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Quantum theory of dispersive electromagnetic modes
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A quantum theory of dispersion for an inhomogeneous solid is obtained, from a starting point of multipolar
coupled atoms interacting with an electromagnetic field. The dispersion relations obtained are equivalent to the
standard classical Sellmeir equations obtained from the Drude-Lorentz model. In the homog@temters
wave case, we obtain the detailed quantum mode structure of the coupled polariton fields, and show that the
mode expansion in all branches of the dispersion relation is completely defined by the refractive index and the
group velocity for the polaritons. We demonstrate a straightforward procedure for exactly diagonalizing the
Hamiltonian in one-, two-, or three-dimensional environments, even in the presence of longitudinal phonon-
exciton dispersion, and an arbitrary number of resonant transitions with different frequencies. This is essential,
since it is necessary to include at least one phofiBy and one excitofUV) mode, in order to represent
dispersion in transparent solid media accurately. Our method of diagonalization does not require an explicit
solution of the dispersion relation, but relies instead on the analytic properties of Cauchy contour integrals over
all possible mode frequencies. When there is longitudinal-phonon dispersion, the relevant group-velocity term
is modified so that it only includes the purely electromagnetic part of the group velocity.
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PACS numbdss): 42.50—p, 42.65-k, 03.65-w

[. INTRODUCTION a given time depends not only on the field at that time but on
the values of the field at previous times as well. This nonlo-
Recent developments in quantum optics have led to theal behavior makes standard macroscopic quantization, in
realization that it is essential to include dispersion in thewhich the medium is represented by its susceptibilities, prob-
guantum theory of a linear or nonlinear dielectric, as in alematic. Even without explicit dispersion, some early treat-
fiber waveguide. At the simplest level, it is clear that all ments even resulted in Hamiltonians that did not generate the
dielectric solids have dispersion and absorption. There is afaxwell equations at all. This problem was analyzed by Hil-
increasing number of experiments that allow direct access ttery and Mlodinow[11], who showed that the problem was
the quantum nature of propagating radiation fields, rangingaused by the use of an incorrect canonical description.
from quantum soliton experiments in optical fibers to quan- However, a previous macroscopic model of a nonlinear,
tum nondemolition(QND) measurements; as well as quan- dispersive medium resulted in a quantum theory that has a
tum dynamics experiments directed at reducing photon numeonsistent Lagrangiarf12]. This was accomplished by
ber noise levels for broadband communications, ultraprecisbreaking the field up into narrow frequency-band compo-
measurements, and other device applicatidnrs5]. Signifi- nents and quantizing these separately. The frequency-
cantly, these experiments—as well as more recent theoreticdependent linear susceptibility is expanded up to second or-
proposals—have the character of fundamental tests of théer in each frequency band, and this results in a local
guantum theory of interacting field—10], and of quantum Lagrangian in each band. The present paper is intended to
measurement theory. These are complementary to oldéreat the microscopic basis of the linear dispersion more pre-
accelerator-based tests, taking place in low-energy regimegsely. Our model is the quantized version of the classical
where a considerable precision of control is available on thdrude-Lorent4 13] single-electron oscillator model, in a lin-
dimensionality of the interacting quantum fields. Measure-earized continuum limit. Similar continuum models have
ments that can be used range from the usual particledeen treated previously, generally in the minimal coupling
counting measurements to interference-based techniques tlguge. The present approach uses the multipolar gauge,
allow an unprecedented level of information about quantunwhich eliminates complications due to Coulomb interactions
phases. Current technologies even allow measurements afid contact A%) terms. While these effects can be included
electromagnetic properties of Bose condensates. in minimal coupling theories, they result in considerable
Because the effects of propagation always involve moreomplexity. The present approach includes all these effects
than one spatial mode, it is essential to include dispersion iby virtue of the transformation to a multipolar interaction, in
any physical model of a linear waveguide in one or morewhich the coupling is to the polarization rather than to the
spatial dimensions. Treating dispersion can present prolelectronic momentum. This has the advantage that inhomo-
lems, because it arises from the fact that the response of tlgeneous media or higher dimensions can be treated easily.
medium to the field is not instantaneous. The polarization at Some earlier dispersive models of a similar type are
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known, starting from the phonon theory of Born and Huangphonon/exciton dispersion, this correction term is identical to
[14] and the exciton theory of Hopfielfl5], which used that found in previous phenomenologicfl,23,13 and
minimal coupling. Hopfield considered the electromagneticsingle-resonance microscopic mod¢i—19. As an ex-
field coupled to a polarization field which has a single reso-ample, Blowet al.[23] based their expansion of the fields on
nant frequency. He diagonalized the resulting Hamiltonianprevious work(due to Loudor{24]) in which it was argued,
and found that the resulting elementary excitations, polariffom energy transport considerations, that the group velocity
tons, have a dispersion relation consisting of two brancheghould appear in the expansion of the phonon field in terms
separated by a forbidden frequency band. More recent worRf guantized modes, when phonon dispersion is present.
has revisited the Hopfield model, though not always with allB!oW €t al. took this result for phonons and used it for the
the terms included in Hopfield's treatmeft6,17. Other case of an eIectromagnetlc flgld in a Q|sper3|ve_ medlum.
treatments have added losses to the model by coupling tqe Our work here provides a justification for .th's quantiza-
polarization field to loss reservoif48,19, still with just one lon _procedure from a more fgndamental_pomt of view—a
resonant transition. This has allowed the examination of th uIUpIe—re;onan_ce microscopic mod_el. Itis r(_amarkgple that
Kramers-Kronig relations in a fully quantized model. Fi- e S|mp!e mclgsmn ofagrc_)up veIQC|ty factc_)r IS §uff|C|ent to
nally, nonlinear generalizations of Hopfield’s model haved""lgon"’lllze th[s complgx mteracpon Hamiltonian exactly.
also been studied11]. In these the linear oscillators of The mathematical technique required to prove the results in-

Hopfield's medium have been replaced by two-level atomsVOIVeS the use of Cauchy’s theorem to carry out the required

and the Holstein-Primakoff representation is used to develo ums over thg.dlffer.ent branches of the dl_sper5|on relation.
a systematic expansion of the polarization of the medium _h|s IS a significant |mprc_>vement OVEr previous approachgs,
which includes nonlinear effects since in general there is no algebraic solution—even in

These and other studies have elucidated the fundament; iinci_ple—f_or the pplynomial expression§ whose roots give
cause of the two main types of dispersion. The first, exci: e dispersion relations. In addition, we find that when there

tonic, type is due to electronic transitions, and is typicaIIyIS pt)honop or exdc_lton d_|sper5|3[r25%,r]_wh|ch '3 a r_eahstldc_f d
resonant in the ultraviolet. These are due to relatively tightl jeature of many GiSpersive media, this procedure Is modine
in a straightforward way. Instead of the total group velocity,

bound electrons that are localized to atomic sites in insula- . e .
tors, and somewhat delocalized in semiconductors. The r;o_nly the relevant electromagnetic component is included in

sulting classical dispersion is rather well described by th he expansion coefficients, suggesting that the diagonaliza-

harmonically bound Drude-Lorenz model. The next type is ion is irjtimately related to the power transport processes in
due to phonon transitions, mostly in the infrared. These exthe solid. The results apply to one-, two-, or three-

citations are less strongly localized, and have their own dis(_j|men3|onal environments, although only isotropic dielec-

persion relation in the Born-Huang model. The dispersion ir;[rICS are included here, for simplicity in the derivations.

the transparent region between these absorption bands is
caused by the off-resonant, virtual transitions of these two Il. ONE-DIMENSIONAL MODEL
main forms of excitation. In effect, a photon propagates in a
dielectric as a dressed particle, due to the virtual We start by considering a straightforward one-
transitions—and resulting polarization—that is induced indimensional model, without the complicating features of
the solid. To treat this completely, it is essential to includetransverse mode structures and longitudinal phonon/exciton
multiple exciton and phonon resonances in a full threedispersion. This simple case illustrates the essential analytic
dimensional model. features of our model. It will be generalized to more realistic,
The present paper examines this problem using an agrigher-dimensional dielectric structures in later sections.
proach in which the coupling to the dielectric is included
through a multipolar termpi20,21). This has the well-known
advantages that the use of atomic sum rules is not required,
since the atomic transition probability for off-resongnigh- Consider a set of dipole-coupled electronic Lagrangians
frequency transitions is suppressed in this gaigg]. The  for oscillators with massn,, chargeq,, andN (renormal-
interesting feature presented here is the inclusion of anjzed resonant discrete frequencids, ..., . These
number of atomic resonances—thus allowing us to recovefransitions may correspond physically to different types of
the Sellmeir[13] dispersion equation, which is known to atom, to distinct transitions within each atom, or more gen-
provide an excellent quantitative description of real dispererally to some many-body resonance. Thus
sive, transparent media. The use of multiple resonances is
essential to a correct description of the transparent region
with low group-velocity dispersion, that occurs between the
absorption bands in most known cases. In addition, there is a
very straightforward procedure for diagonalizing the ) ] o
Hamiltonian—even in the presence of an arbitrary number otierer, is the displacement of a charged partitigpically,
resonant transitions with different resonant frequencies. ~ @n electrofin a multipolar Drude-Lorentz model, from the
In the homogeneouéplane-wave case, we find the ex- Corresponding center of charggpically, nucleay position
pansion of the fields in terms of the quantized modes has ax,. Generally, these are all distinct atomic resonances. For
exceptionally simple form, in which only an electromagneticsimplicity, self-energy terms proportional R? are incorpo-
group-velocity correction has to be included relative to therated into the definition of the resonant frequerizy. The
usual nondispersive theory. When there is no longitudinatoupling in multipolar gauge is to the displacement field

A. One-dimensional Lagrangian

m, . 1 —
Le=2 |5 (N-QUD+ arDx,) | (21
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D(x,) at the central position. All Coulomb terms in this commute among themselves, as do all momentum-type op-
gauge are carried by the photon-exchange prokzgs erators. We list the commutators involving cross terms be-
Next, in order to develop a simple electromagnetic La-tween the position and momentum operators, and between

grangian in the multipolar gauge, we introduce a gaugéhe different types of variables, for reference in the next sec-
field—the dual potentialA—so that D=dJA/dx and B  tions. In order that the commutators will have a familiar

= wdAldt. This simply corresponds to a canonical transfor-aPpearance, they are written in terms of the electric displace-
mation to the multipolar gaugE20,21] of the more usual Ment and magnetic fields, rather than the canonical variables
minimal coupling theory, and is simplified here by the as-and their momenta. Since the electric field only differs from

sumption that there are no free charges. The discrete atomige displacement field by the polarization tertwich com-

positions are replaced by a continuum polarization field, to/mute with field operators at equal timebere is no essential

gether with the appropriate Lorentz shifts in the resonanfil_fference_ between the_electromagnetlc_ commutators written

frequencies, due to local-field corrections. This simplifica- With the displacement field or the electric field. The fact that

tion is used here because it is not really necessary for us € electric displacement is the derivative of a potential is, of

consider the details of local-field corrections at this stagecourse, the origin of the differentiatetfunction in the com-

We will show that this approach is able to generate the idenmutator between the electric and magnetic ﬁeldS, which is

tical (low-frequency Sellmeir dispersion equation that is ob- &S0 found in minimal coupling theory:

tained in the usual Drude-Lorentz theory, which does include R R

local-field corrections. Of course, the approximations in- (N [D(x),B(x")]=ih " (x—x")I(A),

volved are only valid for carrier wavelengths much greater A - N ,

than the intera¥omic spacing. ’ k (D) [py(x), (X)) =118, S(X=X")IA,
The corresponding Lagrangian density that generates the (1) [D(x),p,(x)]=0,

correct electromagnetic energy and Maxwell’'s equations in W ~ ~ (2.6
one dimension is, for a one-dimensional waveguide with ef- (V) [B(x),,(x")]=0,
fective cross sectioA, (V) [D(x),7,(x')]=0,

1. 1 1 VI B(x),p,(x")]=0.
£IA= 52 A0+ = POOBA )~ S [A 00 1 (VD [BO0,pu(x)]

N It is important to notice here that the commutators are essen-
+ X [pA(x)— Q2p2(x)1/[2849,(X)]. (2.2 tially identical to those for the corresponding free fields
v=1 [10,26 and oscillators. This is a consequence of the fact that
the couplings do not involve time derivatives. It also demon-

Here p,(x) is the density of the oscillators with resonant strates that the present theory is canonically equivalent to

frequencyw, andr ,(x) is regarded as a continuum field, with other techniques involving minimal coupliri@0,21. One

polarizationP(x) =X,p,(X) =%,0,p,(X)r,(X), in order to 5 0760y difference is in the commutator between the dis-
allow us to use a continuum approximation in later calcula- _ - :
tions placement field and the momentum,, which replaces a

The coupling between the field and the polarization jscommutator between the el.egtric field apd agauge—d_ependent
entirely included in one terrg,(x), which effectively com- canonical momentum in minimal-coupling theory. Since the

bines all the relevant information about charge, density, an&IECtriC field anq displacemen.t field differ by a t'erm' that does
dipole moment: not commute with the canonical momentum, it might seem

that this introduces a difference. The explanation is due to
9,(X)=02p,(X)/(M,&0). (2.3  the well-known fact that the canonical momentum in this
case is just the usual mechanical momentum, and therefore
Noting thatD (x) = egE(x) + P(x), the electric field is given differs from the minimal coupling momentum—which in-
by E(xX)=[D(x)—P(x)]/eg, and the resulting Maxwell- cludes a term proportional to the vector potenfial These

Bloch equations have the expected forms two effects cancel each other, so the overall commutators are
5 - ) unchanged. o . '
df A — A= —c9,P(x), The final Hamiltonian density, equal to the linear energy
) 5 (2.9 density of the coupled system, has a rather straightforward
9P, + 0P, =g,0xA. expression in which there are no explicit Coulomb interac-

i ) ) tion terms. This is a typical property of multipolar interaction
In order to quantize the system, we simply introduce COMy,mijtonians. Effectively, the Coulomb couplings are in-
mutators for the canonical momenta and position, where | ,ded partly in the oscillator self-frequency tertie., in
o . v;), and partly in the photon-exchange dynamics that are
()= uA(X)=B(X), 25 implicit in the Hamiltonian. The result is that
7,(X)=Py(X)/[ €9,(X)]: 1. 1. 1. .
o - HIA= =— D?*(x)+ 5— B%(x)— — D(X)P(x) 2.7
The quantization rules are then the usual ones, obtained 2z 2 €0
on replacing Poisson brackets with commutators, except with
the atomic operators treated as a continuum field. All

position-type operators of the same type of variable must + 2600.,(%) ;l [£59,00?T5(x) +Q2p2AX)]. (2.8

N
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All these equations hold for an arbitrary spatial distribu- It should be realized that the dispersion relation is not
tion p(x) of the polarizable atoms. Ip(x) is a sum of&  completely identical to the usual classical Sellmeir expan-
function terms, a discrete lattice model is obtained; it is arsion, although it is very similar to it. The Sellmeir expansion
unusual waveguide in which the atoms are all lined up in ds
one-dimensional row, but not an impossible one, with atom-

trapping techniques. For simplicity, we do not treat this type g
of model here. Instead, we will focus on the uniform dielec- n(w)=1+, —*—. (2.19
tric limit, in which all the local-field corrections are included # Qi— w?
via the relevant Lorentz shifts of the oscillator frequencies, to . )
give a more tractable case. This agrees with the functional form of the present result to
lowest order ing,,, if we assume thag,=g,. The differ-
B. Mode structure ence is simply due to different approaches to treating local-

. ) __field corrections in the continuum approximation. If a precise

We now specialize to the case of a continuum model with,o| field theory is required, then the assumption of a ho-

a uniform distribution, in order to find the dispersion rela- mogeneous polarization field must be replaced by a lattice
tions for plane waves. We introduce a mode structure bynqqe| | fact, the usual Drude-Lorentz model is not typi-
finding the eigenmodes of the equation of motion. SUPPOSEyy ohtained from a coupled Lagrangian, so it cannot be
the solutions to Maxwell's equations have the form readily quantized directly. Rather, it is obtained from an ap-

At 3 proximate theory in which the locdmicroscopi¢ E field
N(t,X)= (X)) _ <~ )eikx—iwt_ (2.9  plays the role that th® field does in the present thediya3].
P,(t,X) Py From microscopic considerations, both forms needs to have

] ) . ) local-field corrections included near an absorption band, in
It follows that these satisfy the resulting equations in thegrqer to give an accurate comparison with a three-
form dimensional crystal lattice, from first principles.

When this is done in the Drude-Lorentz model, all the

(— w2+ ¢k = —ike2D, P, low-frequency resonances are shifted by amounts known as
V' the Lorentz shift. With these shifts included, the Sellmeir

(2.10  expansion is obtained, with local-field corrections included.

(_w2+Q§)BV:ikgVX_ However, the number of poles in the rational function repre-

sentation derived here is finite, just as in the classical Drude-
Solving forp,, we find that Lorentz theory. Accordingly, it is always possible to re-
express our dispersion relation exactly in the Sellmeir

2 o oa p - - rational-function form, using partial fraction expansions, just
(Q)— @) (K~ w)p,=ck 9»2 P, (211 asin the Drude-Lorentz derivation of the Sellmeir equation.

In this case, the frequencies and coupli@gappearing in

or, summing over all the oscillators and introducipg the final Sellmeir formula are not identical with the original
frequencies in the Lagrangian; these shifts, of course, can be

=Py, we find regarded as evidence of the photonic coupling between the
g oscillators in our model.
(c%k?— 0?)p=pck>Y, —5——. (2.12 An important, and experimentally well-tested property of
v Q- the Sellmeir equation is that the refractive index approaches

unity at high enough frequencies, while at low frequencies it

EIiminating the polarization fle'&) leads to the eigen- approaches a constant value greater than 1:
value equation

n> 9, } 213 lim n2(w)=1+ >, ?—”. (2.16

. 2
v QIZ)_ (,02 0—0 # Q

c?k?

we=—7—"-—=

n*(w)

We find a band structure in which there are typically ~Our dispersion relation from the multipolar Hamiltonian has
+1 positive rootsw, (k) with £=0,1,...N to the solution. a_S|m|Iar behavior, except that the algebraic form is slightly
To look at this differently, we can solve for the wave numberdifferent at low frequencies:

k, at any given frequency:
-3 2
7 Qf

v

2k2

14

-1
12 lim n*(w)=
=+k(w). (2.14 ©=0

Clearly, one form can always be transformed into another,
This solution is unique for any given modal frequency, butgiven the obvious restrictions on having distinct roots, with
has forbidden regions at=),, wherek’— —o. This in-  =,g,/Q2<1. We note that this equivalence does not apply
dicates a resonance, or absorption band. In the transmissidm all other models of the dispersion relations, which may
bands, there is a unique refractive indgjw), and hence a have inequivalent analytic properties—leading to a different
well-defined permittivitye (w) =n?(w)eg. limiting behavior at high and low frequencies. Provided the

(2.1

w?/c?
1-3,9,/(Q%— w?)

==+
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general analytic properties are equivalent, the partial-fraction N .

procedure to transform one form into the other is not re-  TI(t,x)= >, | dK[II,(k)a, (k)" 1xWttH.c].

quired in most cases. We shall demonstrate that only the n=0

refractive index and group velocity are needed to obtain a 3.5
complete quantum theoretic description of the modes. This 1,4 requirement of commutation relations means that we
information is readily available from the usual Sellmeir pa- , st have(at equal timeks

rameters that are experimentally known for many transparent

materials. A typical dispersion relation for a solid with both | A (x) [T(x")]=i%8(x—x')/A

low- and high-frequency resonances would show multiple

transmission and absorption bands—with three distinct N

branches to the dispersion curve—and a region of relatively = 20 dK[ A, (K)IT% (k) ek —H.c].
low group-velocity dispersion between the absorption bands. -
This is the origin of the well-known zero-dispersion pdiat (3.6

around\ =1.5 um in fused silica, which plays a prominent

role in optical communications systems. This implies the relationship that, in order to preserve com-

mutation relations,

Ill. ONE-DIMENSIONAL MODE OPERATORS

N .
if
* —
Having derived the modal solutions, we now wish to ex- ,;0 Ap(OTL (0 = 4A° 3.9

pand the fields of the theory in terms of annihilation and

creation operators. We develop this expansion in two stage§he Lagrangian density for this model implies thHt
First, we will consider the conditions on the mode expansion= uwd;A. With the assumed time dependence of the annihi-
which preserve the correct commutation relations for thdation operators, we can also writé, (k) in the form of
original canonical fields. Then, we show that a mode expan- _

sion defined this way does lead to a diagonal Hamiltonian I, (K)=—iw,(K)uA 4(K). (3.9

form, when the Hamiltonian is reexpressed in terms of the i
. . . h The above result therefore reduces to an equation for the
mode operators. That is, our goal is to find operatgyék)

which have the function of diagonalizing the Hamiltonian, expansion coefficienta,,(k), in the form of
giving a final structure of

N
fi
2 —
MEZLO a0 A0 = 7 (3.9

N
H=2 | ho,kal(tka,tkdk (3.
#=0 Next, we wish to obtain an expression far,(k), which
is unknown at this stage. It is no restriction to chodsgk)
A. Commutation properties to be real. Therefore, we can always choosewarknown

. . functionv ,(k) so that, in analogy to the standard vacuum
Clearly, since the above expansion must lead to the samg nansion

eigenfrequencies as the original Maxwell equations, we

should define mode operatoﬁ@ relative to each branch of

the dispersion relatiortwith, for the sake of simplicityN Au(k)=
+1 distinct branches so that

fiv,(K)e (k) |H2

47AkK (310

If v,(k)=c ande,(k)=¢g, this reduces to the accepted
vacuum field expansion. More generally, we defigk)
=k2/[,uwi(k)] as the effective permittivity of theuth
branch. We will show below that, (k) must be interpreted
Here w ,(K) is the inverse ok(w), for the uth branch. The as the group velocity, just as in an earlier narrow-band analy-
summation is over the discrete branches in the dispersiosis of this problem, using effective Lagrangian arguments
relation, each of which correspond to a different “particle” [1,12].
type. The time dependence of the mode operators in the In order to demonstrate this, we first substitute the above
Heisenberg picture—given the desired Hamiltonianexpression fo\ ,(k) into the equation for the consistency of
structure—must be the field and mode-operator commutation relatigirs., for

[A,I1] and[a,a']). This leads to the very simple result that

N
fx(t,x)=20 dk[A ,(K)a,(tk)e®+H.c]. (3.2
=

2 _A —iw,(k
a,(t,k)=a,(kye 'ulr, (3.3 y
_ _ o o kv ,(K)
These combined field-polarization excitations can be (" =1 (3.1
. . ~ /L:O w/_/,(k)
termed polaritons. We will suppose traf(k) are chosen so
that As explained above, we have to determine a function
R - v (k) which satisfies this condition, and we intend to dem-
[au(k),a, (K)]=6,, 6(k—=K). (3.4  onstrate that the choice of (k) as the group velocity of the

relevant polariton branch is sufficient; no other correction
Similarly, the momentum field can be expanded as factors are needed in this simple model. In order to verify
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this, we can differentiate both sides of EQ.13 with re-
spect tok. This gives a group velocity of

3 dw,(k) B o, (K) k?c?g, -1
vuk)= ==~ (112 [02- 2017

(3.12

which is the function we propose to use in the mode expan-

sion; we have yet to prove this.
It is clear that the mode function expansionpfand 7,

are also needed, for a complete demonstration of consi
tency. Using Maxwell's equations, we note that for a Fourier

component ofp, at frequencyw, wave vectork, we must
have

~  ikg,X
pV:62_2‘

14

(3.13

Thus, if we expang, as

N
E)V: 2 dk[p;(k)éu(k)eikx_iwﬂ(k)t_i_ H.C.],
n=0
(3.14

it follows that the expansion coefficient for in th¢h fre-
quency band is

ikg,A (k)
[02-wi(k)]

(k)= (3.19

Similarly, if the canonical momentum for the atomic po-
larization field is

N
()= | d a7l (K)a, (ke ienipH ],
wu=0
(3.16
then the corresponding expansion coefficient is

ko, (K)A (k)

= 0= w2 (0]

(3.17
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47A (319

N
> pukyE (k) Sy -
u=0

Expanding the coefficients gives the equation

N

0, (K)k?g,AZ(K) _h
=0 2[00 WL (0][QF, —wi(k)]  AmAT"
(3.20
Sincee (k) =c?*k’so/[w,(k)], and hence
hc2eokv ,(K)
2 _ 0"
Auk)= 4mAws (k) .29
this simplifies to the form
N 21,3
ck kK)g,
(”) 2 2 vMi )92 2 :51111’ .
£=0 o, (K)o, (k)= Q) ][, (k) - Q)]
(3.22

Finally, to ensure that there are correct field-atom com-
mutators, we must satisfy the commutatdh$)—(VI). For
these cross terms between the oscillators and field variables,
we find that conditionglll ) and(IV), involving commutators
between the field and the particle positi@r the field mo-
mentum and particle momentyrare automatically satisfied.
This occurs for the same reason that commutators like
[A(X),A(x")] or [II(x),II(x")] must equal zero in our
mode expansion. In all these cases involving pairs of canoni-
cal position-type operators or pairs of momentum-type op-
erators, the commutator reduces to an integral &yevhich
is an odd function ok—and hence vanishes when integrated
over all positive and negativie values.

This leaves the requiremen(g) and(VI), which are that

A and 7, must commute at equal times, as well lasand

3V. These two requirementsth imply the same restriction
on the expansion coefficients, and hencevg(k), which is
that for allk and » we must have the conditions:

% kv ,(K)

VD 2 SZmoTwi(—07]

0.

(3.23

For these operators to have the correct equal-time com-

mutators, the different oscillator position operatprsmust

commute among themselves at equal times, as must the d

ferent momentum operatoEsV. This is trivial from the form

Despite the complex nature of each of these conditions—
i\f\!hich involve sums over all the roots of the dispersion equa-
tion, and must be satisfied for all the resonant frequengies
as well all moment&—we will show that these sums can be

of the mode operator expansion. However, the commutatioq 5y tically evaluated without requiring an algebraic solution
relations(ll) between the position and momentum operators, the roots.

are nontrivial. The relevant commutation conditions are
therefore - . -
B. Conditions on expansion coefficients
From the previous results, we have shown that the condi-
tion on the expansion coefficient of mode operators is that
we must find a functiow ,(k), such that

[P,(X),7,(X")]

=ihd,, o(x—x")IA
N

1=

u=0

kv ,(K) 3

,(K) =1, (3.29

N
=ZOfdk[p;(k)w;V’(k)eW*X’)—H.c.]. (3.18
=

This in turn implies that together with an orthogonality condition
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N 213 tive frequencyw. This is precisely the condition under which
() ckv ,(K)g, . >0 X )
S, = Z > —> >==06,, . the Sellmeir expansion is valid, as one might have expected.
#=0 @, (K[, (k)= ][0, (k)= Q] Summing over the two branches, we note tfagfining
329 g—cue+0?):
In addition, to ensure commutation between the particle and - 2\ o
electromagnetic fields, we should impose the condition kv.(k) 1 K+2(g—Q))| KFA
> =_> 1= —.
N * wt(k) 4 * A Qv_g
=2 — ko, 0. (326 (3.33

=0 wi(k)[wi(k)—Q2]

w=0 @ (loLwi (i 2 On taking the sum, this reduces to the required result of
Earlier work [12] on more phenomenological narrow-

band quantum models of dispersion led to the conclusion =S kv - (k) _ (3.34
that, for an expansion of modes to be consistent with both = (k) ' '
Maxwell's equations and the known dispersive energy, it is

necessary to choose, (k) equal to the group velocity. Thus, This indicates that the use of group-velocity expansion
the use ot ,(k) =dw ,(k)/Jk is an obvious choice, but itis coefficients appears correct in this case, although we have
necessary to demonstrate that this still leads to a complete setly calculated the simplest of the commutators. However,

of consistent commutation relations. this algebraic technique is rather clumsy to use for the other
identities. Even worse, it is not able to be used at all for an
C. Single-oscillator case arbitrary number of branches; in these more general cases

. . . there is no closed-form expression for the solution to the
As an example, we consider the single-oscillator case,. . :

. . . . dispersion equation.
where the dispersion relation can be treated algebraically as

the solution of a quadratic equation. In this case the refrac-

tive index is given by IV. ANALYTIC PROPERTIES OF DISPERSION

RELATIONS
-1
n(w)zz[l_ 29 2} _ (3.27 For the other, more complex, commutation relation
O~ identities—or more oscillators—it is preferable to use tech-

. , niques from complex function theory, which transform the
In order to show how the Sellmeir form can be regainedg g gyer roots of the dispersion relation to complex contour
we define a frequenc?=0%—g. As long asQ’>>g, the  integrals of related meromorphic functions. The dispersion
above equation is equivalent to a Sellmeir type of dispersionelations considered here have the general structure of
relation, which is simply

2
® 9,

——=1— z
21,2 2_ 2
(328) C k v QV w
This can be written in the form of roots of a polynomial in

Either equation leads to a quadratic fe?, having the Z=? so that
form

(4.1
n(w)?=1+

y W

ka(z,)=b(z,), (4.2
o= 0?(c?k?+ 0%+ 02—g=0. (3.29
wherez,=w%, k=c?? and
The resonant frequencies, at any given wave nurkbere
then

az=Il ©}-2-2 g, Il -2, @3

!
v¥#F v

w?=3 [+ Q5+ \(c%k?+1?)2 - 4c%k3(Q5—g)].
(3.30

- _ _ b(z)=2[] (@3-2). (4.4
We now identifyv ,(k) with the group velocity on each of v
the two branches, by taking derivatives with respeckto ) ) _
Thus, assuming)>>g (to have distinct branchis Next, in order to test the assumption that the expansion co-
. efficients involve group velocities, we must consider the
kv.(k) 1 [c?k? c?k®—0%+2g slope of the dispersion relations:
— = 2) 1+ ,  (3.3)
w:(k) 2\ o A I
S ka'(z)+ —a(z)=b'(2). (4.5
where the quantity is given by ( Iz (
A=/(c?k?+0%)2—4c%k3(02—0g). (3.32  Hence the group velocity is just
Clearly it is necessary to ha¥®2>g in order to have dis- dw,(K) c?ka(z)

tinct real branches to the dispersion relation, each with posi- vu(k)= ok w,(K)[b'(z)—«xa'q'(2)]" (4.6
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A simpler way to write this expression—entirely equiva- kG, xg, f1(Q2) Kerf(I)(QZ,)
lent to the above definition—is E¢3.12. While this form is 0=s) - —% " ———.
more transparent, the above expression is a rational function, Q0 (Q;-Q5) (Q,, Q)
which is amenable to analysis using Cauchy’s theorem. (4.13

N Examining the right-hand side of the required identity, we
A. Condition (1) must obtain the value of"(Q?), evaluated at each reso-
The sumS®" has the form nance:
kv ,(k a(z ka(Q?
sh=> U ): : Ka( )’ . f0(Q2)=— 2( ) e (4.19
r w,K) b (2)-Kka'(2)]],_, ) Q[b(Q%)—ka(Q2)]
o
(4.7)

However, b(Q%) =0 at each resonance, so thi(Q?)
Next consider the complex function, defined for the analytic= — 125 . Hence the right-hand side of the required identity

continuation ofz into complex values: becomes
1 1
ka(z) g
(O T S v — KOy | Tt 5 2
(@ zZ[b(z)—ka(2)]" (4.8 Q0. Q)(Q,-Q)

This generally hasN+2) poles, and has the property that + _2_2—2} =0. (4.15
lim, .. {0(2)~1/z2. For example, in the trivial case of no 0, (2, — Q)

oscillators N=0), we find that )
In the case thav=v’, a double pole is found, so the

residue is obtained on differentiatirfy’ (z). We can per-

f(z)= (4.9  form this operation most simply in the neighborhood of the

2z~ k) double root az=0Q2, by using the definition of "(z) to
In this case, the identityl) is satisfied trivially, since it re- SHOW that
duces to Rd$"(z=c?k?)]=1. The sum of residues of 1 1
f()(z) is zero in this case, which must be true in general for fh(z)=— PR =500 27 (4.1

a meromorphic function behaving d$"(z)~1/z? as |Z|

- As usual in complex ﬂ.mCt'on theory of the inverse Thus, asz— (), we find the second term is dominated by
variable (1=1/z), a contour integral around all the finite . v i i
the pole in the denominator:

poles turns into a contour integral around zero poles at infin-

2

ity, and hence must equal zero. Thus we have the general 1 02—z
result that lim fO(z)=- =+ ——. 4.17
2 z ng
z—Q
N+1 xa(z,) v
0=, Re§f(z)]=—1+ - L ) : . , .
> Regf(z2)] % 216" (2,)—«a' (2,)] Hence, on differentiating to obtain the residue,
(4.10 7 1 1
—f(2)|,g2=— —+ —7. (4.18
However, this is precisely conditioft), for the N-oscillator 9z = xg, Q)
case, since L -
This is sufficient to complete the proof of the second rela-
N+1 a(z,) N1 (K) tion, which is
=3 e a3 w !
z,[b'(z,)—Kka'(z ) '
ko 2db (@)% ol (4.1 sV=> Rest"(2)]+6,,=6,,. (419

Thus, the use of complex function theory shows thatis iy
always satisfied, provided there ader 1 distinct roots. C. Conditions (Il )=(V1)
As shown previously, the conditionglll)—(IV) are

B. Condition (1) straightforward consequences of the general type of expan-

sion chosen here, while conditiofi¢) and(VI) reduce to an

Similarly, we can prove the other relations. For examplejjentical summation identity. To obtain this last identity, we

to prove relation(ll) we consider can now introduce a third analytic function
kg, fV(z) £
M (2)= - . 4.1 () _
T - 02) @12 W=z 29

Summing the residues of this function, and noting thatAs well as the poles at=0 and theN+1 roots of the
lim, o f(2)=—1/z, we find (for v# ') dispersion relation, this has a polezat Q,Z, The residues at
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z=0 andz=Q? cancel each other, so the sum over the re- (N2|GND)y=0 (5.9
maining zeros must give zero, as required. In summary, we
find that summing over the residues gives and we have the desired orthogonality relation. Expressing
this in slightly more generality, we note that for each value
s"=" Regf!"(z)]=0. (4.21)  of k there areN+1 eigenvectora ™), 4 =0,... N, each cor-
responding to a different eigenvalue, (k). As a result we
This proves the last sum rule requirement on the commutar-]ave that
tors. — — — —
<)\(,u)|G)\(,u )>:5M.,<)\(M)|GM)\(M)>_ (5.10
V. HAMILTONIAN We now express the fields in terms of the eigenvectors

We now wish to show that when the Hamiltonian is ex- @nd substitute them into the Hamiltonian, which is given by
integrating the Hamiltonian density in E¢R.8) over x. In

pressed in terms of the operatoas,(k) and a,(k), particular, we have that

=0,... N, itis of diagonal form. Our first step is to derive an

orthogonality relation for the classical modes. This will al- A =\ v_ )\ () (5.11)
. . . w0 pp,_ v o '
low us to show that the Hamiltonian contains only terms of
the forma(k)a, (k). The next step is to examine the nor- —jiw A
malization of the modes. Once this has been done, we find I,=—ipw,\§, ”Z:#' (5.12
0dv

that the Hamiltonian is given by

N This allows us to use Eq$5.3) and(5.10 when calculating
H=> | dk ﬁw#(k)éT(k)é#(k)_ (5.1 the Hamiltonian, and we find that
n=0 K

N

In order to find the proper orthogonality relation for the H= 41-r,uAZ dk<)\(“ (k)|G)\(“)(k)>w k)a (k)a (k).
modes, let us first define tié+1 component vector (5.13

N= (3‘ ) (5.2) In order to show that the Hamiltonian assumes the form
Py given in Eq. (5.1, and to justify our assumption th;iaeﬁﬂ

or A\o=X and\s=p,_for s=1. The eigenvalue equations =w,a,, we need to prove that

can be expressed in the fortfor each value ok) 477,uA(f(“)(k)|Gf(“)(k)>w#(k)zh. (5.14)
M\ = w2\, (5.3  Noting that
where the N+ 1)X(N+1) matrix M is given by ikg hv K
)\E}M)ZZ—"Z)\BM) ’ )\E)M):A,u: —"‘2,
k2c?  ikc? ikc? ... Q- o), dmpho),
—ikg,, 02 0 .. (619
M= —ikg,, 0 (LA 549 \e see that Eq(5.14 will be true if

1+Z (

kzczgv kv,
) ) » L o ——— | —E=1 (5.16
The matrixM is not Hermitian, but if it is multiplied by the 9 ) )
positive, diagonal, -+1)X (N+1) matrix G,
This implies thatv ,=dw, /dk, from Eq. (3.12. We can
1, s=0 then conclude that the expression for the Hamiltonian given
Grs=01sGss Where Gss=1c2/g  g=7 (59  inEq.(5.D) is correct.
® Summarizing, our theory of a linear medium whikhreso-
then the combinatio® M is Hermitian. Therefore, if nances is described by the Hamiltonian in E81) and the
corresponding field operators have the expansions

MAD =N, MNP =2\ @), (5.6) 12
Btx)=i3 fdk helw,(0]v, (k)
then A 4mkA
(N2|GMAD) = 02N GA D) (5.7 Xa, (ke ety He, (5.17
JE — — 1/2
=(GMAPN\Dy= w3\ |G\ W), _ f fikv (k) 5 ikx—iw (Kt
5.9 E(t,x)= |E dk| 7 — [0, (VTA a, (ke u

This implies that ifw?+# w3, then +H.c., (5.18
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12 o The important point is that we can exactly absorb the
a, (ke euMyHe  group-velocity factor into the frequency integral—which,
(5.19 however, is only defined in the range of allowed mode fre-

' quencies. This resulfalso obtained in earlier narrow-band

Here we have also included the electric-field expansior-2grangian approadi, 12, and in a single-resonance model
(WhiCh is obtained by including the polarization temer [17]) was most clearly empha5|zed_|n t_he smgle-resonance
comparison with more familiar results. As one might expectth€ory of Huttner and Barneftl6]. It implies that the two-
the only difference between the electric field and dismacepme.correlatlon. functlon_for n.arrov.v-band fields in the trans-
ment field expansions is a factor proportional to the dielectri¢nission band, is essentially identical to those of the corre-
permittivity e[ (k)] in each branch of the dispersion rela- sponding vacuum fields, apart from the usual reflectivity
tion. It is important to notice here that the two fields cannotfactors. This is a necessary ingredient of any theory of the
be related by one, frequency-independent, coefficient. This j§1terface properties of the fields, and will be explored in
a natural consequence of dispersion, and also occurs in tHBOTe detail in a subsequent paper. The above mode expan-
corresponding classical theory. sion has been w@e}y used in quantu_m .optlcs, .and the present

In order to provide a more physical understanding of thig'esult shows }hat |t.|s exact'for a realls_,tlc, multlple—respnance
result, the summation over the branches in one dimensioftodel of a dispersive medium—provided we recognize that
can be replaced by an integral over the mode frequency, if'€ré are no modes in the forbidden bands.
each propagation direction, i.e., define

. ey fi kv , (k)
B(t,X)——IEM: J‘dk{W

D(t,x)=D)(t,x)+D)(t,x). (5.20 VI. HIGHER-DIMENSIONAL MODELS

Now, since the mode frequency has a bounded range for We next consider an-dimensional Lagrangian for oscil-
each root, we can define a frequency-dependent mode operators with massn,, displacement,, effective charge,,

tor as and oscillation frequencie® , about their center of charge
positionx,, :
a(w)=a,(K/\v,(o)], (5.21)
. . . mV "2 2.2 qV o~
where the appropriate rogt is chosen in each case to cor- CaZEV S (n-Qr)+ P D(x,)|. (6.1

respond to the mode frequency argument—except, of course,
in the forbidden bands. The commutators of the new mode

operators are Here[r,q,] is the dipole moment of a charged particle in a
multipolar Drude-Lorentz model. In this general case, the
~ - labelsv may correspond either to distinct resonances of one
[a(w),a"(0)]=8(w-w'), (5.22  atom or to distinct positions. Each resonance has its own
corresponding effective charge, and hence dipole moment.
and the mode expansion is now the same as it would be in Any sum rules are incorporated into the definitions of the
nondispersive case, except that no modes exist in the forbicffective charges involved in a given transition. For simplic-
den bands: ity, the self-energy terms proportional Rf are included in
the definition of the resonant frequencies, which are defined
to diagonalize the individual charge-cell Hamiltonians in the
multipolar gauge. The coupling in multipolar gauge is to the

displacement field(x,) at the central positiow,, used as
+H.c. (5.23 an origin for defining a local polarization. All interatomic
o ) ] Coulomb terms in this gauge are carried by the photon-
Similar equations hold for the other fields; for example, theexchange process, which couples atoms at distinct spatial
electric- and magnetic-field expansions are just positions.
We introduce a vector gauge field, the dual potemtiao
12 thatD=V X A andB=udA/dt. The discrete cell positions
A w)eik@x—iot are now replaced by a continuum polarization field as before,
together with the appropriate local-field corrections. To ac-
count for more general dielectric structures that may have
+H.c (5.24 local interactions not included in the Coulomb corrections,
we now include a quadratic dispersion term to describe
and the residual phonon and exciton disperdigh] that exists in
the absence of long-wavelength electromagnetic couplings.
The simplest Lagrangian density that generates the correct
electromagnetic energy and Maxwell's equations for an
n-dimensional waveguide with effective cross sectidn
+H.c. (525 =d*"is

1/2

w/dw[ﬁk(“’)s(“’) A w)eikex-iot

47A

|5<i>(t,x)=rif

0

fik(w)

Bty i [ | @)
E'™/(t,x) _|f0 do Ame(w)A

1/2
a(w)eiik(w)x—iwt

’

Q(i)(t,x)=—iJm do| 1K)
0

Adre(w)A
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N

1, 2 1 1 2 -2 2.2 2
LIA= 2 A(x) + 0 P(X)- VXA(X) = 5[VXAMX)]7| + 21 {PL(X) = Q3P (%) = a,(X)[Vip,(X)]}/[2£09,(X)].
(6.2
|

Hcire the pglarization density due to a_lll the dipoles is (1) [ﬁi(x),éj(x’)]=iﬁvxx5ﬁj(x—x’)/A,
P(X)=2,p,(X)=2,r,q,p,(X), wherep,(x) is the number R ~
density of the oscillators with resonant frequer@y. The () [pi(X¥), 7, (X )]=1166,, S(x—X")IA,
partial polarizationp,(x) is regarded as a continuum field, - PRI
with v=1,...N labeling the bare frequency of the elementary (h [Di(x),pj(x")]=0,
phonon and exciton resonances, in the absence of couplingto  (1V) [éi(X),%j L(x)]=0, (6.5

the long-wavelength photons. We have assumed that the dis- A ~ ,
persions of phonon and exciton modes are the same for lon- V) [Di(x), mj,(x")]=0,
gitudinal and transverse modes. The transverse dispersion (v|) [Bi(x),f)jy(x’)]=0.
will ultimately be modified by the coupling between the field
and the polarization, which is entirely included in the term
g,(x), as defined in Eq(2.3). ) i
We impose the usual gauge constraint tNatA=0, so Here we _have m_troduced the usual notation of a trans-
that the field variable only has transverse degrees of free/€rsed function, defined so that
dom; this does not apply to the polarization. In addition, we 1
can impose waveguiding conditions thAtis restricted to L np %L iK-X
one-, two-, or three-dimensional manifolds. In practice, dis- %)= (2m)" f dk a(k)e, ©.6
persion occurs in the electromagnetic mode functigvtsich

are wavelength dependemq that it is necessary to solve for yvhere?ﬁ(k) =(&;—kik; /|k|?) is the transverse projector in
the complete three-dimensional mode structure to treat a finomentum space. In three dimensions, the first commutator
ber waveguide, for example, rigorously. However, a simplecan also be written in the more familiar form of

low-dimensional waveguiding theory is still useful as a guide
to the behavior of a complete theory. In the full three-
dimensional case, the area tednis simply omitted, asA
=1.

The resulting generalized Maxwell-Bloch equations are

(1) [Ei(x),Bj(x)]=ihV,X &5 (x=x)]eg. (6.7)

The final quantum Hamiltonian density {gasing normal
ordering

2 29274 — 2 1 . 1 . 1. ~
[d; —c“V<]A=c“V X P(x), HIA= D2(x)+ — B2(x)— — D(x)- P(x)
2gg 2u €9

24 02(K)1p, =g, (X) VX A+V; Vip,(X)]. VR . .
[9f +Q5(K) P, =0, (X)VXA+Vi[a,(X)Vip,(X)] 63 +2809 % ;1{8(2)9,2;(X)7712)(X)+Q,2,p,2,(x)

+a,(X)[Vip,(x)]?}. 6.8
In order to quantize the system, we introduce the canonical @ ILViP 0 68

momentall(x) and m,(x), where These equations hold for an arbitrary spatial distribution
of the continuum of polarizable atoms.

II(x)= uA(X)=B(x),
( ) H ( ) ( ) VII. THREE-DIMENSIONAL QUANTUM MODE

64 OPERATORS
m,(X) = p,(X)mv. In this section, we specialize to the case of a continuum
’ g0d,(x) " model with uniform couplings and velocities, as in the one-

dimensional case, in order to find the dispersion relations for
lane waves. As in the one-dimensional case as well, we

The quantization rules are the usual ones obtained on §4iroquce a mode structure by finding the eigenmodes to
placing Poisson brackets with operator commutators. Scalingy,well’'s equations in the form

by A is introduced, so that the field units are independent of

waveguide dimension, and tl#functions aren dimensional. A(L.X) Alw.K)
All position-type operators of the same type of variable must ( X _ <~ (@, )eim—iwt_ 7.
commute among themselves, as do all momentum-type op- P, (t,X) p.(w,k)

erators. The commutators involving cross terms between the
position and momentum operators, and between the different Definingk=|k|, it follows that these satisfy the Maxwell-
types of variable, are Bloch equations in the form
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~ _ creation operators in the three-dimensional model. These
(—w?+ckAA=ic%kx > D, have the function of diagonalizing the Hamiltonian, which
Y 7.2 we anticipate will have a final structure of
[— 02+ Q2%(k)]p,=ig kXA, N2
. . o H=2 2> f dK 710 ,,0(K) 8L (K)aye(K). (7.6
Our model now includes simple phonon/exciton disper- u=0 5=0'
sion. These effects cause the Fourier-domain equations for
the polarization to be modified, so thﬁﬁ is now replaced Here the lower limit notation of=0" is defined to exclude
by a momentum-dependent functimi(k)zgi+ K, the unphysical combination_ qfczo ando=0. As before,
where we defin&=|k| in this section. The phonon/exciton the modal frequencw (k) is the inverse ok(Q), for the
dispersion can be generalized to more complicated cases Afth transverse branch. This expansion requires that we de-
desired, with higher-ordee dependences—although in many fine mode operatora,,,, in the uth branch of the dispersion
cases only the relatively long-wavelengmallk) phonons  relation, so that
are relevant to optical properties. In terms of the coupled

equations given above, only the transverse part of the polar- | N2 N - iKex—io, (Kt
ization couples to the photons; hence we can define A(t,X):Mzo Z’l d"k[ A (K)a,.(k)e e
b () =85 (k)pj(K). (7.3 +H.cl]. (7.7)

_ Solving for P+ by summing over the transverse polariza- The summation here is just over the transverse branches in
tions of all the oscillators, we find the dispersion relation. These combined transverse field-
polarization excitations can be termed polaritons, and we no-
(22— )P =PL 2k , 9 - (7.4) tice here t_hat there can bg longitudinal _excitations that propa-
v QK —w gate, as is usual, in solid-state physics. The commutation

properties of the annihilation and creation operaﬁ)ﬁ(k)

The eigenvalues of the longitudinal part of the polarlzatlonare chosen so that

field are not changed by the coupling, while eliminating the
transverse polarization field" leads to the eigenvalue equa-

o [8,5(K),a%, 1 (K')]= 8,0 8,00 S(K—K'). (7.8
c2K2 9 Similarly, the momentum field can be expanded as
w?=——=ckq1-D | (7.5
n*(w) 7 05k — w?

N 2
fit0=3 3 [ diiL, (04,00

For any wave numbek=|k|, we find a band structure in 4=0 g=1
which there are typically[2(N+1)] positive roots
woo(K),...,ons(K) to the transverse eigenvalue equations
for eachk value, witho=1 and 2, andv ,; (k) = w ,»(k) due
to the isotropy of our model. Each mode therefore has tw
orthogonal polarization unit vectorsi,(k), such that

x e xtouslOty H e ], (7.9

o hus, at equal times,

k-u,(k)=0. Similarly, there are ) longitudinal roots, [Ai(x),m(X")]=ih 85 (x—x")IA

which are labeledr=0, and are unchanged by the long- N2
wavelength_elect_romag_neti_c cou_plings. In the case v_vhere _ E 2 d"K[ A o (KT, (K)
phonon/exciton dispersion is omitted, the transverse disper- n=0c=1 L

sion relation is precisely the same as in the one-dimensional _ )

model. X @ik (x=x7) H.c]. (7.10

As before, the solution is unique for any given modal
frequency, but has forbidden regions which indicate a resoThis implies that, in order to preserve commutation relations,
nance, or absorption, band. Typical dispersion relations fowe have similar results to the one-dimensional case:
this model also demonstrate the existence of transmission

and absorption bands—but with additional structure in each N . ih o
branch, whose origin is in the phondar exciton disper- ZO ;::1 Ao (KT, (k) = 2A27)" 3;;(K).
sion. From now on, we use the notatian,,(k) with o=1 a (7.19)

and 2, to indicate a solution to the full transverse equations.
The notationw ,4(k) = ,(k) indicates the longitudinal ei-
genvalue, which of course is undefined for=0, in the ab-
sence of longitudinal photons.

For free fields, it is clear thdl= wA. Hence, we can also
write II,,,(k) in the form of

I, (k)=—i K)uA , (K). 7.1
Three-dimensional commutators no(K) 10,10 (K) 1A o (K) (7.12

Having derived the modal solutions, we now wish to ex- The equation for the expansion coefficiems ,(k), is
pand the fields of the theory in terms of annihilation andtherefore



PRA 59 QUANTUM THEORY OF DISPERSIE . . . 703

N A =M (s k’c?g, o
;ZO (Zl w;LO’(k)Aip,O'(k)Aj;LO'(k): 2A/L(27T)n 5ij(k)- U/w'( )_ k ” [Q,Z,(k)—w,w(k)z]z
(7.13 (7.17)
Next, we choose\ (k) to be real, and as before, we can It should be noted that this, ,(k) is notthe same as , ,(k)
always choose atunknown functionv ,,(k) so that in the one-dimensional case, although it has the same func-

tional form. The difference is that it is a now a function of
Q,(k) and ,,(k), which include phonon/exciton disper-
sion effects. However, if we simply differentiate the slope of
_ _ the functionw ,,(k), we do not obtaiw ,, as defined here—
We will show later thab ,,(k) must be interpreted as the there are additional terms involving)?(k)/dk. For this rea-
electromagnetic component of group velocity, with nonelecson, we refer tw (k) as the electromagnetic component of
tromagnetic phonon/exciton dispersion explicitly excluded.group velocity, which excludes additional transport terms.
This is not completely identical to either the earlier narrow- It is clear that the mode function expansionfof, 7, is

band analysis[12] of this problem, or the simple one- : -
dimensional theory. The difference can be attributed to thé’1ISO needed, for a complete demonstration of consistency.

difference in the Hamiltonian energy that is introduced whenSiNg Maxwell's equations, if we expar, as
the polarization fields are dispersive. N 2
In order to demonstrate this, we first recall the standard » _ d'klo” (KA. (K)elk*—iou(t 4 H o
identity that Py #Zo ()'ZO [Pro(K)a,,(k) g <l
) (7.18

21 Uio(K)Ujo(K) =5} (K). (7.19  then it follows that the expansion coefficient for the trans-
7" verse component gf,,, in the uth frequency band must be

A o’k k 12
et I (XY

Next, substituting the above expression fog (k) into the

equation for the field and mode commutators leads to p” (k)= 19,k X Ay (K) _ (7.19
re [Q5(K) — w5,(K)]
N kv (k) -
2 — W - (7.19 Similarly, if the canonical momentum for the atomic po-
w=0 Puo larization field is
As explained above, we have to determine a function N 2

v .(K) which satisfies this condition, and we intend to dem-  (tX)= dkl 7 (KA. (k

onstrate that the choice of,,(k) as the(isotropig electro- m(tX) Mzzo UZO (70 (K)80(k)

magnetic component of group-velocity of the relevant polar- Kex—io, (Kt

iton branch is sufficient—no other correction factors are xe wi+H.c, (7.20

needed. At this point, we notice an important fact: apart fro

the change in the resonance frequen€leék) due to theirk mthen the corresponding transverse expansion coefficient is

dependence, the above summation owgf,(k) is identical w, (kX A, (K)

in analytic form to our one-dimensional expression. How- w’ (k)= —2Z ok . 7.2
oK) 2 2 (7.2

ever, thek dependence plays no role in obtaining the Cauchy ol 4,(K) — w),,(K)]

theorem summation results, provided we define(k) to be .
the same function of2 (k) andw,,,(k) as before. In other For these operators to have the correct eqtial-t|me commuta-
words, thek dependence of the phonon/exciton dispersiorfors, the different oscillator position operatqrs must com-
relation simply renormalizes the effective resonance fremute among themselves at equal times, as must the different
guency at eachk value, in the above summation over the momentum operators, . This is trivial from the form of the
roots of the dispersion relation. Since this renormalization ignode operator expansion. However, the commutation rela-
the same for each eigenvalue, the summation can be carrigidns (1) between the position and momentum operators are
out using identical techniques to those used previouslynontrivial. The relevant commutation conditions are there-

Thus, we define, for=1 and 2, fore
|
N 2
[Pi,(X), 7}, (X' )] =48, 8 S(x—x')IA= 20 f dk[ P}, (K) 7l (k)elk X —H e, (7.22
=0 =0’
This in turn implies that
N 2 .
ihd,, i
v *x v’ _ vy’ 7]
2y 2 PO (0= 555 - (7.23
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Defining 5‘i‘j(k)=kikj 1K?= Sij— 5ﬁj(k), and expanding the coefficients, gives two new equations. The transverse case is

N 21,3

0 0,002, (k- Q202,071

Syt s (7.29

while the longitudinal equation is easily solved on definingthis we shall study further the classical modes, in particular
ug(k) =k/k: their orthogonality and normalization properties. Once this
has been done, we shall be able to show that the Hamiltonian

v k) =ug(K) S hgu€o vz (7.25 takes the form given in Eq7.6).
Puo 0 K 2A(27)"Q ,(K) ' Let us begin by restating the classical mode equations
[Egs. (10)] in matrix form. Define the Bl+3 component
Finally, to ensure that there are correct field-atom COMyactor k. by

mutators, we must satisfy the commutatéh$)—(VI). For
these cross terms between the oscillators and field variables, X
we find that conditionglll ) and(IV), involving commutators =
between the field and the particle positi@r the field mo- — | Py,

mentum and particle momentgpare automatically satisfied. - ' (8.)

This occurs for the same reason that commutators like
[A(X),A(x')] or[@(X),m(x")] must equal zero in our mode
expansion. In all these cases involving pairs of canonical = B
position-type operators or pairs of momentum-type 0pera9r )\O—A.and Ns= Py, for s=1, and the 3j+1)x3(N
tors, the commutator reduces to an odd integral dwer +1) matrixM(k) by

which vanishes when integrated over all positive- and

Pu,

2.2 : .
negativek values. kel —ic’K  —ic’K
This leaves the requirementg) and(VI), which are that )= —IQVIK Q,Z,l(k)ls 0
A and#r, must commute at equal times, as wellmaandr , . M)={ _ ig,, K 0 Q2 (Kl
These two requirementsoth imply the same restriction on : : :
the expansion coefficients, and hencewgp,(k), which is (8.2

that for allk and » we must have the condition
Here |5 is the 3x3 identity matrix andK (k) is the anti-

N
kv ,.6(K) Hermitian matrix given by
V, VI £ =0. (7.2
VWV 2 oot 00 - 2] (729
0 —ks ky
Despite the complex nature of each of these conditions— K=| ks 0 —kq |, (8.3
which involve sums over all the roots of the dispersion equa- -k, kg 0

tion, and must be satisfied for all the resonant frequencies

w,,, as well as all momente—we will show that each of which has the action, on an arbitrary vector

these sums can be analytically evaluated without requiring

an algebraic solution for the roots, just as before. For all of KA=KXA. (8.9
the commutation relation identities it is preferable to use

techniques from complex function theory, which transformThe equations for the modes can now be expressdfbas
the sums over roots of the dispersion relation to complexach value ok)

contour integrals of related meromorphic functions. How- L

ever, the transverse dispersion relations considered here have M\ = w?\. (8.5
an identical analytic structure for a fixédvalue, with those

in the one-dimensional case, so the previous analytic results The matrixM is not Hermitian, but if it is multiplied by
follow without any further calculation. The main point here the positive, diagonal, 3+ 1)*X3(N+ 1) matrix G,

is that it is necessary for the group-velocity coefficient to

have the algebraic form given in E(Z.17—which implies I O 0
that it includes only part of the slope of the dispersion rela- c2

tion. 0 I3 0
9y,

G= 2 , (8.6
VIIl. HAMILTONIAN 0 0 c |
3
We now wish to show that when the Hamiltonian is ex- 9,

i - At
pressed in terms of the operataag,(k) and aw_(k),_ Mm
=0,...N and ¢=0, 1, and 2, where the combinatign
=0=0 is omitted; it is of diagonal form. In order to prove then the combinatio® M is Hermitian. Therefore, if
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MAD =A@, MA =i\, (8.7)
then
(NP|GMADY = 2\ @GN D) (8.9
=(GMAP|\ )
= w3(N?|GA D). (8.9
This implies that ifw?# w3, then
NG\ My =0, (8.10

and we have part of the desired orthogonality relation.
In order to learn more we must examine tHé-83 eigen-
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which is our final orthonormality relation. Here, due to isot-
ropy, the mode frequency,,, does not depend on the po-
larization indexo for the transverse modes.

We now express the fields in terms of the eigenvectors,
substitute them into the Hamiltonian density in E§.8), and
integrate over the relevantdimensional volume. In particu-
lar, we have that

)\E)MU):AILLO" )\S,#U):ng, (8.16
0, ——ipw,A,., @ —— 2tk (g19
no witpo kT g0, Y :

Adding the requirement that™<)(k)* = )(—k) [it can
be shown that(—k)\#7)(k)* = w2 (k)A#7)(k)*, which

vectors in more detail. Define the projection operator, whichimplies thatA“)(k)* is in the two-dimensional subspace

projects each component af onto its longitudinal compo-
nent,

ky(k| 0
P(ky=| 0  |kXKk| -], (8.11)

where |k)(k| is the projection onto the vectdt. A short
calculation sﬂows thdtP(k),M]=0, which implies that the

spanned byf(’“’)(—k) for =1 and 3, and utilizing Eq.
(8.15, we find that the terms of the form
a,,(k)a, . (—k) vanish, giving, for the transverse modes,

N 2
Hoans= 22" A Y, X | dk(N#7(k)|[GA (k)

u=0 o=1

(8.18

In order to show that the Hamiltonian assumes the form

X w?(K)al,,(K)a,,(K).

eigenvectors\ can be taken to lie in either the subspacediven in Eq.(7.6), we need to prove that

projected out byP(k) (longitudinal modeg or in the or-
thogonal subspacdtransverse modgs The longitudinal
modes can be found by taking the inner product of E42)

with k, giving

(k’c?— w?)k-A=0, [Q%k)—w?lk-p,=0. (8.12

2(2m)"wANE(K)|[GNH (K)o, (K)=h. (8.19

Making use of Eqs(7.14) and(7.19 this condition becomes

kc?g, Kv 0
1+, g ol

=1.
7 [QAK-wi])?) Q,

(8.20

There areN physical solutions to these equations given bythis agrees precisely with Eq7.17), and is true even in-

A=0, Byﬂoclz, and p,=0 for v#v,, with eigenvalue

Q,Z, (k) for u=1,...N. There is also one unphysical solu-
M

tion (it violates the gauge conditiomiven by A<k, and all
of theﬁ,, is being equal to zero.

cluding phonon dispersiona(,#0). However, as pointed
out earlier, when there is phonon dispersion we cannot inter-
pretv,, as the total group velocity; it only includes an elec-
tromagnetic contribution, i.e., it is no longer equabto/ k.

In order to complete the diagonalization of the Hamil-

We are now left with A +2 transverse solutions. We first tgnjan we must consider the longitudinal modes. The fields
note that each transverse eigenvalue is twofold degeneratg. andII have no longitudinal components, so that this part

This follows from the fact that if Mf=w2)\, then
M(K3N)\):(1)2(K3N)\), Whel’e

K 0
0 K

K3N:(

which can be verified by noting that & andp, satisfy Egs.
(7.2), so dokx A andkxp,. We choose the two eigenvec-

tors A** andA#?, which correspond to the eigenvalug,,
to be orthogonal in the sense that

, (8.13

(N GA#2)=0. (8.14
This, along with Eq(8.10, implies that
(NED|GAN TN =5, 18,y (8.15

of the diagonalization procedure involves only the fiefds
and m,. We find that

w2o(K)

N
2A

Hiong= (27)%— f d3k

long= (277) o /;1 g,

Pho(K)*

(8.21

where we have made use of the fact thaj,(Kk)
= 'M,,pﬁjo(k), and we note thab (k) = (k). The Hamil-
tonian assumes the expected form

X pto(k)alpa,o(K),

N
Hiong= 21 f d%k frw,o(K)alpa,o(k)  (8.22
=

when explicit expressions for the vectopg,q(k) from Eq.
(7.25 are used.
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The final Hamiltonian, which is the sum df,,s and
Hiong» has 3N+2 mode operators for each value lof and
can be written in the form

N 2
H=2> > f fiw,,(K)al,(k)a,,(kdk. (8.23
n=0 =0’

Here the lower limito=0" excludes the combination qf
=0 ando=0, which would imply a longitudinal polariton.
Also, there is a requirement of haviigt 1 distinct roots for
this form to be valid. The corresponding field operatrs

P. D. DRUMMOND AND M. HILLERY

PRA 59

medium with N discrete localized resonances. This can be
thought of as a limiting case of an ideal insulator, in which
the polarization field is due to localized electrons at each
atomic location. The theory is exactly equivalent to the usual
classical theory of a dispersive dielectric medium, in the
sense that it results in Sellmeir equations for the refractive
index. These are well known to lead to an excellent fit to the
classical dispersion properties of transparent media, and have
the usual causality requirements automatically satisfied. The
theory was quantized and a setMf- 1 mode operators in-
troduced, for the polaritons in each branch of the dispersion

relation, provided there wemé+ 1 distinct, positive roots. In
this case, the mode expansion has a universal and simple
form, only depending on the group velocity.

This model is necessarily causal, and implements the cau-
sality requirements through band gaps, rather than isolated
poles. It does omit many important correction factors that
occur in practice. In particular, our mode expansion neglects
scattering off inhomogeneities. For this reason, transmission
inside the transmission band is essentially lossless. It also
omits nonlinearities due to phonon-phonon, photon-photon,
and photon-phonon interactions, which are responsible for
additional nonelectromagnetic damping of the polaritons.
However, these effects can certainly be added to the Hamil-
tonian once a mode expansion is established.

Next, a quantum theory of an isotropiedimensional dis-
persive waveguide was introduced, witk- 1, 2, or 3. With-
out any additional phonon/exciton dispersion, the theory is

Here we have introduced the electric-field magk) =k exactly_equi\_/alent to the (?Iassical Drude-Lorentz thepry of a
xu(k)/|k| to simplify the expansion. We note, as in the dispersive d|elect_r|c medium. The compleaiedimensional
one-dimensional case, that the transverse field expansion fgF€0Ty was quantized, and a set dil 32 mode operators
the electric field is simply derived from the displacement/Ntroduced, for each branch of the dispersion relation, again
field by using the frequency-dependent permittivity. TheWIth the restriction of distinct, positive roots. As in the one-

main feature introduced by the dispersion is the replacemerdimensional case, the mode expansion depends on the per-
of a frequency termw, that would normally appear in the mittivity and the electromagnetic group velocity, in the case

expansion coefficients, by a new term with the same units?f transverse polaritons. However, the group-velocity factor

but equal tokvEM(k) instead. We do not give the expansion in this case is modified to include only the electromagnetic

for the longitudinal part of the electric field here explicitly, component of the group velocity.
except to point out that it is equal to P'/g,.

the full three-dimensional casbave the expansions

D=i > d3k

w,o0=1,2

fikvEM(K) e[ w,(K)1]"

4

X e,(k)a, (K)e**+H.c.,

fikvEM(k) Y2
dme[w,(K)]]

Et=i D d3k

po=12

(8.29

X e,(k)a, (K" *+H.c.,

f ko M (k) |2

3
dk 4

B=—i >

po=12

XUy (K)a,, (k) *+H.c.
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