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Quantum theory of dispersive electromagnetic modes

P. D. Drummond
Department of Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia

M. Hillery
Department of Physics and Astronomy, Hunter College of the City University of New York,

695 Park Avenue, New York, New York 10021
~Received 15 June 1998!

A quantum theory of dispersion for an inhomogeneous solid is obtained, from a starting point of multipolar
coupled atoms interacting with an electromagnetic field. The dispersion relations obtained are equivalent to the
standard classical Sellmeir equations obtained from the Drude-Lorentz model. In the homogeneous~plane-
wave! case, we obtain the detailed quantum mode structure of the coupled polariton fields, and show that the
mode expansion in all branches of the dispersion relation is completely defined by the refractive index and the
group velocity for the polaritons. We demonstrate a straightforward procedure for exactly diagonalizing the
Hamiltonian in one-, two-, or three-dimensional environments, even in the presence of longitudinal phonon-
exciton dispersion, and an arbitrary number of resonant transitions with different frequencies. This is essential,
since it is necessary to include at least one phonon~IR! and one exciton~UV! mode, in order to represent
dispersion in transparent solid media accurately. Our method of diagonalization does not require an explicit
solution of the dispersion relation, but relies instead on the analytic properties of Cauchy contour integrals over
all possible mode frequencies. When there is longitudinal-phonon dispersion, the relevant group-velocity term
is modified so that it only includes the purely electromagnetic part of the group velocity.
@S1050-2947~98!05811-9#

PACS number~s!: 42.50.2p, 42.65.2k, 03.65.2w
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I. INTRODUCTION

Recent developments in quantum optics have led to
realization that it is essential to include dispersion in
quantum theory of a linear or nonlinear dielectric, as in
fiber waveguide. At the simplest level, it is clear that
dielectric solids have dispersion and absorption. There is
increasing number of experiments that allow direct acces
the quantum nature of propagating radiation fields, rang
from quantum soliton experiments in optical fibers to qua
tum nondemolition~QND! measurements; as well as qua
tum dynamics experiments directed at reducing photon n
ber noise levels for broadband communications, ultrapre
measurements, and other device applications@1–6#. Signifi-
cantly, these experiments—as well as more recent theore
proposals—have the character of fundamental tests of
quantum theory of interacting fields@7–10#, and of quantum
measurement theory. These are complementary to o
accelerator-based tests, taking place in low-energy regi
where a considerable precision of control is available on
dimensionality of the interacting quantum fields. Measu
ments that can be used range from the usual parti
counting measurements to interference-based techniques
allow an unprecedented level of information about quant
phases. Current technologies even allow measuremen
electromagnetic properties of Bose condensates.

Because the effects of propagation always involve m
than one spatial mode, it is essential to include dispersio
any physical model of a linear waveguide in one or mo
spatial dimensions. Treating dispersion can present p
lems, because it arises from the fact that the response o
medium to the field is not instantaneous. The polarization
PRA 591050-2947/99/59~1!/691~17!/$15.00
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a given time depends not only on the field at that time but
the values of the field at previous times as well. This non
cal behavior makes standard macroscopic quantization
which the medium is represented by its susceptibilities, pr
lematic. Even without explicit dispersion, some early tre
ments even resulted in Hamiltonians that did not generate
Maxwell equations at all. This problem was analyzed by H
lery and Mlodinow@11#, who showed that the problem wa
caused by the use of an incorrect canonical description.

However, a previous macroscopic model of a nonline
dispersive medium resulted in a quantum theory that ha
consistent Lagrangian@12#. This was accomplished by
breaking the field up into narrow frequency-band comp
nents and quantizing these separately. The frequen
dependent linear susceptibility is expanded up to second
der in each frequency band, and this results in a lo
Lagrangian in each band. The present paper is intende
treat the microscopic basis of the linear dispersion more p
cisely. Our model is the quantized version of the classi
Drude-Lorentz@13# single-electron oscillator model, in a lin
earized continuum limit. Similar continuum models ha
been treated previously, generally in the minimal coupli
gauge. The present approach uses the multipolar ga
which eliminates complications due to Coulomb interactio
and contact (A2) terms. While these effects can be includ
in minimal coupling theories, they result in considerab
complexity. The present approach includes all these effe
by virtue of the transformation to a multipolar interaction,
which the coupling is to the polarization rather than to t
electronic momentum. This has the advantage that inho
geneous media or higher dimensions can be treated eas

Some earlier dispersive models of a similar type a
691 ©1999 The American Physical Society
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692 PRA 59P. D. DRUMMOND AND M. HILLERY
known, starting from the phonon theory of Born and Hua
@14# and the exciton theory of Hopfield@15#, which used
minimal coupling. Hopfield considered the electromagne
field coupled to a polarization field which has a single re
nant frequency. He diagonalized the resulting Hamiltoni
and found that the resulting elementary excitations, pol
tons, have a dispersion relation consisting of two branc
separated by a forbidden frequency band. More recent w
has revisited the Hopfield model, though not always with
the terms included in Hopfield’s treatment@16,17#. Other
treatments have added losses to the model by coupling
polarization field to loss reservoirs@18,19#, still with just one
resonant transition. This has allowed the examination of
Kramers-Kronig relations in a fully quantized model. F
nally, nonlinear generalizations of Hopfield’s model ha
also been studied@11#. In these the linear oscillators o
Hopfield’s medium have been replaced by two-level atom
and the Holstein-Primakoff representation is used to deve
a systematic expansion of the polarization of the medi
which includes nonlinear effects.

These and other studies have elucidated the fundame
cause of the two main types of dispersion. The first, ex
tonic, type is due to electronic transitions, and is typica
resonant in the ultraviolet. These are due to relatively tigh
bound electrons that are localized to atomic sites in ins
tors, and somewhat delocalized in semiconductors. The
sulting classical dispersion is rather well described by
harmonically bound Drude-Lorenz model. The next type
due to phonon transitions, mostly in the infrared. These
citations are less strongly localized, and have their own
persion relation in the Born-Huang model. The dispersion
the transparent region between these absorption band
caused by the off-resonant, virtual transitions of these
main forms of excitation. In effect, a photon propagates i
dielectric as a dressed particle, due to the virt
transitions—and resulting polarization—that is induced
the solid. To treat this completely, it is essential to inclu
multiple exciton and phonon resonances in a full thr
dimensional model.

The present paper examines this problem using an
proach in which the coupling to the dielectric is includ
through a multipolar term@20,21#. This has the well-known
advantages that the use of atomic sum rules is not requ
since the atomic transition probability for off-resonant~high-
frequency! transitions is suppressed in this gauge@22#. The
interesting feature presented here is the inclusion of
number of atomic resonances—thus allowing us to reco
the Sellmeir@13# dispersion equation, which is known t
provide an excellent quantitative description of real disp
sive, transparent media. The use of multiple resonance
essential to a correct description of the transparent reg
with low group-velocity dispersion, that occurs between
absorption bands in most known cases. In addition, there
very straightforward procedure for diagonalizing t
Hamiltonian—even in the presence of an arbitrary numbe
resonant transitions with different resonant frequencies.

In the homogeneous~plane-wave! case, we find the ex
pansion of the fields in terms of the quantized modes ha
exceptionally simple form, in which only an electromagne
group-velocity correction has to be included relative to
usual nondispersive theory. When there is no longitudi
g
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phonon/exciton dispersion, this correction term is identica
that found in previous phenomenological@1,23,12# and
single-resonance microscopic models@14–19#. As an ex-
ample, Blowet al. @23# based their expansion of the fields o
previous work~due to Loudon@24#! in which it was argued,
from energy transport considerations, that the group velo
should appear in the expansion of the phonon field in te
of quantized modes, when phonon dispersion is pres
Blow et al. took this result for phonons and used it for th
case of an electromagnetic field in a dispersive medium.

Our work here provides a justification for this quantiz
tion procedure from a more fundamental point of view—
multiple-resonance microscopic model. It is remarkable t
the simple inclusion of a group velocity factor is sufficient
diagonalize this complex interaction Hamiltonian exact
The mathematical technique required to prove the results
volves the use of Cauchy’s theorem to carry out the requ
sums over the different branches of the dispersion relat
This is a significant improvement over previous approach
since in general there is no algebraic solution—even
principle—for the polynomial expressions whose roots g
the dispersion relations. In addition, we find that when th
is phonon or exciton dispersion@25#, which is a realistic
feature of many dispersive media, this procedure is modi
in a straightforward way. Instead of the total group veloci
only the relevant electromagnetic component is included
the expansion coefficients, suggesting that the diagona
tion is intimately related to the power transport processe
the solid. The results apply to one-, two-, or thre
dimensional environments, although only isotropic diele
trics are included here, for simplicity in the derivations.

II. ONE-DIMENSIONAL MODEL

We start by considering a straightforward on
dimensional model, without the complicating features
transverse mode structures and longitudinal phonon/exc
dispersion. This simple case illustrates the essential ana
features of our model. It will be generalized to more realis
higher-dimensional dielectric structures in later sections.

A. One-dimensional Lagrangian

Consider a set of dipole-coupled electronic Lagrangia
for oscillators with massmn , chargeqn , andN ~renormal-
ized! resonant discrete frequenciesVn1

, . . . ,VnN
. These

transitions may correspond physically to different types
atom, to distinct transitions within each atom, or more ge
erally to some many-body resonance. Thus

Le5(
n

Fmn

2
~ ṙ n

22Vn
2r n

2!1
1

«0
qnr nD~ x̄n!G . ~2.1!

Here r n is the displacement of a charged particle~typically,
an electron! in a multipolar Drude-Lorentz model, from th
corresponding center of charge~typically, nuclear! position
x̄n . Generally, these are all distinct atomic resonances.
simplicity, self-energy terms proportional toP2 are incorpo-
rated into the definition of the resonant frequencyVn . The
coupling in multipolar gauge is to the displacement fie
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PRA 59 693QUANTUM THEORY OF DISPERSIVE . . .
D( x̄n) at the central position. All Coulomb terms in th
gauge are carried by the photon-exchange process@21#.

Next, in order to develop a simple electromagnetic L
grangian in the multipolar gauge, we introduce a gau
field—the dual potentialL—so that D5]L/]x and B
5m]L/]t. This simply corresponds to a canonical transf
mation to the multipolar gauge@20,21# of the more usual
minimal coupling theory, and is simplified here by the a
sumption that there are no free charges. The discrete ato
positions are replaced by a continuum polarization field,
gether with the appropriate Lorentz shifts in the reson
frequenciesn, due to local-field corrections. This simplifica
tion is used here because it is not really necessary for u
consider the details of local-field corrections at this sta
We will show that this approach is able to generate the id
tical ~low-frequency! Sellmeir dispersion equation that is o
tained in the usual Drude-Lorentz theory, which does inclu
local-field corrections. Of course, the approximations
volved are only valid for carrier wavelengths much grea
than the interatomic spacing.

The corresponding Lagrangian density that generates
correct electromagnetic energy and Maxwell’s equations
one dimension is, for a one-dimensional waveguide with
fective cross sectionA,

L/A5
1

2m
L̇2~x!1

1

«0
FP~x!]xL~x!2

1

2
@]xL~x!#2G

1 (
n51

N

@ ṗn
2~x!2Vn

2pn
2~x!#/@2«0gn~x!#. ~2.2!

Here rn(x) is the density of the oscillators with resona
frequencyn, andr n(x) is regarded as a continuum field, wit
polarizationP(x)5(npn(x)5(nqnrn(x)r n(x), in order to
allow us to use a continuum approximation in later calcu
tions.

The coupling between the field and the polarization
entirely included in one termgn(x), which effectively com-
bines all the relevant information about charge, density,
dipole moment:

gn~x!5qn
2rn~x!/~mn«0!. ~2.3!

Noting thatD(x)5e0E(x)1P(x), the electric field is given
by E(x)5@D(x)2P(x)#/e0 , and the resulting Maxwell-
Bloch equations have the expected forms

] t
2L2c2]x

2L52c2]xP~x!,
~2.4!

] t
2pn1Vn

2pn5gn]xL.

In order to quantize the system, we simply introduce co
mutators for the canonical momenta and position, where

P~x!5mL̇~x!5B~x!,
~2.5!

pn~x!5 ṗn~x!/@e0gn~x!#.

The quantization rules are then the usual ones, obta
on replacing Poisson brackets with commutators, except w
the atomic operators treated as a continuum field.
position-type operators of the same type of variable m
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commute among themselves, as do all momentum-type
erators. We list the commutators involving cross terms
tween the position and momentum operators, and betw
the different types of variables, for reference in the next s
tions. In order that the commutators will have a famili
appearance, they are written in terms of the electric displa
ment and magnetic fields, rather than the canonical varia
and their momenta. Since the electric field only differs fro
the displacement field by the polarization terms~which com-
mute with field operators at equal times! there is no essentia
difference between the electromagnetic commutators wri
with the displacement field or the electric field. The fact th
the electric displacement is the derivative of a potential is
course, the origin of the differentiatedd function in the com-
mutator between the electric and magnetic fields, which
also found in minimal coupling theory:

~ I! @D̂~x!,B̂~x8!#5 i\d8~x2x8!/~A!,

~ II ! @ p̂n~x!,p̂n8~x8!#5 i\dnn8d~x2x8!/A,

~ III ! @D̂~x!,p̂n~x8!#50,

~ IV ! @B̂~x!,p̂n~x8!#50,

~V! @D̂~x!,p̂n~x8!#50,

~VI ! @B̂~x!,p̂n~x8!#50.

~2.6!

It is important to notice here that the commutators are ess
tially identical to those for the corresponding free fiel
@10,26# and oscillators. This is a consequence of the fact t
the couplings do not involve time derivatives. It also demo
strates that the present theory is canonically equivalen
other techniques involving minimal coupling@20,21#. One
apparent difference is in the commutator between the
placement field and the momentump̂n , which replaces a
commutator between the electric field and a gauge-depen
canonical momentum in minimal-coupling theory. Since t
electric field and displacement field differ by a term that do
not commute with the canonical momentum, it might se
that this introduces a difference. The explanation is due
the well-known fact that the canonical momentum in th
case is just the usual mechanical momentum, and there
differs from the minimal coupling momentum—which in
cludes a term proportional to the vector potentialA. These
two effects cancel each other, so the overall commutators
unchanged.

The final Hamiltonian density, equal to the linear ener
density of the coupled system, has a rather straightforw
expression in which there are no explicit Coulomb intera
tion terms. This is a typical property of multipolar interactio
Hamiltonians. Effectively, the Coulomb couplings are i
cluded partly in the oscillator self-frequency terms~i.e., in
n i), and partly in the photon-exchange dynamics that
implicit in the Hamiltonian. The result is that

H/A5
1

2«0
D̂2~x!1

1

2m
B̂2~x!2

1

«0
D̂~x!P̂~x! ~2.7!

1
1

2«0gn~x! (
n51

N

@«0
2gn~x!2p̂n

2~x!1Vn
2p̂n

2~x!#. ~2.8!
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694 PRA 59P. D. DRUMMOND AND M. HILLERY
All these equations hold for an arbitrary spatial distrib
tion r(x) of the polarizable atoms. Ifr(x) is a sum ofd-
function terms, a discrete lattice model is obtained; it is
unusual waveguide in which the atoms are all lined up i
one-dimensional row, but not an impossible one, with ato
trapping techniques. For simplicity, we do not treat this ty
of model here. Instead, we will focus on the uniform diele
tric limit, in which all the local-field corrections are include
via the relevant Lorentz shifts of the oscillator frequencies
give a more tractable case.

B. Mode structure

We now specialize to the case of a continuum model w
a uniform distribution, in order to find the dispersion rel
tions for plane waves. We introduce a mode structure
finding the eigenmodes of the equation of motion. Supp
the solutions to Maxwell’s equations have the form

lW ~ t,x!5S l~ t,x!

pn~ t,x! D5S l̃

p̃n
D eikx2 ivt. ~2.9!

It follows that these satisfy the resulting equations in
form

~2v21c2k2!l̃52 ikc2(
n8

p̃n8 ,

~2.10!
~2v21Vn

2! p̃n5 ikgnl̃.

Solving for p̃n , we find that

~Vn
22v2!~c2k22v2! p̃n5c2k2gn(

n8
p̃n8 , ~2.11!

or, summing over all the oscillators and introducingp̃
5(np̃n , we find

~c2k22v2! p̃5 p̃c2k2(
n

gn

Vn
22v2 . ~2.12!

Eliminating the polarization fieldp̃ leads to the eigen
value equation

v25
c2k2

n2~v!
5c2k2F12(

n

gn

Vn
22v2G . ~2.13!

We find a band structure in which there are typicallyN
11 positive rootsvm(k) with m50,1,...,N to the solution.
To look at this differently, we can solve for the wave numb
k, at any given frequencyv:

k56F v2/c2

12(ngn /~Vn
22v2!G

1/2

56k~v!. ~2.14!

This solution is unique for any given modal frequency, b
has forbidden regions atv.Vn , wherek2→2`. This in-
dicates a resonance, or absorption band. In the transmis
bands, there is a unique refractive indexn(v), and hence a
well-defined permittivity«(v)5n2(v)«0 .
-

n
a
-

e
-

o

h

y
e

e

r

t

ion

It should be realized that the dispersion relation is n
completely identical to the usual classical Sellmeir exp
sion, although it is very similar to it. The Sellmeir expansi
is

n2~v!511(
m

g̃m

Ṽn
22v2

. ~2.15!

This agrees with the functional form of the present result
lowest order ingn , if we assume thatgn5g̃m . The differ-
ence is simply due to different approaches to treating loc
field corrections in the continuum approximation. If a prec
local-field theory is required, then the assumption of a h
mogeneous polarization field must be replaced by a lat
model. In fact, the usual Drude-Lorentz model is not ty
cally obtained from a coupled Lagrangian, so it cannot
readily quantized directly. Rather, it is obtained from an a
proximate theory in which the local~microscopic! E field
plays the role that theD field does in the present theory@13#.
From microscopic considerations, both forms needs to h
local-field corrections included near an absorption band
order to give an accurate comparison with a thre
dimensional crystal lattice, from first principles.

When this is done in the Drude-Lorentz model, all t
low-frequency resonances are shifted by amounts known
the Lorentz shift. With these shifts included, the Sellm
expansion is obtained, with local-field corrections include
However, the number of poles in the rational function rep
sentation derived here is finite, just as in the classical Dru
Lorentz theory. Accordingly, it is always possible to r
express our dispersion relation exactly in the Sellm
rational-function form, using partial fraction expansions, ju
as in the Drude-Lorentz derivation of the Sellmeir equatio
In this case, the frequencies and couplingsg̃m appearing in
the final Sellmeir formula are not identical with the origin
frequencies in the Lagrangian; these shifts, of course, ca
regarded as evidence of the photonic coupling between
oscillators in our model.

An important, and experimentally well-tested property
the Sellmeir equation is that the refractive index approac
unity at high enough frequencies, while at low frequencie
approaches a constant value greater than 1:

lim
v→0

n2~v!511(
m

g̃m

Ṽn
2

. ~2.16!

Our dispersion relation from the multipolar Hamiltonian h
a similar behavior, except that the algebraic form is sligh
different at low frequencies:

lim
v→0

n2~v!5F12(
n

gn

Vn
2G21

. ~2.17!

Clearly, one form can always be transformed into anoth
given the obvious restrictions on having distinct roots, w
(ngn /Vn

2,1. We note that this equivalence does not ap
in all other models of the dispersion relations, which m
have inequivalent analytic properties—leading to a differ
limiting behavior at high and low frequencies. Provided t
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PRA 59 695QUANTUM THEORY OF DISPERSIVE . . .
general analytic properties are equivalent, the partial-frac
procedure to transform one form into the other is not
quired in most cases. We shall demonstrate that only
refractive index and group velocity are needed to obtai
complete quantum theoretic description of the modes. T
information is readily available from the usual Sellmeir p
rameters that are experimentally known for many transpa
materials. A typical dispersion relation for a solid with bo
low- and high-frequency resonances would show multi
transmission and absorption bands—with three dist
branches to the dispersion curve—and a region of relativ
low group-velocity dispersion between the absorption ban
This is the origin of the well-known zero-dispersion point~at
aroundl51.5 mm in fused silica!, which plays a prominen
role in optical communications systems.

III. ONE-DIMENSIONAL MODE OPERATORS

Having derived the modal solutions, we now wish to e
pand the fields of the theory in terms of annihilation a
creation operators. We develop this expansion in two sta
First, we will consider the conditions on the mode expans
which preserve the correct commutation relations for
original canonical fields. Then, we show that a mode exp
sion defined this way does lead to a diagonal Hamilton
form, when the Hamiltonian is reexpressed in terms of
mode operators. That is, our goal is to find operatorsâm(k)
which have the function of diagonalizing the Hamiltonia
giving a final structure of

H5 (
m50

N E \vm~k!âm
† ~ t,k!âm~ t,k!dk. ~3.1!

A. Commutation properties

Clearly, since the above expansion must lead to the s
eigenfrequencies as the original Maxwell equations,
should define mode operatorsâm relative to each branch o
the dispersion relation~with, for the sake of simplicity,N
11 distinct branches!, so that

L̂~ t,x!5 (
m50

N E dk@Lm~k!âm~ t,k!eikx1H.c.#. ~3.2!

Herevm(k) is the inverse ofk(v), for themth branch. The
summation is over the discrete branches in the disper
relation, each of which correspond to a different ‘‘particle
type. The time dependence of the mode operators in
Heisenberg picture—given the desired Hamiltoni
structure—must be

âm~ t,k!5âm~k!e2 ivm~k!t. ~3.3!

These combined field-polarization excitations can
termed polaritons. We will suppose thatâm(k) are chosen so
that

@ âm~k!,âm8
†

~k8!#5dmm8d~k2k8!. ~3.4!

Similarly, the momentum field can be expanded as
n
-
e
a
is
-
nt

e
t

ly
s.

-

s.
n
e
-

n
e

,

e
e

n

e

e

P̂~ t,x!5 (
m50

N E dk@Pm~k!âm~k!eikx2 ivm~k!t1H.c.#.

~3.5!

The requirement of commutation relations means that
must have~at equal times!

@L̂~x!,P̂~x8!#5 i\d~x2x8!/A

5 (
m50

N E dk@Lm~k!Pm* ~k!eik~x2x8!2H.c.#.

~3.6!

This implies the relationship that, in order to preserve co
mutation relations,

(
m50

N

Lm~k!Pm* ~k!5
i\

4pA
. ~3.7!

The Lagrangian density for this model implies thatP
5m] tL. With the assumed time dependence of the ann
lation operators, we can also writePm(k) in the form of

Pm~k!52 ivm~k!mLm~k!. ~3.8!

The above result therefore reduces to an equation for
expansion coefficientsLm(k), in the form of

(
m50

N

vm~k!Lm
2 ~k!5

\

4pAm
. ~3.9!

Next, we wish to obtain an expression forLm(k), which
is unknown at this stage. It is no restriction to chooseLm(k)
to be real. Therefore, we can always choose an~unknown!
function vm(k) so that, in analogy to the standard vacuu
expansion

Lm~k!5F\vm~k!«m~k!

4pAk G1/2

. ~3.10!

If vm(k)5c and«m(k)5«0 , this reduces to the accepte
vacuum field expansion. More generally, we define«m(k)
5k2/@mvm

2 (k)# as the effective permittivity of themth
branch. We will show below thatvm(k) must be interpreted
as the group velocity, just as in an earlier narrow-band an
sis of this problem, using effective Lagrangian argume
@1,12#.

In order to demonstrate this, we first substitute the ab
expression forLm(k) into the equation for the consistency o
the field and mode-operator commutation relations~i.e., for

@L̂,P̂# and@ â,â†#). This leads to the very simple result th

~ I! (
m50

N
kvm~k!

vm~k!
51. ~3.11!

As explained above, we have to determine a funct
vm(k) which satisfies this condition, and we intend to de
onstrate that the choice ofvm(k) as the group velocity of the
relevant polariton branch is sufficient; no other correcti
factors are needed in this simple model. In order to ver
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this, we can differentiate both sides of Eq.~2.13! with re-
spect tok. This gives a group velocity of

vm~k!5
dvm~k!

dk
5

vm~k!

k S 11(
n

k2c2gn

@Vn
22vm

2 ~k!#2D 21

,

~3.12!

which is the function we propose to use in the mode exp
sion; we have yet to prove this.

It is clear that the mode function expansion ofp̂n andp̂n

are also needed, for a complete demonstration of con
tency. Using Maxwell’s equations, we note that for a Four
component ofpn at frequencyv, wave vectork, we must
have

p̃n5
ikgnl̃

Vn
22v2 . ~3.13!

Thus, if we expandp̂n as

p̂n5 (
m50

N E dk@pm
n ~k!âm~k!eikx2 ivm~k!t1H.c.#,

~3.14!

it follows that the expansion coefficient for in thej th fre-
quency band is

pm
n ~k!5

ikgnLm~k!

@Vn
22vm

2 ~k!#
. ~3.15!

Similarly, if the canonical momentum for the atomic p
larization field is

p̂n~ t,x!5 (
m50

N E dk@pm
n ~k!âm~k!eikx2 ivm~k!t1H.c.#,

~3.16!

then the corresponding expansion coefficient is

pm
n ~k!5

kvm~k!Lm~k!

«0@Vn
22vm

2 ~k!#
. ~3.17!

For these operators to have the correct equal-time c
mutators, the different oscillator position operatorsp̂n must
commute among themselves at equal times, as must the
ferent momentum operatorsp̂n . This is trivial from the form
of the mode operator expansion. However, the commuta
relations~II ! between the position and momentum operat
are nontrivial. The relevant commutation conditions a
therefore

@ p̂n~x!,p̂n8~x8!#

5 i\dnn8d~x2x8!/A

5 (
m50

N E dk@pm
n ~k!pm*

n8~k!eik~x2x8!2H.c.#. ~3.18!

This in turn implies that
n-

is-
r

-

if-

n
s
e

(
m50

N

pm
n ~k!pm*

n8~k!5
i\

4pA
dnn8 . ~3.19!

Expanding the coefficients gives the equation

(
m50

N vm~k!k2gnLm
2 ~k!

«0@Vn
22vm

2 ~k!#@Vn8
2

2vm
2 ~k!#

5
\

4pA
dnn8 .

~3.20!

Since«m(k)5c2k2«0 /@vm(k)#, and hence

Lm
2 ~k!5

\c2«0kvm~k!

4pAvm
2 ~k!

, ~3.21!

this simplifies to the form

~ II ! (
m50

N
c2k3vm~k!gn

vm~k!@vm
2 ~k!2Vn

2#@vm
2 ~k!2Vn8

2
#

5dnn8 .

~3.22!

Finally, to ensure that there are correct field-atom co
mutators, we must satisfy the commutators~III !–~VI !. For
these cross terms between the oscillators and field variab
we find that conditions~III ! and~IV !, involving commutators
between the field and the particle position~or the field mo-
mentum and particle momentum! are automatically satisfied
This occurs for the same reason that commutators
@L̂(x),L̂(x8)# or @P̂(x),P̂(x8)# must equal zero in our
mode expansion. In all these cases involving pairs of can
cal position-type operators or pairs of momentum-type
erators, the commutator reduces to an integral overk, which
is an odd function ofk—and hence vanishes when integrat
over all positive and negativek values.

This leaves the requirements~V! and~VI !, which are that
L̂ and p̂n must commute at equal times, as well asP̂ and
d̂n . These two requirementsboth imply the same restriction
on the expansion coefficients, and hence onvm(k), which is
that for all k andn we must have the conditions:

~V,VI ! (
m50

N
kvm~k!

vm
2 ~k!@vm

2 ~k!2Vn
2#

50. ~3.23!

Despite the complex nature of each of these condition
which involve sums over all the roots of the dispersion eq
tion, and must be satisfied for all the resonant frequencien,
as well all momentak—we will show that these sums can b
analytically evaluated without requiring an algebraic soluti
for the roots.

B. Conditions on expansion coefficients

From the previous results, we have shown that the con
tion on the expansion coefficient of mode operators is t
we must find a functionvm(k), such that

S~ I!5 (
m50

N
kvm~k!

vm~k!
51, ~3.24!

together with an orthogonality condition
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Snn8
~ II !

5 (
m50

N
c2k3vm~k!gn8

vm~k!@vm
2 ~k!2Vn

2#@vm
2 ~k!2Vn8

2
#

5dnn8 .

~3.25!

In addition, to ensure commutation between the particle
electromagnetic fields, we should impose the condition

Sn
~ III !5 (

m50

N
kvm~k!

vm
2 ~k!@vm

2 ~k!2Vn
2#

50. ~3.26!

Earlier work @12# on more phenomenological narrow
band quantum models of dispersion led to the conclus
that, for an expansion of modes to be consistent with b
Maxwell’s equations and the known dispersive energy, i
necessary to choosevm(k) equal to the group velocity. Thus
the use ofvm(k)5]vm(k)/]k is an obvious choice, but it is
necessary to demonstrate that this still leads to a complet
of consistent commutation relations.

C. Single-oscillator case

As an example, we consider the single-oscillator ca
where the dispersion relation can be treated algebraicall
the solution of a quadratic equation. In this case the refr
tive index is given by

n~v!25F12
g

Vn
22v2G21

. ~3.27!

In order to show how the Sellmeir form can be regain
we define a frequencyṼn

25Vn
22g. As long asVn

2.g, the
above equation is equivalent to a Sellmeir type of dispers
relation, which is simply

n~v!2511
g

Ṽn
22v2

. ~3.28!

Either equation leads to a quadratic forv2, having the
form

v42v2~c2k21Vn
2!1Vn

22g50. ~3.29!

The resonant frequencies, at any given wave numberk, are
then

v25 1
2 @c2k21Vn

26A~c2k21n2!224c2k2~Vn
22g!#.

~3.30!

We now identifyvm(k) with the group velocity on each o
the two branches, by taking derivatives with respect tok.
Thus, assumingVn

2.g ~to have distinct branches!,

kv6~k!

v6~k!
5

1

2 S c2k2

v2 D S 16
c2k22Vn

212g

D D , ~3.31!

where the quantityD is given by

D5A~c2k21Vn
2!224c2k2~Vn

22g!. ~3.32!

Clearly it is necessary to haveVn
2.g in order to have dis-

tinct real branches to the dispersion relation, each with p
d

n
th
s

set

e,
as
c-

,

n

i-

tive frequencyv. This is precisely the condition under whic
the Sellmeir expansion is valid, as one might have expec

Summing over the two branches, we note that~defining
K̃5c2k21Vn

2):

(
6

kv6~k!

v6~k!
5

1

4 (
6

S 16
K̃12~g2Vn

2!

D
D K̃7D

Vn
22g

.

~3.33!

On taking the sum, this reduces to the required result of

S~ I!5(
6

kv6~k!

v6~k!
51. ~3.34!

This indicates that the use of group-velocity expans
coefficients appears correct in this case, although we h
only calculated the simplest of the commutators. Howev
this algebraic technique is rather clumsy to use for the ot
identities. Even worse, it is not able to be used at all for
arbitrary number of branches; in these more general ca
there is no closed-form expression for the solution to
dispersion equation.

IV. ANALYTIC PROPERTIES OF DISPERSION
RELATIONS

For the other, more complex, commutation relati
identities—or more oscillators—it is preferable to use tec
niques from complex function theory, which transform t
sums over roots of the dispersion relation to complex cont
integrals of related meromorphic functions. The dispers
relations considered here have the general structure of

v2

c2k2 512(
n

gn

Vn
22v2 . ~4.1!

This can be written in the form of roots of a polynomial
z5v2, so that

ka~zm!5b~zm!, ~4.2!

wherezm5vm
2 , k5c2k2, and

a~z!5)
n

~Vn
22z!2(

n8
gn8 )

nÞn8
~Vn8

2
2z!, ~4.3!

b~z!5z)
n

~Vn
22z!. ~4.4!

Next, in order to test the assumption that the expansion
efficients involve group velocities, we must consider t
slope of the dispersion relations:

ka8~z!1
]k

]z
a~z!5b8~z!. ~4.5!

Hence the group velocity is just

vm~k!5
]vm~k!

]k
5

c2ka~z!

vm~k!@b8~z!2ka8q8~z!#
. ~4.6!
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A simpler way to write this expression—entirely equiv
lent to the above definition—is Eq.~3.12!. While this form is
more transparent, the above expression is a rational func
which is amenable to analysis using Cauchy’s theorem.

A. Condition „I …

The sumS(I) has the form

S~ I!5(
m

kvm~k!

vm~k!
5(

m
F ka~z!

z@b8~z!2ka8~z!#G
z5zm~k!

.

~4.7!

Next consider the complex function, defined for the analy
continuation ofz into complex values:

f ~ I!~z!5
ka~z!

z@b~z!2ka~z!#
. ~4.8!

This generally has (N12) poles, and has the property th
limuzu→` f (I) (z);1/z2. For example, in the trivial case of n
oscillators (N50), we find that

f ~ I!~z!5
k

z~z2k!
. ~4.9!

In this case, the identity~I! is satisfied trivially, since it re-
duces to Res@ f (I) (z5c2k2)#51. The sum of residues o
f (I) (z) is zero in this case, which must be true in general
a meromorphic function behaving asf (I) (z);1/z2 as uzu
→`. As usual in complex function theory of the invers
variable (u51/z), a contour integral around all the finit
poles turns into a contour integral around zero poles at in
ity, and hence must equal zero. Thus we have the gen
result that

05( Res@ f ~ I!~z!#5211 (
m

N11 F ka~zm!

zm@b8~zm!2ka8~zm!#G .
~4.10!

However, this is precisely condition~I!, for the N-oscillator
case, since

S~ I!5 (
m

N11 F ka~zm!

zm@b8~zm!2ka8~zm!#G5 (
m

N11
kvm~k!

vm~k!
51.

~4.11!

Thus, the use of complex function theory shows that~I! is
always satisfied, provided there areN11 distinct roots.

B. Condition „II …

Similarly, we can prove the other relations. For examp
to prove relation~II ! we consider

f nn8
~ II !

~z!5
kgn8 f ~ I!~z!

~z2Vn
2!~z2Vn8

2
!
. ~4.12!

Summing the residues of this function, and noting th
limz→0 f (I) (z)521/z, we find ~for nÞn8)
n,

c

r

-
ral

,

t

05Snn8
~ II !

2
kgn8

Vn
2Vn8

2 1
kgn8 f ~ I!~Vn

2!

~Vn
22Vn8

2
!

1
kgn8 f ~ I!~Vn8

2
!

~Vn8
2

2Vn
2!

.

~4.13!

Examining the right-hand side of the required identity, w
must obtain the value off (I) (Vn

2), evaluated at each reso
nance:

f ~ I!~Vn
2!5

ka~Vn
2!

Vn
2@b~Vn

2!2ka~Vn
2!#

. ~4.14!

However, b(Vn
2)50 at each resonance, so thatf (I) (Vn

2)
521/Vn

2 . Hence the right-hand side of the required ident
becomes

Snn8
~ II !

5kgn8F 1

Vn
2Vn8

2 1
1

Vn
2~Vn

22Vn8
2

!

1
1

Vn8
2

~Vn8
2

2Vn
2!G50. ~4.15!

In the case thatn5n8, a double pole is found, so th
residue is obtained on differentiatingf (I) (z). We can per-
form this operation most simply in the neighborhood of t
double root atz5Vn

2 , by using the definition off (I) (z) to
show that

f ~ I!~z!52
1

z
1

1

z2k@12(ngn /~Vn
22z!#

. ~4.16!

Thus, asz→Vn
2 , we find the second term is dominated b

the pole in the denominator:

lim
z→Vn

2

f ~ I!~z!52
1

z
1

Vn
22z

kgn
. ~4.17!

Hence, on differentiating to obtain the residue,

]

]z
f ~ I!~z!uz5V

n
252

1

kgn
1

1

Vn
4 . ~4.18!

This is sufficient to complete the proof of the second re
tion, which is

Snn8
~ II !

5( Res@ f nn8
~ II !

~z!#1dnn85dnn8 . ~4.19!

C. Conditions „III …–„VI …

As shown previously, the conditions~III !–~IV ! are
straightforward consequences of the general type of exp
sion chosen here, while conditions~V! and~VI ! reduce to an
identical summation identity. To obtain this last identity, w
can now introduce a third analytic function

f n
~ III !5

f ~ I!

z2Vn
2 . ~4.20!

As well as the poles atz50 and theN11 roots of the
dispersion relation, this has a pole atz5Vn

2 . The residues at
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z50 andz5Vn
2 cancel each other, so the sum over the

maining zeros must give zero, as required. In summary,
find that summing over the residues gives

Snn8
~ III !

5( Res@ f n
~ III !~z!#50. ~4.21!

This proves the last sum rule requirement on the comm
tors.

V. HAMILTONIAN

We now wish to show that when the Hamiltonian is e
pressed in terms of the operatorsâm(k) and âm

† (k), m
50,...,N, it is of diagonal form. Our first step is to derive a
orthogonality relation for the classical modes. This will a
low us to show that the Hamiltonian contains only terms
the form âm

† (k)âm(k). The next step is to examine the no
malization of the modes. Once this has been done, we
that the Hamiltonian is given by

H5 (
m50

N E dk \vm~k!âm
† ~k!âm~k!. ~5.1!

In order to find the proper orthogonality relation for th
modes, let us first define theN11 component vector

l̄5S l̃

p̃n
D , ~5.2!

or l05l̃ and ls5 p̃ns
for s>1. The eigenvalue equation

can be expressed in the form~for each value ofk)

M l̄5v2l̄, ~5.3!

where the (N11)3(N11) matrix M is given by

M5S k2c2

2 ikgn1

2 ikgn2

]

ikc2

Vn1

2

0
]

ikc2

0
Vn2

2

]

...

...

...D . ~5.4!

The matrixM is not Hermitian, but if it is multiplied by the
positive, diagonal, (N11)3(N11) matrix G,

Grs5d rsGss where Gss5H 1,
c2/gns

s50
s>1, ~5.5!

then the combinationGM is Hermitian. Therefore, if

M l̄~1!5v1
2l̄~1!, M l̄~2!5v2

2l̄~2!, ~5.6!

then

^l̄~2!uGMl̄~1!&5v1
2^l̄~2!uGl̄~1!& ~5.7!

5^GMl̄~2!ul̄~1!&5v2
2^l̄~2!uGl̄~1!&.

~5.8!

This implies that ifv1
2Þv2

2, then
-
e

a-

f

d

^l̄~2!uGl̄~1!&50, ~5.9!

and we have the desired orthogonality relation. Express
this in slightly more generality, we note that for each val
of k there areN11 eigenvectorsl̄ (m), m50,...,N, each cor-
responding to a different eigenvaluevm(k). As a result we
have that

^l̄~m!uGl̄~m8!&5dm j 8^l̄
~m!uGMl̄~m!&. ~5.10!

We now express the fields in terms of the eigenvect
and substitute them into the Hamiltonian, which is given
integrating the Hamiltonian density in Eq.~2.8! over x. In
particular, we have that

Lm5l0
~m! , pm

n 5ln
~m! , ~5.11!

Pm52 imvml0
~m! , pm

n 5
2 ivmln

~m!

«0gn
. ~5.12!

This allows us to use Eqs.~5.3! and~5.10! when calculating
the Hamiltonian, and we find that

H54pmA (
m50

N E dk^l̄~m!~k!uGl̄~m!~k!&vm
2 ~k!âm

† ~k!âm~k!.

~5.13!

In order to show that the Hamiltonian assumes the fo

given in Eq. ~5.1!, and to justify our assumption thati ȧ̂m

5vmâm , we need to prove that

4pmA^l̄~m!~k!uGl̄~m!~k!&vm~k!5\. ~5.14!

Noting that

ln
~m!5

ikgn

Vn
22vm

2 l0
~m! , l0

~m!5Lm5A \vmk

4pmAvm
2 ,

~5.15!

we see that Eq.~5.14! will be true if

S 11(
n

k2c2gn

~Vn
22vm

2 !2D kvm

vm
51. ~5.16!

This implies thatvm5dvm /dk, from Eq. ~3.12!. We can
then conclude that the expression for the Hamiltonian giv
in Eq. ~5.1! is correct.

Summarizing, our theory of a linear medium withN reso-
nances is described by the Hamiltonian in Eq.~5.1! and the
corresponding field operators have the expansions

D̂~ t,x!5 i(
m

E dk kF\«@vm~k!#vm~k!

4pkA G1/2

3âm~k!eikx2 ivm~k!t1H.c., ~5.17!

Ê~ t,x!5 i(
m

E dkF \kvm~k!

4p«@vm~k!#AG1/2

âm~k!eikx2 ivm~k!t

1H.c., ~5.18!
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B̂~ t,x!52 i(
m

E dkF\mkvm~k!

4pA G1/2

âm~k!eikx2 ivm~k!t1H.c.

~5.19!

Here we have also included the electric-field expans
~which is obtained by including the polarization term!, for
comparison with more familiar results. As one might expe
the only difference between the electric field and displa
ment field expansions is a factor proportional to the dielec
permittivity «@vm(k)# in each branch of the dispersion rel
tion. It is important to notice here that the two fields cann
be related by one, frequency-independent, coefficient. Th
a natural consequence of dispersion, and also occurs in
corresponding classical theory.

In order to provide a more physical understanding of t
result, the summation over the branches in one dimen
can be replaced by an integral over the mode frequency
each propagation direction, i.e., define

D̂~ t,x!5D̂ ~1 !~ t,x!1D̂ ~2 !~ t,x!. ~5.20!

Now, since the mode frequency has a bounded range
each root, we can define a frequency-dependent mode op
tor as

ã~v!5âm~k!/Auvm~v!u, ~5.21!

where the appropriate rootm is chosen in each case to co
respond to the mode frequency argument—except, of cou
in the forbidden bands. The commutators of the new m
operators are

@ ã~v!,ã†~v8!#5d~v2v8!, ~5.22!

and the mode expansion is now the same as it would be
nondispersive case, except that no modes exist in the for
den bands:

D̂ ~6 !~ t,x!56 i E
0

`8
dvF\k~v!«~v!

4pA G1/2

ã~v!e6 ik~v!x2 ivt

1H.c. ~5.23!

Similar equations hold for the other fields; for example, t
electric- and magnetic-field expansions are just

Ê~6 !~ t,x!56 i E
0

`8
dvF \k~v!

4p«~v!AG1/2

ã~v!e6 ik~v!x2 ivt

1H.c. ~5.24!

and

B̂~6 !~ t,x!52 i E
0

`8
dvF \mk~v!

4p«~v!AG1/2

ã~v!e6 ik~v!x2 ivt

1H.c. ~5.25!
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The important point is that we can exactly absorb t
group-velocity factor into the frequency integral—whic
however, is only defined in the range of allowed mode f
quencies. This result~also obtained in earlier narrow-ban
Lagrangian approach@1,12#, and in a single-resonance mod
@17#! was most clearly emphasized in the single-resona
theory of Huttner and Barnett@16#. It implies that the two-
time correlation function for narrow-band fields in the tran
mission band, is essentially identical to those of the cor
sponding vacuum fields, apart from the usual reflectiv
factors. This is a necessary ingredient of any theory of
interface properties of the fields, and will be explored
more detail in a subsequent paper. The above mode ex
sion has been widely used in quantum optics, and the pre
result shows that it is exact for a realistic, multiple-resonan
model of a dispersive medium—provided we recognize t
there are no modes in the forbidden bands.

VI. HIGHER-DIMENSIONAL MODELS

We next consider ann-dimensional Lagrangian for oscil
lators with massmn , displacementr n , effective chargeqn ,
and oscillation frequenciesVn about their center of charg
position x̄n :

La5(
n

Fmn

2
~ ṙ n

22Vn
2r n

2!1
qn

«0
r n•D~ x̄n!G . ~6.1!

Here @r nqn# is the dipole moment of a charged particle in
multipolar Drude-Lorentz model. In this general case,
labelsn may correspond either to distinct resonances of o
atom or to distinct positions. Each resonance has its o
corresponding effective charge, and hence dipole mom
Any sum rules are incorporated into the definitions of t
effective charges involved in a given transition. For simpl
ity, the self-energy terms proportional toP2 are included in
the definition of the resonant frequencies, which are defi
to diagonalize the individual charge-cell Hamiltonians in t
multipolar gauge. The coupling in multipolar gauge is to t
displacement fieldD( x̄n) at the central positionx̄n , used as
an origin for defining a local polarization. All interatomi
Coulomb terms in this gauge are carried by the phot
exchange process, which couples atoms at distinct sp
positions.

We introduce a vector gauge field, the dual potentialL, so
that D5“3L and B5m]L/]t. The discrete cell positions
are now replaced by a continuum polarization field as befo
together with the appropriate local-field corrections. To a
count for more general dielectric structures that may h
local interactions not included in the Coulomb correction
we now include a quadratic dispersion terman to describe
the residual phonon and exciton dispersion@25# that exists in
the absence of long-wavelength electromagnetic couplin

The simplest Lagrangian density that generates the cor
electromagnetic energy and Maxwell’s equations for
n-dimensional waveguide with effective cross sectionA
.d32n is
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L/A5
1

2m
L̇2~x!1

1

«0
FP~x!•“3L~x!2

1

2
@¹3L~x!#2G1 (

n51

N

$ṗn
2~x!2Vn

2pn
2~x!2an~x!@“ ipn~x!#2%/@2«0gn~x!#.

~6.2!
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Here the polarization density due to all the dipoles
P(x)5(npn(x)5(nr nqnrn(x), wherern(x) is the number
density of the oscillators with resonant frequencyVn . The
partial polarizationpn(x) is regarded as a continuum field
with n51,...,N labeling the bare frequency of the elementa
phonon and exciton resonances, in the absence of couplin
the long-wavelength photons. We have assumed that the
persions of phonon and exciton modes are the same for
gitudinal and transverse modes. The transverse disper
will ultimately be modified by the coupling between the fie
and the polarization, which is entirely included in the te
gn(x), as defined in Eq.~2.3!.

We impose the usual gauge constraint that“•L50, so
that the field variable only has transverse degrees of f
dom; this does not apply to the polarization. In addition,
can impose waveguiding conditions thatL is restricted to
one-, two-, or three-dimensional manifolds. In practice, d
persion occurs in the electromagnetic mode functions~which
are wavelength dependent!, so that it is necessary to solve fo
the complete three-dimensional mode structure to treat
ber waveguide, for example, rigorously. However, a sim
low-dimensional waveguiding theory is still useful as a gu
to the behavior of a complete theory. In the full thre
dimensional case, the area termA is simply omitted, asA
51.

The resulting generalized Maxwell-Bloch equations ar

@] t
22c2

“

2#L5c2
“3P~x!,

@] t
21Vn

2~k!#pn5gn~x!“3L1“ i@an~x!“ ipn~x!#.
~6.3!

In order to quantize the system, we introduce the canon
momentaP~x! andpn(x), where

P~x!5mL̇~x!5B~x!,
~6.4!

pn~x!5
1

«0gn~x!
ṗn~x!}mv.

The quantization rules are the usual ones obtained on
placing Poisson brackets with operator commutators. Sca
by A is introduced, so that the field units are independen
waveguide dimension, and thed functions aren dimensional.
All position-type operators of the same type of variable m
commute among themselves, as do all momentum-type
erators. The commutators involving cross terms between
position and momentum operators, and between the diffe
types of variable, are
to
is-
n-
ion

e-

-

fi-
e

-

al

e-
g
f

t
p-
he
nt

~ I! @D̂ i~x!,B̂j~x8!#5 i\“x3d i j
'~x2x8!/A,

~ II ! @ p̂in~x!,p̂ j n8~x8!#5 i\d i j dnn8d~x2x8!/A,

~ III ! @D̂ i~x!,p̂ j n~x8!#50,

~ IV ! @B̂i~x!,p̂ j n~x8!#50,

~V! @D̂ i~x!,p̂ j n~x8!#50,

~VI ! @B̂i~x!,p̂ j n~x8!#50.

~6.5!

Here we have introduced the usual notation of a tra
versed function, defined so that

d i j
'~x!5

1

~2p!n E dnk d̃ i j
'~k!eik•x, ~6.6!

whered̃ i j
'(k)[(d i j 2kikj /uku2) is the transverse projector i

momentum space. In three dimensions, the first commut
can also be written in the more familiar form of

~ I! @Êi~x!,B̂j~x8!#5 i\“x3d i j
'~x2x8!/«0 . ~6.7!

The final quantum Hamiltonian density is~using normal
ordering!

H/A5
1

2«0
D̂2~x!1

1

2m
B̂2~x!2

1

«0
D̂~x!•P̂~x!

1
1

2«0gn~x! (
n51

N

$«0
2gn

2~x!p̂n
2~x!1Vn

2p̂n
2~x!

1an~x!@“ ipn~x!#2%. ~6.8!

These equations hold for an arbitrary spatial distributionr~x!
of the continuum of polarizable atoms.

VII. THREE-DIMENSIONAL QUANTUM MODE
OPERATORS

In this section, we specialize to the case of a continu
model with uniform couplings and velocities, as in the on
dimensional case, in order to find the dispersion relations
plane waves. As in the one-dimensional case as well,
introduce a mode structure by finding the eigenmodes
Maxwell’s equations in the form

S L~ t,x!

pn~ t,x! D5S L̃~v,k!

p̃n~v,k!
D eik•x2 ivt. ~7.1!

Definingk5uku, it follows that these satisfy the Maxwell
Bloch equations in the form
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~2v21c2k2!L̃5 ic2k3(
n

p̃n ,

~7.2!
@2v21Vn

2~k!#p̃n5 ignk3L̃.

Our model now includes simple phonon/exciton disp
sion. These effects cause the Fourier-domain equations
the polarization to be modified, so thatVn

2 is now replaced
by a momentum-dependent functionVn

2(k)5Vn
21k2an ,

where we definek5uku in this section. The phonon/excito
dispersion can be generalized to more complicated cas
desired, with higher-orderk dependences—although in man
cases only the relatively long-wavelength~small k) phonons
are relevant to optical properties. In terms of the coup
equations given above, only the transverse part of the po
ization couples to the photons; hence we can define

p̃i
'~k!5 d̃ i j

'~k! p̃ j~k!. ~7.3!

Solving for P̃' by summing over the transverse polariz
tions of all the oscillators, we find

~c2k22v2!P̃'5P̃'c2k2(
n

gn

Vn
2~k!2v2 . ~7.4!

The eigenvalues of the longitudinal part of the polarizat
field are not changed by the coupling, while eliminating t
transverse polarization fieldP̃' leads to the eigenvalue equ
tion

v25
c2k2

n2~v!
[c2k2F12(

n

gn

Vn
2~k!2v2G . ~7.5!

For any wave numberk5uku, we find a band structure in
which there are typically @2(N11)# positive roots
v0s(k),...,vNs(k) to the transverse eigenvalue equatio
for eachk value, withs51 and 2, andvm1(k)5vm2(k) due
to the isotropy of our model. Each mode therefore has
orthogonal polarization unit vectorsus(k), such that
k•us(k)50. Similarly, there are (N) longitudinal roots,
which are labeleds50, and are unchanged by the lon
wavelength electromagnetic couplings. In the case wh
phonon/exciton dispersion is omitted, the transverse dis
sion relation is precisely the same as in the one-dimensi
model.

As before, the solution is unique for any given mod
frequency, but has forbidden regions which indicate a re
nance, or absorption, band. Typical dispersion relations
this model also demonstrate the existence of transmis
and absorption bands—but with additional structure in e
branch, whose origin is in the phonon~or exciton! disper-
sion. From now on, we use the notationvms(k) with s51
and 2, to indicate a solution to the full transverse equatio
The notationvm0(k)5Vm(k) indicates the longitudinal ei
genvalue, which of course is undefined form50, in the ab-
sence of longitudinal photons.

Three-dimensional commutators

Having derived the modal solutions, we now wish to e
pand the fields of the theory in terms of annihilation a
-
for

if

d
r-

s

o

re
r-
al

l
o-
r

on
h

s.

-

creation operators in the three-dimensional model. Th
have the function of diagonalizing the Hamiltonian, whic
we anticipate will have a final structure of

H5 (
m50

N

(
s508

2 E dnk \vms~k!âms
† ~k!âms~k!. ~7.6!

Here the lower limit notation ofs508 is defined to exclude
the unphysical combination ofm50 ands50. As before,
the modal frequencyvms(k) is the inverse ofk(V), for the
mth transverse branch. This expansion requires that we
fine mode operatorsâms in the mth branch of the dispersion
relation, so that

L̂~ t,x!5 (
m50

N

(
s51

2 E dnk@Lms~k!âms~k!eik•x2 ivms~k!t

1H.c.#. ~7.7!

The summation here is just over the transverse branche
the dispersion relation. These combined transverse fi
polarization excitations can be termed polaritons, and we
tice here that there can be longitudinal excitations that pro
gate, as is usual, in solid-state physics. The commuta
properties of the annihilation and creation operatorsâms(k)
are chosen so that

@ âms~k!,âm8s8
†

~k8!#5dmm8dss8d~k2k8!. ~7.8!

Similarly, the momentum field can be expanded as

P̂~ t,x!5 (
m50

N

(
s51

2 E dnk@Pms~k!âms~k!

3eik•x2 ivms~k!t1H.c.#. ~7.9!

Thus, at equal times,

@L̂ i~x!,p̂ j~x8!#5 i\d i j
'~x2x8!/A

5 (
m50

N

(
s51

2 E dnk@L ims~k!P j ms* ~k!

3eik•~x2x8!2H.c.#. ~7.10!

This implies that, in order to preserve commutation relatio
we have similar results to the one-dimensional case:

(
m50

N

(
s51

2

L ims~k!P j ms* ~k!5
i\

2A~2p!n d̃ i j
'~k!.

~7.11!

For free fields, it is clear thatP5mL̇. Hence, we can also
write Pms(k) in the form of

Pms~k!52 ivms~k!mLms~k!. ~7.12!

The equation for the expansion coefficientsLms(k), is
therefore
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(
m50

N

(
s51

2

vms~k!L ims~k!L j ms~k!5
\

2Am~2p!n d̃ i j
'~k!.

~7.13!

Next, we chooseLms(k) to be real, and as before, we ca
always choose an~unknown! function vms(k) so that

Lms~k!5us~k!F\vms~k!«m~k!

2Ak~2p!n G1/2

. ~7.14!

We will show later thatvms(k) must be interpreted as th
electromagnetic component of group velocity, with nonel
tromagnetic phonon/exciton dispersion explicitly exclude
This is not completely identical to either the earlier narro
band analysis@12# of this problem, or the simple one
dimensional theory. The difference can be attributed to
difference in the Hamiltonian energy that is introduced wh
the polarization fields are dispersive.

In order to demonstrate this, we first recall the stand
identity that

(
s51

2

uis~k!uj s~k!5 d̃ i j
'~k!. ~7.15!

Next, substituting the above expression forLms(k) into the
equation for the field and mode commutators leads to

~ I! (
m50

N
kvms~k!

vms~k!
51. ~7.16!

As explained above, we have to determine a funct
vms(k) which satisfies this condition, and we intend to de
onstrate that the choice ofvms(k) as the~isotropic! electro-
magnetic component of group-velocity of the relevant pol
iton branch is sufficient—no other correction factors a
needed. At this point, we notice an important fact: apart fr
the change in the resonance frequenciesVn(k) due to theirk
dependence, the above summation overvms(k) is identical
in analytic form to our one-dimensional expression. Ho
ever, thek dependence plays no role in obtaining the Cauc
theorem summation results, provided we definevms(k) to be
the same function ofVn(k) andvms(k) as before. In other
words, thek dependence of the phonon/exciton dispers
relation simply renormalizes the effective resonance
quency at eachk value, in the above summation over th
roots of the dispersion relation. Since this renormalization
the same for each eigenvalue, the summation can be ca
out using identical techniques to those used previou
Thus, we define, fors51 and 2,
-
.
-

e
n

d

n
-

-

-
y

n
-

is
ied
y.

vms~k!5
Vm~k!

k S 11(
n

k2c2gn

@Vn
2~k!2vms~k!2#2D 21

.

~7.17!

It should be noted that thisvms(k) is not the same asvms(k)
in the one-dimensional case, although it has the same fu
tional form. The difference is that it is a now a function
Vm(k) and vms(k), which include phonon/exciton disper
sion effects. However, if we simply differentiate the slope
the functionvms(k), we do not obtainvms as defined here—
there are additional terms involving]Vn

2(k)/]k. For this rea-
son, we refer tovms(k) as the electromagnetic component
group velocity, which excludes additional transport terms

It is clear that the mode function expansion ofp̂n ,p̂n is
also needed, for a complete demonstration of consiste
Using Maxwell’s equations, if we expandp̂n as

p̂n5 (
m50

N

(
s50

2 E dnk@pms
n ~k!âms~k!eik•x2 ivms~k!t1H.c.#,

~7.18!

then it follows that the expansion coefficient for the tran
verse component ofpms in the mth frequency band must be

pms
n ~k!5

ignk3Lms~k!

@Vn
2~k!2vms

2 ~k!#
. ~7.19!

Similarly, if the canonical momentum for the atomic p
larization field is

p̂n~ t,x!5 (
m50

N

(
s50

2 E dnk@pms
n ~k!âms~k!

3eik•x2 ivms~k!t1H.c.#, ~7.20!

then the corresponding transverse expansion coefficient

pms
n ~k!5

vms~k!k3Lms~k!

«0@Vn
2~k!2vms

2 ~k!#
. ~7.21!

For these operators to have the correct equal-time comm
tors, the different oscillator position operatorsp̂n must com-
mute among themselves at equal times, as must the diffe
momentum operatorsp̂n . This is trivial from the form of the
mode operator expansion. However, the commutation r
tions ~II ! between the position and momentum operators
nontrivial. The relevant commutation conditions are the
fore
@ p̂in~x!,p̂ j n8~x8!#5 i\dnn8d i j d~x2x8!/A5 (
m50

N

(
s508

2 E dnk@pims
n ~k!p j ms* n8~k!eik•~x2x8!2H.c.#. ~7.22!

This in turn implies that

(
m50

N

(
s508

2

pims
n ~k!p j ms* n8~k!5

i\dnn8d i j

2A~2p!n . ~7.23!
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Defining d i j
i (k)5kikj /k25d i j 2d i j

'(k), and expanding the coefficients, gives two new equations. The transverse ca

~ II ! (
m50

N
c2k3vms~k!gn

vms~k!@vms
2 ~k!2Vn

2~k!#@Vms
2 ~k!2Vn8

2
#

5dnn8 , ~7.24!
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while the longitudinal equation is easily solved on defini
u0(k)5k/k:

pm0
n ~k!5u0~k!dmnF \gme0

2A~2p!nVm~k!G
1/2

. ~7.25!

Finally, to ensure that there are correct field-atom co
mutators, we must satisfy the commutators~III !–~VI !. For
these cross terms between the oscillators and field varia
we find that conditions~III ! and~IV !, involving commutators
between the field and the particle position~or the field mo-
mentum and particle momentum!, are automatically satisfied
This occurs for the same reason that commutators

@L̂(x),L̂(x8)# or @p̂(x),p̂(x8)# must equal zero in our mod
expansion. In all these cases involving pairs of canon
position-type operators or pairs of momentum-type ope
tors, the commutator reduces to an odd integral overk,
which vanishes when integrated over all positive- a
negative-k values.

This leaves the requirements~V! and~VI !, which are that
L̂ andp̂n must commute at equal times, as well asp̂ andr̂ n .
These two requirementsboth imply the same restriction on
the expansion coefficients, and hence onvms(k), which is
that for all k andn we must have the condition

~V,VI ! (
m50

N
kvms~k!

vms
2 ~k!@vms

2 ~k!2Vn
2~k!#

50. ~7.26!

Despite the complex nature of each of these condition
which involve sums over all the roots of the dispersion eq
tion, and must be satisfied for all the resonant frequen
vms , as well as all momentak—we will show that each of
these sums can be analytically evaluated without requi
an algebraic solution for the roots, just as before. For al
the commutation relation identities it is preferable to u
techniques from complex function theory, which transfo
the sums over roots of the dispersion relation to comp
contour integrals of related meromorphic functions. Ho
ever, the transverse dispersion relations considered here
an identical analytic structure for a fixedk value, with those
in the one-dimensional case, so the previous analytic res
follow without any further calculation. The main point he
is that it is necessary for the group-velocity coefficient
have the algebraic form given in Eq.~7.17!—which implies
that it includes only part of the slope of the dispersion re
tion.

VIII. HAMILTONIAN

We now wish to show that when the Hamiltonian is e
pressed in terms of the operatorsâms(k) and âms

† (k), m
50,...,N and s50, 1, and 2, where the combinationm
5s50 is omitted; it is of diagonal form. In order to prov
-

es,

e
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-

this we shall study further the classical modes, in particu
their orthogonality and normalization properties. Once t
has been done, we shall be able to show that the Hamilto
takes the form given in Eq.~7.6!.

Let us begin by restating the classical mode equati
@Eqs. ~10!# in matrix form. Define the 3N13 component
vector l̄ by

l̄5S L̃

p̃n1

]

p̃nN

D , ~8.1!

or l05L̃ and ls5pns
for s>1, and the 3(N11)33(N

11) matrix M (k) by

M ~k!5S k2c2I 3

2 ign1
K

2 ign2
K

]

2 ic2K
Vn1

2 ~k!I 3

0
]

2 ic2K
0

Vn2

2 ~k!I 3

]

...

...

...D .

~8.2!

Here I 3 is the 333 identity matrix andK(k) is the anti-
Hermitian matrix given by

K5S 0
k3

2k2

2k3

0
k1

k2

2k1

0
D , ~8.3!

which has the action, on an arbitrary vectorA,

KA5k3A. ~8.4!

The equations for the modes can now be expressed as~for
each value ofk!

M l̄5v2l̄. ~8.5!

The matrixM is not Hermitian, but if it is multiplied by
the positive, diagonal, 3(N11)33(N11) matrix G,

G5S I 3 0 0 ...

0
c2

gn1

I 3 0 ...

0 0
c2

gn2

I 3 ...

] ] ]

D , ~8.6!

then the combinationGM is Hermitian. Therefore, if
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M l̄~1!5v1
2l̄~1!, M l̄~2!5v2

2l̄~2!, ~8.7!

then

^l̄~2!uGMl̄~1!&5v1
2^l̄~2!uGl̄~1!& ~8.8!

5^GMl̄~2!ul̄~1!&

5v2
2^l̄~2!uGl̄~1!&. ~8.9!

This implies that ifv1
2Þv2

2, then

^l̄~2!uGl̄~1!&50, ~8.10!

and we have part of the desired orthogonality relation.
In order to learn more we must examine the 3N13 eigen-

vectors in more detail. Define the projection operator, wh
projects each component ofl̄ onto its longitudinal compo-
nent,

P~ k̂!5S uk̂&^k̂u 0 ...

0 uk̂&^k̂u ...

] ]

D , ~8.11!

where uk̂&^k̂u is the projection onto the vectork̂. A short
calculation shows that@P( k̂),M #50, which implies that the
eigenvectorsl̄ can be taken to lie in either the subspa
projected out byP( k̂) ~longitudinal modes!, or in the or-
thogonal subspace~transverse modes!. The longitudinal
modes can be found by taking the inner product of Eqs.~7.2!
with k̂, giving

~k2c22v2!k̂•L̃50, @Vn
2~k!2v2# k̂•p̃n50. ~8.12!

There areN physical solutions to these equations given
L̃50, p̃nm

} k̂, and p̃n50 for nÞnm , with eigenvalue

Vnm

2 (k) for m51,...,N. There is also one unphysical solu

tion ~it violates the gauge condition! given byL̃} k̂, and all
of the p̃n is being equal to zero.

We are now left with 2N12 transverse solutions. We firs
note that each transverse eigenvalue is twofold degene
This follows from the fact that if M l̄5v2l̄, then
M (K3Nl̄)5v2(K3Nl̄), where

K3N5S K
0
]

0
K
]

...

...D , ~8.13!

which can be verified by noting that ifL̃ andp̃n satisfy Eqs.
~7.2!, so dok3L̃ andk3p̃n . We choose the two eigenvec
tors l̄m1 and l̄m2, which correspond to the eigenvaluevm

2 ,
to be orthogonal in the sense that

^l̄m1uGl̄m2&50. ~8.14!

This, along with Eq.~8.10!, implies that

^l̄~ms!uGl̄~m8s8!&5dmm8dss8 , ~8.15!
h

te.

which is our final orthonormality relation. Here, due to iso
ropy, the mode frequencyvms does not depend on the po
larization indexs for the transverse modes.

We now express the fields in terms of the eigenvecto
substitute them into the Hamiltonian density in Eq.~6.8!, and
integrate over the relevantn-dimensional volume. In particu
lar, we have that

l0
~ms!5Lms , ln

~ms!5pms
n , ~8.16!

Pms52 imvmLms , pms
n 5

2 ivm

e0gn
ln

~ms! . ~8.17!

Adding the requirement thatl̄ (ms)(k)* 5l̄ (ms)(2k) @it can
be shown thatM (2k)l̄ (ms)(k)* 5vm

2 (k)l̄ (ms)(k)* , which

implies that l̄ (ms)(k)* is in the two-dimensional subspac
spanned byl̄ (ms)(2k) for s51 and 2#, and utilizing Eq.
~8.15!, we find that the terms of the form
âms(k)âm8s8(2k) vanish, giving, for the transverse mode

H trans52~2p!nmA (
m50

N

(
s51

2 E dnk^l̄~ms!~k!uGl̄~ms!~k!&

3vm
2 ~k!âms

† ~k!âms~k!. ~8.18!

In order to show that the Hamiltonian assumes the fo
given in Eq.~7.6!, we need to prove that

2~2p!nmA^l̄~ms!~k!uGl̄~ms!~k!&vm~k!5\. ~8.19!

Making use of Eqs.~7.14! and~7.19! this condition becomes

S 11(
n

k2c2gn

@Vn
2~k!2vm

2 #2D kvms

Vm
51. ~8.20!

This agrees precisely with Eq.~7.17!, and is true even in-
cluding phonon dispersion (anÞ0). However, as pointed
out earlier, when there is phonon dispersion we cannot in
pretvms as the total group velocity; it only includes an ele
tromagnetic contribution, i.e., it is no longer equal to]v/]k.

In order to complete the diagonalization of the Ham
tonian we must consider the longitudinal modes. The fie
L andP have no longitudinal components, so that this p
of the diagonalization procedure involves only the fieldspn

andpn . We find that

H long5~2p!3
2A

e0
(
m51

N E d3k
vm0

2 ~k!

gm
pm0

m ~k!*

3pm0
m ~k!âm0

† âm0~k!, ~8.21!

where we have made use of the fact thatpm0
n (k)

5dmnpm0
m (k), and we note thatvm0(k)5Vm(k). The Hamil-

tonian assumes the expected form

H long5 (
m51

N E d3k \vm0~k!âm0
† âm0~k! ~8.22!

when explicit expressions for the vectors,pm0
m (k) from Eq.

~7.25! are used.
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The final Hamiltonian, which is the sum ofH trans and
H long, has 3N12 mode operators for each value ofk, and
can be written in the form

H5 (
m50

N

(
s508

2 E \vms~k!âms
† ~k!âms~k!dnk. ~8.23!

Here the lower limits508 excludes the combination ofm
50 ands50, which would imply a longitudinal polariton
Also, there is a requirement of havingN11 distinct roots for
this form to be valid. The corresponding field operators~in
the full three-dimensional case! have the expansions

D̂5 i (
m,s51,2

E d3kF\kvm
EM~k!«@vm~k!#

4p G1/2

3es~k!âms~k!eik•x1H.c.,

Ê'5 i (
m,s51,2

E d3kF \kvm
EM~k!

4p«@vm~k!#
G1/2

3es~k!âms~k!eik•x1H.c.,
~8.24!

B̂52 i (
m,s51,2

E d3kF\mkvm
EM~k!

4p G1/2

3us~k!âms~k!eik•x1H.c.

Here we have introduced the electric-field modee(k)5k
3u(k)/uku to simplify the expansion. We note, as in th
one-dimensional case, that the transverse field expansio
the electric field is simply derived from the displaceme
field by using the frequency-dependent permittivity. T
main feature introduced by the dispersion is the replacem
of a frequency termv, that would normally appear in th
expansion coefficients, by a new term with the same un
but equal tokvm

EM(k) instead. We do not give the expansio
for the longitudinal part of the electric field here explicitl
except to point out that it is equal to2Pi/«0 .

IX. SUMMARY

A simple theory of a one-dimensional, dispersive wav
guide was introduced, including a polarizable model of
by
.

m

ys
,

for
t

nt

s,

-
e

medium withN discrete localized resonances. This can
thought of as a limiting case of an ideal insulator, in whi
the polarization field is due to localized electrons at ea
atomic location. The theory is exactly equivalent to the us
classical theory of a dispersive dielectric medium, in t
sense that it results in Sellmeir equations for the refrac
index. These are well known to lead to an excellent fit to
classical dispersion properties of transparent media, and h
the usual causality requirements automatically satisfied.
theory was quantized and a set ofN11 mode operators in-
troduced, for the polaritons in each branch of the dispers
relation, provided there wereN11 distinct, positive roots. In
this case, the mode expansion has a universal and sim
form, only depending on the group velocity.

This model is necessarily causal, and implements the c
sality requirements through band gaps, rather than isola
poles. It does omit many important correction factors th
occur in practice. In particular, our mode expansion negle
scattering off inhomogeneities. For this reason, transmiss
inside the transmission band is essentially lossless. It
omits nonlinearities due to phonon-phonon, photon-phot
and photon-phonon interactions, which are responsible
additional nonelectromagnetic damping of the polarito
However, these effects can certainly be added to the Ha
tonian once a mode expansion is established.

Next, a quantum theory of an isotropicn-dimensional dis-
persive waveguide was introduced, withn51, 2, or 3. With-
out any additional phonon/exciton dispersion, the theory
exactly equivalent to the classical Drude-Lorentz theory o
dispersive dielectric medium. The completen-dimensional
theory was quantized, and a set of 3N12 mode operators
introduced, for each branch of the dispersion relation, ag
with the restriction of distinct, positive roots. As in the on
dimensional case, the mode expansion depends on the
mittivity and the electromagnetic group velocity, in the ca
of transverse polaritons. However, the group-velocity fac
in this case is modified to include only the electromagne
component of the group velocity.
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