uC23u2 . ~55!

The total correlation~45! is Ctot
2 5uC12u21uC23u21uC31u2

22 ReC12C23C31 for three quadratures. Together with E
~55! one finds that the total correlation exceeds the QSP
relation:Ctot

2 >CQSP,1u$2,3%
2 .

Interpreting Eq.~53!, one finds that good state prepar
tion, i.e., low VkuM , is achieved when the beam to be pr
ut-
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pared already exhibits low noiseSk before QSP. Further-
more, this noise level can be reduced by the factor
2CQSP,kuM

2 due to the correlation coefficientCQSP,kuM be-
tween the prepared observableXk and the optimal prediction
(k8PMgk8Xk8 derived from the measured observablesXk8 .
Xk can be transformed toXk2(k8PMgk8Xk8 using a modu-
lator, appropriately driven by the measurement resultsXk8 .
The squeezing of this output beam is then given by the c
ditional varianceVkuM . This method was applied succes
fully to the twin-beam output of a nondegenerate opti
parametric oscillator~OPO! by Mertz et al. @18# to generate
squeezed light and to demonstrate its QSP ability@Fig. 3~a!#.
Most schemes avoid the optical feed-forward modulator a
use electronic noise reduction after the measurement ofXk to
take advantage of quantum noise reduction@7,19#.

Indirect QSP effectively uses the transformationXk
→Xshear,k[Xk2(k8PMgk8Xk8 to prepare a quadrature of low
variance. IfQ1 and Q2 of Fig. 2 are considered amplitud
quadratures, the transformationQ1→Q12g2Q2 pictorially
corresponds toshearingthe density distribution horizontally
For optimalg2 the transformed ellipse in Fig. 2 is verticall
aligned, i.e., the new variance ofQ1 is minimal ~using shear
transformations! and equals the conditional variance befo
the transformation. The variance ofQ2 remains unchanged
asQ2 is not transformed.

B. Direct QSP: rotation in quadrature space

However, there is a better method for QSP:rotating in-
stead of shearing. For optimal rotation angle, the ellipse
Fig. 2 ends up in the vertical position as for shearing tra
formation. However, for the price of an increased variance
Q2 , this will reduce the variance ofQ1 below the condi-
tional variance, and permit improved QSP beyond the re
of conventional indirect QSP. Note that the rotation tak
place in true quadrature space, not in the normalized qua
ture space depicted in Fig. 2. The beauty of this method
that the required rotation can be realized by a simple be
splitter, as indicated in Fig. 3~b!.

More generally, we define theminimal variance VR as the
lowest squeezing of a single amplitude quadrature that
be achieved by rotation of the amplitude quadratures sp
fied by a setR:

VR[ min
rotation g̃k8

VarS (
k8PR

g̃k8Xk8D
d~0!/8p

. ~56!

This relates directly to expression~52! of the conditional

FIG. 3. Comparison of two types of QSP.~a! Conventional in-
direct QSP by detection and appropriate modulation.~b! Direct QSP
by mixing of beamsA andB with an appropriate beam splitter.
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variance VkuM whenR5$k%øM is used. The minimization
in VR is constrained to rotations, which satisfy(k8PRug̃k8u

2

51. The required rotationXk→Xrot,k[(k8PRg̃k8Xk8 can be
realized experimentally by mixing beamk with all beams
indexed byM5R\$k% using phase control and beam splitte
of appropriate reflectivity.

The relative contributions of the individual quadratures
the considered output are equal for both indirect and di
QSP’s. However, the absolute scale is different due to
different constraints inVR andVkuM . This leads directly to

VR5
VkuM

11 (
k8PM

ugk8u
2

<VkuM , ~57!

where gk8 denote the optimized coefficients that apply f
VkuM @Eq. ~52!#. A geometric interpretation of the quadratu
rotation reveals that the rotation angles are chosen to tr
form the joint probability density such that minimal varian
emerges for the selected output quadrature. Therefore
output quadrature is the eigenquadrature of the seco
moment matrixk with lowest eigenvalue, i.e., minimal noise
This leads to the conclusion that the minimal variance
given by the minimal eigenvalue ofk:

VR5~min eigenvaluekk8k9!,

where

k8,k9PR. ~58!

We can compare direct and indirect QSP for the two-be
case indicated in Fig. 3. LetSA andSB be the squeezings o
the beamsA and B8, their correlation is denotedC. Their
conditional variances are thenVAu$B%5SA(12uCu2) and
VBu$A%5SB(12uCu2). The minimal varianceV$A,B% and the
required optimized reflectivityR of the beam splitter are

V@A,B#5
SA1SB

2
2F S SA2SB

2 D 2

1SASBuCu2G1/2

, ~59!

R5
1

2
1

SA2SB

4F S SA2SB

2 D 2

1SASBuCu2G1/2. ~60!

We give one example to show the potential of QSP by ro
tion. A high-gain nondegenerate OPA is known to gener
twin beams with high correlationC→1 and identical noise
level S[SA5SB . In this case one expectsV$A,B%5S(1
2uCu) which is lower than both conditional variances by t
factor 11uCu. In frequency-degenerate systems@20# direct
QSP can therefore outperform indirect QSP by up to 3 dB
quantum noise reduction. This method may come along w
a destructive interference of the carriers of the input bea
However, when frequency-dependent elements like a ca
are inserted in one input beam, both destructive interfere
of the noise and constructive interference of the carrier
possible and minimal noise and maximal output power
achieved.

The advantages of direct versus indirect QSP are~i! a
superior noise suppression,~ii ! operation at an optical rathe
ct
e

s-

he
d-

s

m

-
te

f
th
s.
ty
ce
is
e

than an electronic bandwidth,~iii ! a very low insertion loss,
and~iv! the possibility to recycle the laser power of the se
ond output from the beam splitter. The detection inefficien
for indirect QSP plays a similar role as imperfect modema
for direct QSP.

Finally, implications for the categorization of system
emerge: A system that exhibitsVkuM,1, which is conven-
tionally termed the QSP criterion, can be used to gene
squeezed light. That system is therefore considered a n
classical device. However, a system that is incapable ofin-
direct QSP,VkuM>1, may still provide squeezed light usin
direct QSP if VR,1. Therefore, instead of theconditional
variance VkuM the minimal variance VR should be used to
classify a system as classical (VR>1) or nonclassical (VR
,1).

IX. APPLICATION: BALANCED QUANTUM OPTICAL
BUS CONSISTING OF BEAM SPLITTERS

WITH SQUEEZED VACUA
AT THE USUALLY UNUSED PORTS

One purpose for a quantum optical bus is to transport
optical information of a signal beam from one emitter to
specific number of receiversn. The simplest way to achieve
this is to use a sequence of beam splitters to generate
number of required outputs for the receivers. We conside
arbitrary topology of the beam splitters, e.g., linear or bina
tree-like, but require that every one of the output beams
ceives an equal share of the input information. To make
of quantum noise reduction, we consider equally squee
vacuum incident at the usually unused input ports of
beam splitters. The fluctuations of all input beams are the
fore independent. An example for such a system is given
Fig. 4, which was discussed in Ref.@21#.

To calculate the properties of this system, it is divid
into two parts. The first systemSji treats every beam sepa
rately. The signal, whose squeezing isSs , is passed un-
changed, and every other input which is in the vacuum s
is squeezed, such that the resulting squeezing isSm . One
important parameter is the fraction of meter to signal no
s[Sm /Ss . The next systemSk j describes the mixing of
these beams by the beam splitters. This is a unitary trans
mation, and thereforeck j* ck8 j5dkk8 and ck j* ck j85d j j 8 hold.
The requirement of equal signal distribution is implemen
by uck ju251/n if j 51, which denotes the signal beam. Usin
the expressions of the previous paragraphs, the follow
results are obtained for this system:

FIG. 4. Balanced information transmission system. The sig
input is distributed ton users usingn21 beam splitters of indicated
reflectivities. The squeezings of the signal and meter inputs arSs

andSm , respectively.



r

nt
en

o

e
, u
gn
fe
tp
in
g

n

s

re
ua
te

ur
eri-
ost

hic
of

er,
re-
hat
tal

en-
ga-

tted
re-

ve-
em
e
of

ted
tput

ed
ent

pti-

on
nes:

by
of

760 PRA 59ROBERT BRUCKMEIER AND STEPHAN SCHILLER
Sk5Ss„s1~12s!/n…, ~61!

uCkk8u5U 12s

ns1~12s!
U for kÞk8, ~62!

Tk15
Ss

nSk
5

1

ns1~12s!
, ~63!

Ttot,15
Ss

Sk
5

1

s1~12s!/n
. ~64!

The total transfer coefficientTtot,1, which is the crucial pa-
rameter for information transmission, goes to 1/s as n be-
comes large. This leads to the surprising result that as fa
information transmission is considered, instead of usingn
21 squeezers, it is just as efficient to use a single a
squeezer, such as a noiseless parametric amplifier, to g
ate a signal input beam with a squeezing of 1/s, and to use
vacuum at all meter input ports. Ass,1, this amplified
beam carries excess noise, which increases the noise flo
the input and helps to achieve a goodTtot,1. Interestingly,
there is no difference whether this excess noise is du
increased quantum noise or to classical noise. However
ing a noiseless parametric amplifier to antisqueeze the si
before it is injected into the beamsplitter array does not af
the SNR at the input, and increases the SNR at each ou

Further calculations provide the results for the remain
quantities of interest. Preparing one beam and measurin
others, the conditional variance is

Vkurest5
ns

n1s21
, ~65!

which goes along with a QSP correlation of

CQSP,kurest
2 5

~n21!~12s!2

~n1s21!~sn2s11!
. ~66!

Finally, the expression for the total correlation is

Ctot
2 512

1

s F12
12s

~n21!s11Gn

. ~67!

For an intuitive grasp of the dependences the previous fu
tions are plotted in Fig. 5. Interestingly,CQSP,kurest decreases
as more beams are included, and eventually vanishe
n→`. As bothVkurest andSk approachSm , by Eq.~53! one
finds that their quotient, 12CQSP,kurest

2 , has to approach unity
and that there is no essential correlation left.

X. EFFECTS OF IMPERFECT MODE MATCH

A. Evidence for dramatic experimental effects

During early stages of our experiments on QND measu
ments, the transfer coefficients were investigated for a d
port resonator, where an input beam was partially reflec
as

i-
er-

r at

to
s-
al

ct
ut.
g
all

c-

as

-
l-
d

from and partially transmitted through the cavity. To o
surprise, we found dramatic discrepancies between exp
mental data and the predictions. This problem sparked m
of the contents of this paper.

The resonator used for this experiment was a monolit
lithium niobate ring resonator with a free spectral range
10.19 GHz, a 1.25% transmitting dielectric input coupl
and round trip losses of 0.39%. Frustrated total internal
flection was used to generate an additional coupling t
could be varied by moving a coupling prism near the crys
surface with a piezoelectric transducer. The optical effici
cies were 98.5%, 96.3%, 96.6%, and 97% for the propa
tion of the input beam, the reflected beam, the transmi
beam, and the quantum efficiencies of the photodiodes,
spectively. The single-frequency input beam was at a wa
length of 1064 nm, and its power was 2.35 mW. This syst
was described in detail in Ref.@14#. The measurements of th
transfer coefficients in Fig. 6 were taken at a frequency
21.5 MHz. The measured transfer coefficient for the reflec
beam showed a striking and unexpected dip at an ou
coupling near 0.7%, as indicated by the vertical arrow.

Eventually, the imperfect mode match of 90.2% turn
out as the origin of this unexpected effect. The mode incid

FIG. 5. Operation characteristics of the balanced quantum o
cal bus as indicated forSs51 andSm50.1.

FIG. 6. Dependence of the transfer coefficients as indicated
the resonator outcoupling. Crosses: experimental data. Li
theory. The theory that neglects imperfect mode match is wrong
an order of magnitude indicated by the vertical arrow near 0.7%
resonator outcoupling.
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on the resonator may be decomposed into the part
matches the resonant mode and the orthogonal rest, whi
fully reflected. This causes a very different action of t
resonator on these modes. The sidebands of the reso
mode are phase shifted with respect to the carrier, thos
the reflected mode are not. As the modes are orthogo
each mode generates its own photocurrent on the dete
However, the photocurrents of the individual modes int
fere. When all terms are taken into account by the gene
ized theory given below, quantitative agreement between
periment and theory is reached, as demonstrated in Fig.

B. Generalized theory

The generalized calculation must account for several
thogonal field modes per detector. The setsD andD8 denote
the indices of the modes that are detected by the respe
detector. According to Eq.~18!, the photocurrent is theni D
5(kPDi k5(kPD2Akck jXj , and the generalization o
Kkk8(v,v) after Eqs.~19! and ~31!, is

KDD8[^ i D
1i D8&5 (

kPD,k8PD8
AkAk8kkk8d~0!/2p. ~68!

Provided full linearity of the systems and decoupled quad
tures,Ak is given byAk5cki(0)Ai @Eq. ~17!#. Analogous to
the previous arguments the expressions can be calculate
the squeezingSD of the detected radiation, the transfer coe
ficient TD j from the input modej to that detector and the
correlation coefficientCDD8 between two detected currents

SD5 (
k,k8PD

AkAk8kkk8Y (
kPD

Ak
2, ~69!

TD j5SjU (
kPD

Akck jU2Y SD (
kPD

Ak
2, ~70!

CDD85
KDD8

AKDDKD8D8

. ~71!

If the input beamsj for the systemSk j are uncorrelated then
two expressions simplify to

SD5(
j
U (

kPD
Akck jU2

Sj Y (
kPD

Ak
2 and ~72!

CDD85

(
j

S (
kPD

Akck j* D S (
k8PD8

Ak8ck8 j D Sj

AS (
j U (kPD

Akck jU2Sj D S (
j U (

k8PD8

Ak8ck8 jU2Sj D
.

~73!

Note that also these equations can be generated from
ones that neglect input squeezing by the substitutionck j

→ck jASj . Also, the carriersAk appear as weighting factors
at
is

ant
of
al,
or.
-
l-
x-
.

r-

ive

-

for
-

the

because the photocurrent generated byXk is proportional to
Ak . If there is only one bright mode (AkÞ0) per detector,
these expressions reduce to those of the previous sectio

C. Application: the squeezed-light beam splitter

A seemingly simple device is the conventional beam sp
ter. However, complex expressions result if imperfect mo
match, arbitrary squeezing and technical noise, finite be
powers, and detection losses are included. This system
investigated experimentally in detail in Ref.@15#. Here we
present details of the underlying model.

We start by giving a mode map in Fig. 7 that includes
required elements and modes. This diagram represents
thogonal transverse modes by separate parallel lines.
upmost mirror is a ‘‘Gedanken mirror’’ that separates t
part of the meter input that is not modematched to the sig
input. Its power transmission equals the mode match of
two beams, i.e., the modulus square of the field overlap
tegral. The squeezings and the powers of the signal and
meter input areSs , Sm , Ps , andPm , respectively. Only the
central mirror actually exists in the experiment, and provid
a transmissionT. The quantum efficiencies of the photod
tectors PDs and PDm are simulated by mirrors of transmis
sionhs andhm . Choosing a specific phase convention, e.
the IO coefficient for the meter input to the non-mod
matched field incident on PDs is Ahs(12M )(12T). The
experiment uses a servo loop that maximizes the ou
power at one detector to control the relative phase betw
signal and meter input. This ensures that the amplitude
phase quadratures decouple throughout the system, and
vides optimum performance using an amplitude squee
meter input. Then the quantities for the squeezingSs

out, as
measured at PDs , the correlationCsm between the two pho-
tocurrents and the transfer coefficientTs from signal input to
PDs result in

Ss
out5Ns /NsuSs5Sm51 , ~74!

FIG. 7. Mode map for the analysis of the squeezed-light be
splitter of transmissionT.
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Csm
2 5

hshm

NsNm
@RT~M2MSm1Ss21!

1AAMRT~2T21!~Sm2Ss!

1A2RT~M2MSs1Sm21!#2, ~75!

Ts5hsTSs~AT1AAMR!2/Ns , ~76!

where

A[6APm /Ps, R[12T,

Ns[~AMT1AAR!2@11hs~RSm1TSs21!#

1~12M !T@11hs~T2A2R!~Ss21!#. ~77!

Ns is the normalized noise power of the radiation incident
the detector PDs . The expressions forSm

out and the transfer
coefficientTm from the signal input to PDm result from the
substitutionsR↔T, hs↔hm , and A→2A. The sign ofA
reflects the choice of the relative phase between both inp
either 0 orp.

Most notable is the special case where the beam splitt
such thatAT1AAMR50. Then a complete destructive in
terference of the carrier of the signal beam propagating
ward PDs occurs. Its fluctuations lead to no photocurre
and the current from the non-mode-matched part of the m
input dominates, causingTs to vanish. In that case th
squeezing at PDs also results only from the latter beam
Ss

out215(Sm21)(12M )Rhs .
The dramatic degradation of the transfer coefficient

Fig. 6 is caused by a similar effect, namely, the impeda
matching of the mode-matched part to the resonator that
curs at a specific resonator outcoupling. However, the si
tion is more complex as the non-mode-matched part a
carries information from the signal beam, in contrast to
case of the squeezed-light beam splitter.

For a perfect mode match,M51, the previous results
simplify to

Ss
out511hs~RSm1TSs21!,

Sm
out511hm~TSm1RSs21!, ~78!

Csm
2 5

hshmRT~Ss2Sm!2

Ss
outSm

out , ~79!

Ts5hsTSs /Ss
out, Tm5hmRSm /Sm

out. ~80!

Here the amplitude ratioA of both beams becomes irre
evant. Experimentally, quantitative agreement between
periment and theory is found only after taking the fin
mode match into account.
t

ts,
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-
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XI. CALCULATION OF THE IO MATRIX
FOR THE DEGENERATE OPTICAL PARAMETRIC

AMPLIFIER DOPA

In this section the IO matrix for a resonant system, t
degenerate OPA~DOPA! is explicitly calculated. This serve
three purposes: First, it demonstrates how optical feedb
that leads to resonant systems can be integrated to this
malism. Second, this approach avoids using the good ca
limit or assuming weak interactions. Third, the results a
required for the specific calculations presented in Fig.
which compares theory to experiment and shows that fi
mode match can lead to dramatic effects.

Consider the ring resonator setup of Fig. 8 with thr
coupling mirrors of arbitrary power reflectivitesT1 , T2 , and
T3 , and one parametric interaction region. If the degene
parametric interaction is driven by a pump wave of app
priate phase, it will decouple the amplitude and pha
quadraturesX and Y and lead to parametric amplificatio
factors ofe2p/2 andep/2, respectively. The parametric gainp
depends on the pump powerPp and the nonlinearityG of the
interaction:p52APpG. This choice of pump phase will lea
to an amplitude-squeezed output state. The following ca
lations are sufficient for the amplitudes, the expressions
the phases are obtained by reversing the sign ofp. Denoting
the field operators as indicated in Fig. 8,Xc5e2p/2Xb re-
sults, which holds both in the time and in the frequen
domain. The cavity round trip time is taken care of b
Xb(t)5Xa(t2t) which fourier transforms to Xb(v)
5Xa(v)e2 ivt, wheret is the cavity round trip time andv is
the detuning from resonance. For the first mirror the quad
tures are connected byXa5t1X11r 1Xe and X1

out5t1Xe

2r 1X1 , wherer 1[A12T1 andt1[AT1 have been set. The
other two mirrors work analogously, noting that the intra
avity field is reflected with positive sign to ensure resonan
at v50. This determines completely the operation of t
system, and the result in the frequency domain is

FIG. 8. Ring resonator with three coupling mirrors and param
ric interaction.
Xa5R~X1t11X2r 1r 3t21X3r 1t3!, ~81!

S X1
out

X2
out

X3
out
D 5S 2r 11RFr2r 3t1

2

Rr3t1t2

Rt1t3

RFt1t2

2r 21RFr1r 3t2
2

RFr1t2t3

RFr2t1t3

Rt2t3

2r 31RFr1r 2t3
2
D S X1

X2

X3

D , ~82!
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whereF[e2p/22 ivt andR[(12Fr 1r 2r 3)21.
Note that this result does not require the assumption

small transmissions, i.e., the good cavity limit, nor sm
detunings, nor small parametric gain, as long as the syste
operated below threshold. Note that rate equations, which
first order approximations, are avoided. A check of the c
sistency relations~7! usesd as the same matrix asc except
for a sign change inp. The positive outcome is not surprisin
since the constituents of this resonator, i.e., mirrors, ti
delay, and the parametric interaction pass the test indiv
ally.

The well-known equations for the good cavity limit a
obtained by multiplying all transmissionsv andp with a size
parameter, and taking the leading order when this param
is small. The intuitive result for the IO relationXj

out5cji Xi is

cji 5t jRti2d j i , ~83!

where the simplified resonance term isR52/
@L(11 iv/vc)#. The total round-trip power losses areL
[T11T21T31p, and the cavity linewidth D f FWHM
~FWHM is full width at half maximum! is connected to the
amplitude decay ratevc[L/2t by D f FWHM5vc /p. The
OPO threshold is reached atupu5T11T21T3 . Interestingly,
relation ~83! passes the consistency test~7!, although the
individual elements of the resonator no longer conserve
commutation relations in the good cavity limit. The reason
that the general matrix satisfies the consistency relation
any order, particularly to the leading one.

From the IO coefficients@Eq. ~83!# one quickly calculates
the output squeezing, the correlations, the transfer co
cients, and the conditional variance using Eqs.~33f! and
~53f!. These results have previously been calculated in
sence of technical noise at the inputs (Sj51) by Smithet al.
@22#.

Note that all of these quantities includingD f FWHM depend
on the parametric gainp. This directly leads to a narrowing
of the cavity linewidth for the antisqueezed~amplified!
quadrature and to an increased bandwidth of the sque
~deamplified! quadrature. This effect has been observ
clearly in our laboratory@23#.

XII. SUMMARY AND CONCLUSION

In this paper a formalism is developed that allows one
describe complex composite quantum optical systems.
approach includes technical noise by starting with tim
dependent coherent input states. The input operators are
linearly propagated through a series of individual optical s
tems as described by their input-output relations. Finally,
output states are detected by photodetectors which gen
photocurrents whose properties are analyzed in detail to
tain expressions for the squeezing@Eq. ~22!#, the transfer
of
l
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re
-

e
u-
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e
s
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fi-

b-

ed
d

o
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-
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coefficients@Eq. ~24!# and the correlation coefficients@Eq.
~30!#. A discussion of the connection between transfer co
ficients and phase sensitivity results in a generalized crite
for phase sensitivity@Eq. ~27!# for the case of two beams. An
analysis of the correlation coefficient results in a necess
condition @Eq. ~40!# for a system that generates entangl
states. Further relations@Eq. ~44!# allow one to conclude tha
states are entangled from experimental data even when t
nical noise is present.

The total correlation is introduced as a measure of
overall correlation of a set of output quadratures@Eq. ~45!#
and is interpreted geometrically. From this, a multidime
sional uncertainty relation is derived@Eq. ~50!#. Next, quan-
tum state preparation is reviewed: The conventional
proach of detection of one quadrature and modification
another is termed ‘‘indirect’’ and its optimal performance
calculated@Eq. ~53!#. A different approach is to use beam
splitters to superimpose quadratures and to minimize
noise on one particular quadrature. This method is term
‘‘direct’’ QSP, and an analysis shows that the achieva
minimal variance@Eq. ~56!# is always smaller than the con
ditional variance of indirect QSP@Eq. ~57!#. For the case of
two beams up to 3 dB of additional noise suppression can
accomplished. Consequently it is argued that the minim
variance should be used as a criterion for QSP, rather t
the conditional variance. As an application, a balanced qu
tum optical bus consisting of beam splitters with squee
vacua at the usually unused ports is analyzed@Eqs. ~61!–
~67!#.

Finite beam mode match has been shown experimen
to lead to dramatic effects~Fig. 6!. To describe these, ou
theoretical model is further generalized to include imperf
mode match using a multimode description of a single be
The possible interference between the photocurrents of
individual modes on a single detector results in fairly co
plex equations for the squeezing@Eq. ~69!#, the transfer co-
efficients @Eq. ~70!# and the correlation@Eq. ~71!#. Expres-
sions for the imperfectly modematched squeezed-light be
splitter including detection losses are given@Eqs.~74!–~80!#.
Finally, a direct and intuitive derivation of a general IO m
trix for a degenerate optical parametric amplifier is presen
@Eq. ~82!#.
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