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Quantum interference in two-photon excitation with squeezed and coherent fields

N. Ph. Georgiades, E. S. Polzik,* and H. J. Kimble
Norman Bridge Laboratory of Physics, 12-33 California Institute of Technology, Pasadena, California 91125

~Received 30 December 1997!

Two-photon excitation of a three-level atom in a ladder configuration (1→2→3) by simultaneous illumi-
nation with fields in squeezed vacuum and coherent states results in quantum interference for the excitation
process. The particular configuration considered here is one for which the signal and idler output fields of a
subthreshold nondegenerate optical parametric oscillator are in resonance with the two-stepwise dipole atomic
transitions (1→2,2→3), while a ‘‘reference oscillator’’ field is in two-photon resonance with the quadrupole
transition (1→3). In an extension of the work of Ficek and Drummond@Phys. Rev. A 43, 6247~1991!#, a
theoretical formulation based on the full quantum master equation for the problem is presented. The combined
effects of quantum interference and the nonclassical character of the squeezed state are investigated, and offer
the potential for a new detection strategy for quantum fluctuations of the electromagnetic field with ultrahigh
frequencies~10’s–100’s THz!. Based on the theory developed, we analyze quantum interference in excitation
in several special cases relevant to experimental realizations, including the effects of a small focusing angle of
the squeezing onto the atoms, and unusual population inversions. Special emphasis is given to identifying
intrinsically quantum optical field effects versus classical field effects. Procedures that could distinguish be-
tween the two~i.e., classical and nonclassical! are suggested.@S1050-2947~98!06109-5#

PACS number~s!: 42.50.Ct, 42.50.Dv, 32.80.Wr, 42.50.Hz
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I. INTRODUCTION

The interaction of squeezed light with atoms has be
extensively studied theoretically over the past decade@1,2#.
The phenomena revealed by these studies can be bro
divided into two categories, according to the efficiency w
which the squeezed field and an atom are coupled. In the
case, efficient coupling of atoms to the nonclassical reser
provided by the squeezed fields leads to a modification of
radiative processes of the atoms, such as modified ato
decay rates and altered atomic saturation. In the second
of inefficient coupling, perhaps surprisingly, the manifes
quantum fluctuations of the squeezed state can neverth
drive atomic populations in ways not possible if the statist
of the fields were classical. Examples of the latter case
two-photon excitation@3–5#, photon statistics in resonanc
fluorescence@6,7#, and squeezing of the collective atom
spin @27#. In contrast to the numerous theoretical advance
the area, experimental work has been proven to be extrem
difficult with only one experiment@8# having demonstrated
purely nonclassical effect of the second category. In part
lar, in our experiment of Ref.@8#, a two-photon transition in
a three-level atom (1→2→3) was excited by the correlate
signal and idler fields of a subthreshold nondegenerate o
cal parametric oscillator. In striking contrast to the classi
quadratic dependance, the excited-state populationr33 was
observed to exhibit a slope less than 2 with respect to
incident intensity; in fact observations with a slope as low
1.3 were recorded. An additional attempt in our group
couple squeezed light and atoms within the setting of ca
QED @9# was sensitive only to the fact that the squeez
states have an asymmetric phase-space distribution for
fluctuations of the quadrature-field amplitudes, but did
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convincingly demonstrate a sensitivity to the fact that t
excitation field was nonclassical.

To investigate two-photon excitation with squeezed lig
further, we carried out yet another experiment beyond t
described in Ref.@8#. Here the objective was to explore ex
plicitly the issue of the phase sensitivity of the excitati
process, where now the quadrature amplitudesXu(V), de-
fined by

X̂u~V![â~V!e2 iu1â†~V!eiu, ~1!

have appreciable Fourier content for signalvs and idlerv i
frequenciesvs,i5v06V0 offset byV0/2p.12.5 THz from
the center frequencyv0 . This frequency span is well beyon
the detection capabilities of conventional homodyne pho
detection schemes, so that a new technique is required
investigation of such high frequency~cw! correlations. The
whole approach in Ref.@10# is an attempt to develop such
new detection strategy, whereby the atom itself is emplo
as a nonlinear mixing element for the demodulation of
high-frequency fluctuations of the field.

Briefly reviewing the principles of the experiment of Re
@10#, we recall that it is based on the combination of tw
photon nonclassical excitation as studied in Ref.@8#, together
with coherent excitation leading to quantum interferen
~QI! as described in Ref.@12#. More specifically, the se-
quence 1→2→3 corresponding to the 6S1/2F54
→6P3/2F855→6D5/2F956 transition in atomic Cs was ex
cited by the signal and idler output fields from a subthresh
nondegenerate optical parametric oscillator~ND-OPO! at
frequencies (vs ,v i) corresponding to the resonance freque
cies (v21,v32) of the 6S1/2F54→6P3/2F855 and
6P3/2F855→6D5/2F956 transitions, respectively. At the
same time, the atom was illuminated with a coherent ‘‘ref
ence oscillator’’~RO! field of frequencyvRO, resonant with
the two-photon transition frequency corresponding to h
that of the 6S1/2F54→6D5/2F956 transition,vRO.v31/2.
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PRA 59 677QUANTUM INTERFERENCE IN TWO-PHOTON . . .
Hence, the excited state 3 could be reached via two p
ways, i.e., either via two dipole stepwise absorptions fr
the signal and idler fields, resulting in the 1→2 and 2→3
transitions, respectively, or via quadrupole, two-photon
sorption from the RO field, which leads to the direct 1→3
transition. The amplitudes for these two indistinguishable
citation pathways interfere coherently to result in QI whi
can manifest itself as a modulation of the excited-state po
lation r33 as the phases of the various excitation fields
varied. As observed and analyzed in Ref.@10#, this effect can
lead to phase-sensitive detection of squeezing for signal
idler fields separated by hundreds of THz, where in Ref.@10#
the correlated signal and idler fields were separated by
THz. Implicit in this discussion is that the excitation field
are phase coherent over the relevant relaxation timeT over
the other which is a necessary condition for the preserva
of QI. If the excitation lasers were incoherent with each ot
over T, the total excitation probability would simply be th
incoherent sum of the excitation probabilities of each pa
way of excitation.

In the present paper, our goal is to extend the sim
theoretical picture given in Ref.@10#, and to provide a gen
eral theoretical foundation for these types of experime
We also wish to explore possible extensions of our wo
with emphasis on the nonclassical properties of the sque
fields in contrast to our previous theoretical analysis in R
@11# which deals with all-coherent-state excitation. To th
end, in Sec. II we describe in more detail the radiation sou
and atomic system under consideration, and then in Sec
present the Hamiltonian formulation of our problem. B
drawing heavily on the prior analysis of Ref.@5#, in Sec. IV
we derive the master equation for the atom illuminated w
signal, idler, and reference oscillator fields, from which t
Bloch equations that determine the dynamical evolution
the system follow in Sec. V. These equations are solved
the atomic populations in steady state in Sec. VI. Section
is devoted to a discussion of the effects of a small solid an
over which the squeezed fields are focused onto the a
Section VIII analyzes the effects of a large solid angle on
phase-sensitive features of the atomic populations and p
lation inversions with an emphasis on distinguishing betw
quantum and classical effects. Finally, we end with conc
sions in Sec. IX.

II. PHYSICAL SYSTEM

The basic structure of the atomic system under consi
ation is shown on Fig. 1. A three-level atom with eigensta
u1&, u2&, and u3& is in a ladder configuration with eigenfre
quencies$v21,v32,v31% defined by v i j 5(Ei2Ej )/\ and
full width at half maximum atomic decay rates given byg2
and g3 for the transitionsu2&→u1& and u3&→u2&, respec-
tively. In addition, we define D5u@(v31)/2#2v32u
5u@(v31)/2#2v21u to characterize the degree of nondege
eracy ~i.e., D is the frequency distance of the intermedia
excited state 2 from half the two-photon eigenfrequency
the atom; see Fig. 1!.

This model atom is assumed to be illuminated by the fi
with positive frequency component«̂5 «̂01 «̂q , which is
composed of the following two parts: First, the field«̂0 is
h-
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taken to be in a coherent state with eigenvalue given
«05e0e2 i (v0t1f0), where e0 is the amplitude andf0 the
spatial phase of the field at the position of the atom. We w
refer to«0 as the RO. Second, the field«̂q is taken to be the
output of a subthreshold ND-OPO. As usual@13#, the output
of the ND-OPO consists of two energy-carrying sideban
namely, the signal and idler fields with spectral distributio
centered at frequenciesvs,i5v086D8, respectively, and
placed symmetrically around the frequencyv08 . A real ND-
OPO can generate many such pairs of sidebands, but, du
atomic resonance conditions described below, only a sin
pair is relevant for the problem considered here. For the p
poses of the present analysis~and as is at the core of ou
experiment@10#! we assume that the frequencyv0 of the
coherent field«̂0 is the same as that of the central frequen
v08 for the signal and idler fields (v05v08). Therefore, the
electromagnetic field illuminating the atoms consists of th
main frequency components centered atv0 , vs5v01D8,
andv i5v02D8. The detunings of these components of t
driving field from the atomic eigenfrequencies are defined
d0 , d i andds :

v05
v31

2
1d0 ,

vs5v211ds , ~2!

v i5v321d i .

Sincevs,i5v06D8, we have that

ds5d01~D82D!,
~3!

d i5d02~D82D!.

In the subsequent analysis, we assume thatv0'v13/2, i.e.,
d0 is small, and thatD'D8, with the residual detuningsds
andd i , on the order of the atomic linewidths (g2 ,g3). We
also take the quantum field«̂q to be a broadband field with
respect to the atomic linewidths (g2 ,g3), so thatds andd i
do not enter the description of the dynamics of the syste
This assumption allows us to avoid the complexity of fin
bandwidth squeezed excitation@14#. However, the coheren
part of the total excitation field«̂0 is by definition narrow-
band, so that the detuningd0 will be important in the sys-
tem’s dynamics.

FIG. 1. Schematic representation of the atomic system un
consideration.
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Finally we describe the quantum field«̂q(t) in the time
domain via the creation and annihilation operatorsâ(v) and
â†(v) in frequency domain, related to each other as usua

«̂q(t)5*A(\v8/2e0V)â(v8)eiv8tdv8. The operatorsâ and
â† satisfy the commutation relation

@ â†~v!,â~v8!#5d~v2v8!, ~4!

and the nonclassical properties of the quantum field«̂q can
be summarized in terms of the expectation values of the
relation functions ofâ and â† which are taken to be of the
following form for the output of a ND-OPO@5#:

^â†~v!â~v8!&5N~v!d~v2v8! ~5!

and

^â~v!â~v8!&5M ~v!d~2v02v2v8!

5M ~2v02v!d~2v02v2v8!. ~6!

The functionsN(v) andM (v) are slowly varying functions
of frequencyv, peaked at the signal and idler frequenciesvs
and v i , and of width given in terms of the~cold-cavity!
linewidth of the ND-OPO. Furthermore, as shown in R
@5#,

uM ~v!u2<N~v!N~2v02v!1min@N~v!,N~2v02v!#,
~7!

with the complex numberM written as

M ~v!5uM ~v!ueifs, ~8!

wherefs is the phase of the squeezed vacuum. We de
quantum squeezing by the condition uM (v)u2

.N(v)N(2v02v). Note that foruM (v)u50 the statistics
of the field become indistinguishable from a thermal sou
~i.e., a phase-symmetric distribution of fluctuations for t
quadrature amplitudes of the field!. Also, we will define a
‘‘classical’’ squeezed state to be such that 0,uM (v)u2
<N(v)N(2v02v) ~i.e., an asymmetric phase-space dis
bution for the quadrature amplitudes, but with a lower bou
set by the vacuum fluctuations for the ‘‘quiet’’ quadrature!.
In Sec. VII, the distinction between the cases of quant
squeezing, classical squeezing, and thermal states will
come important when we try to infer the nonclassical sta
tics of the exciting fields from the properties of the atom
excitation, and hence identify intrinsically quantum effects
the atomic processes.

Before proceeding with the full-theory analysis it is wor
recalling the simplified analysis given in Ref.@10#, which
helps in motivating the subsequent discussion. There,
starting point was Mollow’s@15# expression for the two-
photon excitation rate, given in terms of the fourth-ord
correlation functionD(t) of the excitation field«̂,

D~t![^«̂†~ t1t!«̂†~ t1t!«̂~ t !«̂~ t !&. ~9!

Substituting«̂(t)5 «̂01 «̂q , taking the Fourier transform o
D(t), and using the relations given by Eqs~4!, ~5!, and~6!,
leads to
y
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r33}F~V!5e0
4F11

2Meff

e0
2 cos~2f01fs!G12e0

2N~V!,

~10!

where

F~V![~1/2p!E eiVtD~t!dt

and

Meff[E uM ~V8!udV8.

From this expression for the excited-state populationr33, it
is obvious thatr33 has an oscillating component whose o
gin is QI. Moreover, by monitoring this oscillating term on
obtains a handle onMeff which is a measure of the noncla
sical correlations of the ND-OPO output. However, as e
plained in Ref.@10#, in order to claim that nonclassical ob
servations between the signal and idler outputs of the N
OPO have been observed, one must show that the quan
squeezing conditionuM (v)u2.N(v)N(2v02v) is satis-
fied. Unfortunately, the detection ofMeff using QI lacks a
direct comparison ofN with M, although alternative method
have been proposed@10#.

For completeness, we note that in the usual homod
detection of squeezing the Fourier transform of the photoc
rent is given by

C~V!5e0
4F11

2Neff

e0
2 G12e0

2@N~V!

1uM ~V!ucos~2f01fs!#, ~11!

whereNeff[*N(V8)dV8. The second term in this case is pr
portional to the usual definition of the spectrum of squeez
@13,16,17# given by S(V,u)52@N(V)1uM (V)ucosu#,
which takes negative values only if the quantum squeez
condition is satisfied.

In summary, comparing the methods of QI and the tra
tional homodyne detection of squeezing, we emphasize
while QI allows access to nonclassical correlations betw
fields that differ in frequency by 10’s–100’s of THz~via M!,
the validation of the condition for quantum squeezing is n
so trivial. On the other hand while the usual homody
method automatically comparesM with N, it cannot detect
correlations between fields that are separated in frequenc
more than few tens of GHz, because of the technical lim
tions of the speed of available photodetectors. More det
about this issue can be found in Ref.@10#.

III. HAMILTONIAN FORMULATION

Our system is similar to the one studied by Ficek a
Drummond in Ref.@5#, with the important addition of the
RO field «̂0 . We have therefore chosen the master equa
of Ref. @5# as our starting point. Since the bulk of the fo
malism used here to deal with the quantum fields is dra
from Ref. @5#, we will briefly explain the origin of and nota
tions for the various terms. Note, however, that the addit
of the classical RO field as part of the total excitation fie
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leads to a rich new phenomenology arising from quant
interference of excitation pathways, which is a new are
within the context of the interaction of squeezed light w
atoms.

With this in mind, we begin by writing the total Hamil
tonianH tot of the system as

H tot5HA1HF1H int , ~12!

whereHA describes the free evolution of atomic operato
and is given by

HAum&5Emum&, ~13!
-

e

he

m
e

om
n

ica

n

a

,

for each of the atomic eigenstatesm51, 2, and 3.HF is the
free-field Hamiltonian given by

HF5\E a†~v!a~v!v dv, ~14!

where the coherent state field«̂0 has been ignored inHF
since it contributes only ac number to the overall energy
The interaction of the field with the atom is described
H int , defined to be
H int5 i\E dvH F(
i

(
j Þ i

gi j ~v!Si j Ga~v!2H.c.J 2 i\Qo8@~S31e
2 i2~d0t1f0!2S13e

i2~d0t1f0!!1 i ~b3S332b1S11!#, ~15!
n-
ny
he

ell.

te

tal
,

k

wheregi j are coupling coefficients andSi j atomic operators
defined bySi j 5u i &^ j u, i , j 51, 2, and 3. As usual these op
erators satisfy the commutation relation

@Si j ,Spq#5Siqd jp2Sp jdqi , ~16!

where d i j is the Kroniger delta function. Note that in th
electric-dipole approximation,g1350. The parameterQo8 is a
‘‘Rabi-like’’ frequency that takes the form

Qo85
m1m2e0

2

4D\2 , ~17!

where m1 and m2 are the dipole moments that couple t
u1&↔u2& and u2&↔u3& transitions, respectively.

Before proceeding further let us take a moment to exa
ine Eq.~15! beginning with the first term which describes th
interaction of the atoms with the quantum field«̂q and which
has been extensively discussed in Ref.@5#. This first term is
responsible for driving theu1&↔u2& and u2&↔u3& atomic
transitions. To account for the additional coherent-state c
ponent of the field«̂0 , we add to the interaction Hamiltonia
the second term of Eq.~15!, which is an effective Hamil-
tonian of the form analogous to that for the semiclass
interaction of a coherent field with an atomic dipole@18#.
However, because this term describes a two-photon tra
-

-

l

si-

tion, the usual Rabi frequencyV}er has been replaced with
the two-photon analog given byQo8}e2r 2 ~note that, for a
three-level system,̂r &12̂ r &235^r 2&13!.

This form of an effective Hamiltonian has been exte
sively used for the study of two-photon absorption by ma
authors@19–22#, and is valid under the assumption that t
three-level atom is far from degenerate@23# ~i.e., v i j @D
@dk!, which we assume to be the case in our work as w
The parametersb1 and b3 quantify the strength of the
intensity-dependent Stark shifts of theu1& and u3& levels, re-
spectively, due to the virtual transition to the intermedia
~u2&! level @22#, and can be shown from Ref.@20# @Eq. ~63!#
and the definition ofQo8 to be related to each other by

b15
1

b3
5

um2u
um1u

.S g3

g2
D 1/2

, ~18!

where the last equality follows from Eq.~21! in Ref. @5#.

IV. MASTER EQUATION

To simplify the subsequent analysis, we rewrite the to
HamiltonianH tot as being composed of two parts, namely

H tot5HFD1H0 , ~19!

whereHFD is the part of the Hamiltonian analyzed by Fice
and Drummond in Ref.@5# given by
HFD5HA1HF1 i\E dvH F(
i

(
j Þ i

gi j ~v!Si j Ga~v!2H.c.J , ~20!

while H0 is an ‘‘effective’’ interaction Hamiltonian given by

H052 i\Qo8@~S31e
22i ~d0t1f0!2S13e

2i ~d0t1f0!!1 i ~b3S332b1S11!#, ~21!

and describes the addition of the RO driving field«̂0 .
From Eq.~19!, we derive a master equation for the atom, composed of two parts,
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]r

]t
5S ]r

]t D
FD

2Qo8@~S31e
22i ~d0t1f0!2S13e

2i ~d0t1f0!!2 i ~b3S332b1S11!,r#, ~22!

with the first term (]r/]t)FD being identical to that analyzed by Ficek and Drummond in Ref.@5#, and the second describin
the interaction of the atom with the additional«̂0 field. Furthermore, we adopt the simplified notation of Ref.@5#, namely,
Si

25(Si
1)†[Si ,i 11 andv i[v i 11,i . Then, expanding Eq.~22! results in the following expression:

]r

]t
52 (

i , j 51

2

@M ~v i !h i j 2 iDv i j #~Si
1rSj

12Sj
1Si

1r1Sj
1rSi

12rSi
1Sj

1!ei ~v i1v j 22vo!t2 (
i , j 51

2

@M* ~v i !h i j* 1 iDv i j* #

3~Si
2rSj

22Sj
2Si

2r1Sj
2rSi

22rSi
2Sj

2!e2 i ~v i1v j 22vo!t2 (
i , j 51

2

N~v i !g i j ~rSj
2Si

11Sj
2Si

1r22Si
1rSj

2!ei ~v i2v j !t

2 (
i , j 51

2

@N~v i !11#g i j ~rSi
1Sj

21Si
1Sj

2r22Sj
2rSi

1!ei ~v i2v j !t2 i(
i 51

2

~Dv i
01Dv i !~ u i &^ i ur2ru i &^ i u!

2Qo8@~S31r2rS31!e
22i ~d0t1f0!2~S13r2rS13!e

2i ~d0t1f0!#1 iQo8@b3~S33r2rS33!2b1~S11r2rS11!#, ~23!
ce

th

t
ne
nd
e

. I

th

f
al
where the first five terms correspond to the results of Fi
and Drummond of Ref.@5~a!#, Eq. ~20!, while the last two
terms are due to«̂0 . In the above equationg i i , i 51 and 2,
are equal to half the radiative decay constants for
u1&→u2& and u2&→u3& transitions ~hence g115g2/2 and
g225g3/2!. The additional damping termsg12 and g21 @as
defined in Eq.~21! of Ref. @5~a!## are in general nonzero, bu
because we assume that the atom has nonequidistant e
levels, withD large, these terms are rapidly oscillating a
may be dropped. In the above equation, the presenc
squeezing and the fact thatM5^aa&Þ0 introduce the addi-
tional damping constantsh i j @as defined in Eq.~21! of Ref.
@5~a!## which are similar to the more traditionalg i j . How-
ever, relative tog i j , the situation is reversed forh i j , for
which only h12 andh21 contribute, while the termsh11 and
h22 enter in fast oscillating terms that may be neglected
addition, it can be shown from Ref.@5# that h125h21*
5 1

2 Ag2g3, where any nonzero phase associated withh12 has
been absorbed without loss of generality into the phase of
complex numberM. The termsDv i j are frequency shifts
caused by the presence of squeezing, whileDv i andDv i

0 are
the more familiar Stark and Lamb shifts, respectively@ex-
plicitly defined in Eq.~21! of Ref. @5~a!##. More details and
explicit derivation formulas for all the parametersh i j , g i j ,
Dv i j , Dv i , andDv i

0 can be found in Ref.@5#.

V. EQUATIONS OF MOTION

Next, we expand Eq.~23! for the various components o
the density matrix, which leads to the following differenti
equations for the atomic populationsr11, r22, andr33:

]r11

]t
5„M ~v2!h212 iDv21…r13e

22id0t1„M* ~v2!h21*

1 iDv21* …r31e
2id0t2N~v1!g2r111„N~v1!11…g2r22

1Qo8~r13e
22i ~d0t1f0!1r31e

2i ~d0t1f0!!, ~24!
k

e

rgy

of

n

e

]r22

]t
52$@M ~v1!h122 iDv12#1@M ~v2!h21

2 iDv21#%r13e
22id0t2$@M* ~v2!h21* 1 iDv21* #

1@M* ~v1!h12* 1 iDv12* #%r31e
2id0t2N~v2!g3r22

1N~v1!g2r112~N~v1!11!g2r22

1@N~v2!11#g3r33, ~25!

and

]r33

]t
5@M ~v1!h122 iDv12#r13e

22id0t1@M* ~v1!h12*

1 iDv12* #r31e
2id0t1N~v2!g3r222„N~v2!11…g3r33

2Qo8~r13e
22i ~d0t1f0!1r31e

2i ~d0t1f0!!, ~26!

while for the atomic coherencesr12, r23, andr13 we obtain

]r12

]t
5„M* ~v2!h21* 1 iDv21* …r32e

2id0t2
1

2
@N~v2!g3

1N~v1!g21„N~v1!11…g2#r121 i @~Dv2
01Dv2!

2~Dv1
01Dv1!#r121Qo8r32e

2i ~d0t1f0!2 ib1Qo8r12,

~27!

]r23

]t
5„M* ~v1!h12* 1 iDv12* …r21e

2id0t2
1

2
$N~v2!g3

1@N~v2!11#g31@N~v1!11#g2%r23

2 i ~Dv2
01Dv2!r232Qo8r21e

2i ~d0t1f0!

2 ib3Qo8r23, ~28!

and
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]r13

]t
52$@M* ~v1!h12* 1 iDv12* #1@M* ~v2!h21*

1 iDv21* #%r22e
2id0t1@M* ~v2!h21* 1 iDv21* #r33e

2id0t

1@M* ~v1!h12* 1 iDv12* #r11e
2id0t2

1

2
@N~v1!g2

1„N~v2!11…g3#r132 i ~Dv1
01Dv1!r131Qo8

3~r332r11!e
2i ~d0t1f0!2 i ~b11b3!Qo8r13. ~29!

Finally, the last three components of the density matrix,r21,
r32, and r31 are given by the complex conjugates of Eq
~27!–~29! since r i j 5r j i* . Also note that due to the trac
condition Tr(r)51, only eight out of the nine components
the density matrixr i j , i , j P$1,2,3%, are independent, which
implies that the differential equations~24!–~26! are not in-
dependent, but satisfy (]r11/]t)1(]r22/]t)1(]r33/]t)
50. Note that these equations reduce to Eq.~3! of Ref. @5~b!#
if the two-photon excitationQo850.

At this point, we will deviate from Ficek and Drum
mond’s notation and introduce a normalization that will c
all our equations into a dimensionless form. In particular
define a new dimensionless timet to be

t5gt, ~30!
.

t
e

whereg[Ag2g3. In addition all frequencies and detuning
of the problem will be normalized tog, beginning with the
following normalized quantities:

d i j [
Dv i j

g
, ~31!

d i
S[

Dv i

g
, ~32!

d i
L[

Dv i
0

g
, ~33!

where d i j are the normalized frequency shifts due to t
squeezing,d i

S are the normalized Stark shifts, andd i
L are the

normalized Lamb shifts. Similarly, we normalize the tw
photon Rabi frequency toQo[Qo8/g and the RO detuning
from the two-photon transition tod0→d0 /g, where, for no-
tational simplicity,d0 will now imply a normalized quantity.
By making these substitutions and change of variables
Eqs. ~24!–~29! we arrive at the following set of couple
differential equations for the independent elements of
density matrix:
]r22

]t
52@M2 i ~d121d21!#r13e

22id0t2@M* 1 i ~d 21* 1d 12* !#r31e
2id0t1aN1~12r222r33!2a~N111!r222

1

a
N2r22

1
1

a
~N211!r33, ~34!

]r33

]t
5S 1

2
M2 id12D r13e

22id0t1S 1

2
M* 1 id 12* D r31e

2id0t1
1

a
N2r222

1

a
~N211!r332Qo@r13e

22i ~d0t1f0!1r31e
2i ~d0t1f0!#,

~35!

]r12

]t
5S 1

2
M* 1 id 12* D r32e

2id0t2
1

2 S N2

1

a
1N1a1~N111!a D r121 i F ~d 2

L1d 2
S!2~d 1

L1d 1
S!2

1

a
QoGr12

1Qor32e
2i ~d0t1f0!, ~36!

]r23

]t
5S 1

2
M* 1 id 12* D r21e

2id0t2
1

2 FN2

1

a
1~N211!

1

a
1~N111!a Gr232 i @~d 2

L1d 2
S!1aQo#r232Qor21e

2i ~d0t1f0!,

~37!

and

]r13

]t
52@M* 1 i ~d 21* 1d 12* !#r22e

2id0t1 i ~d 21* 2d 12* !r33e
2id0t1S 1

2
M* 1 id 12* D ~12r22!e

2id0t2
1

2 FN1a1~N211!
1

aGr13

2 i F ~d 1
L1d 1

S!1S a1
1

a DQoGr131Qo~2r331r2221!e2i ~d0t1f0!. ~38!
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In Eqs. ~34!–~38!, we used the simplified notatio
Ni5N(v i) andM5M (v i) for i 51 and 2, defineda to be

a[S g2

g3
D 1/2

, ~39!

and made the substitutionr11512r222r33.

VI. ATOMIC POPULATIONS

While the above set of coupled differential equatio
~34!–~38! together with the complex conjugates of Eq
~36!–~38! fully describes the dynamics of the atomic syste
in terms of its density matrix, here we are only interested
the atomic populations. It is easy to see that the derivatio
the populations is simplified by the fact that the equations
motion decouple into two groups of linearly independent d
ferential equations. In particular, to solve for the atom
populations we only need to consider the closed set of
ferential equations forr22, r33, r13, andr31. By also ne-
glecting frequency shifts due to the quantum field«̂q ~d L and
d S! which are small corrections as discussed in Ref.@5#, we
solve for the steady-state cases]r22/]t50, ]r33/]t50,
](r13e

22id0t)/]t50, and ](r31e
2id0t)/]t50, and find a

simple algebraic set of equations to describe the popula
dynamics of the atom. These equations are

M r̃131M* r̃13* 5aN12S a12aN11
1

a
N2D r22

1S 1

a
2aN11

1

a
N2D r33, ~40!

S Qoe22if02
1

2
M D r̃131S Qoe2if02

1

2
M* D r̃13*

5
1

a
N2r222

1

a
~N211!r33, ~41!
.

n
of
f

-

f-

n

r̃135
1

A S 2
3

2
M* 1Qoe2if0D r2212

1

A
Qoe2if0r33

1
1

A S 1

2
M* 2Qoe2if0D , ~42!

wherer̃13 is defined to be

r̃13[r13e
22id0t, ~43!

and the quantityA is given by

A[
1

2 FN1a1~N211!
1

a G1 i F2d01S a1
1

a DQoG .
~44!

As we can see, the detuning of the RO field from the tw
photon resonance,d05v02(v13/2), is the only detuning
that enters the solution, as we indicated in Sec. II. Fina
substituting Eq.~42! and its complex conjugate into Eqs
~40! and ~41! results in a set of two equations forr22 and
r33, which after some algebra can be written in the follo
ing forms:

L1r221J1r3351 ~45!

and

L2r221J2r3351. ~46!

For the special case when the coherent-field«̂0 is resonant
with the two-photon transition~i.e., for d050!, and assum-
ing that«̂0 is a weak field so that the Stark shift contributio
„i.e., @a1(1/a)#Qo… can be neglected, the quantitiesL1 ,
J1 , L2 , andJ2 can be shown to be equal to
L15

3uM u222QouM ucosF2
1

2 FN1a1~N211!
1

a G S a12aN11
1

a
N2D

uM u222uM uQocosF2
1

2
aN1FN1a1~N211!

1

a G , ~47!

J15

24QouM ucosF1
1

2 FN1a1~N211!
1

a G S 1

a
2aN11

1

a
N2D

uM u222uM uQocosF2
1

2
aN1FN1a1~N211!

1

a G , ~48!

L25

4Qo
213uM u228QouM ucosF2

1

a FN1a1~N211!
1

a GN2

4Qo
21uM u224QouM ucosF

, ~49!

and

J25

8Qo
224QouM ucosF1

1

a FN1a1~N211!
1

a G~N211!

4Qo
21uM u224QouM ucosF

, ~50!
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while in the more general case whered0Þ0 these expres
sions become much more complicated. In Eqs.~47!–~50! the
phaseF is a combination of the phases of the squeezingfs
and of the ROf0 , and is given by

F52f01fs . ~51!

Hence the solutions for the atomic populationsr22 and r33
are given by

r225
J12J2

L2J12J2L1
~52!

and

r335
L22L1

L2J12J2L1
. ~53!

In the subsequent discussion we concentrate on this sp
case for whichd050 and for which the above solutions a
valid with parameters given by Eqs.~47!–~50!.

Note that from the above solution it is clear that t
atomic populations have a phase-sensitive modulation de
mined through the dependence ofL i andJ i on F, which is
the only phase left in the final answer. Furthermore, we
that all phase-sensitive terms are of the formuM uQocosF,
corresponding to interference between the RO field as
scribed byQo and the quantum field output of the ND-OP
as described by the correlations of the field-quadrature fl
tuations given byM. However, since no cross~interference!
terms betweenN1 , N2 , andQo exist, we conclude that thes
correlation functions of the fields must be incoherent w
each other. Indeed, as shown in Ref.@17#, the signal and idler
outputs of the ND-OPO, when viewed in isolation from ea
other, are described by their total intensitiesN1 and N2 ,
respectively, and correspond to incoherent thermal fields
hence should not be expected to interfere withQo , although
they do contribute to the overall excitation probability b
virtue of the energy they carry. More explicitly, note that f
excitation with thermal fields (M50) the coupling between
r33 andr13, due to the signal and idler fields, vanishes.
contrast, the quantum correlations between the signal
idler fields as given byM drive a nonzero coupling ofr13
with r33, as doesQo , ~assuming the RO and squeezed fie
are phase coherent!, thus giving rise to QI.

Concluding this section, we note that the precise way
which F enters the populations is not completely obvio
from Eqs.~52! and~53!, especially in view of the five addi
tional parameters,~M, N1 , N2 , Qo , anda! and the algebraic
complexity of the solution. As a result, a global presentat
of all the features of our solution is not possible here, so t
we will instead focus on a few cases of special interest.

VII. SQUEEZING OVER A SMALL SOLID ANGLE

Phase-sensitive populations and quantum optical effects

In the discussion so far we have implicitly assumed t
the squeezing illuminates the atom from the full 4p solid
angle. However in a typical experimental setup, as for
ample in Refs.@8# and @10#, the squeezed field will be fo
cused onto the atoms only over a small angle. In that cas
ial
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discussed in Ref.@5#, the parametersN1 , N2 , andM should
be replaced byN1v(u), N2v(u), and Mv(u), where the
function v(u) is given by

v~u!5 1
2 @12 1

4 ~31cos2 u!cosu#, uP~0,p!, ~54!

with u the angle over which squeezing is propagated.
reasonable experimental parameters with focusing ang
u&20°, the values thatv(u) takes are also small
v(u)&0.04, justifying a power expansion of the solutio
given by Eqs.~52! and ~53! with respect to the variable
v(u), which after some algebra reduce to

r22'N1v~u!1O@v2~u!# ~55!

and

r33'@4a2Vo
21~ uM u2a21N1N2!v2~u!

24a2QouM uv~u!cosF#1O@v3~u!#. ~56!

From Eq. ~55!, we see that the excited-state populati
r22 of the u2& level, to the lowest term inv(u), is propor-
tional to the power of the resonant to theu1&→u2& transition
field component, as given by the field’s occupation num
N1 . We also observe thatr22 exhibits no signs of modulation
to this order ofv(u).

However, the populationr33 of the u3& excited state@Eq.
~56!# has a more complex behavior, with separate contri
tions from the coherent reference oscillator field described
Qo which is responsible for the direct 1→3 transition@the
first term in Eq.~56!#; the quantum field described byN1 ,
N2 , andM which is responsible for the stepwise excitatio
1→2→3 @the second term in Eq.~56!#; and finally a cross
term due to quantum interference of the amplitudes of th
two processes@the third term in Eq.~56!#. However, inspec-
tion of this quantum interference term shows that the int
ference occurs between the amplitude for excitation by
RO field, and only part of the total amplitude for excitatio
due to the squeezed fields. In particular, if we defi
Xo[2aQo andXq[AXq1

2 1Xq2
2 @with Xq1[auM uv(u) and

Xq2[AN1N2v(u)# to be the excitation amplitudes due to th
coherent field«̂0 and the quantum field«̂q , respectively, we
see that the excited-state population is given by

r33'~X0
222X0Xq1cosF1Xq1

2 !1Xq2
2 . ~57!

Written in this form,r33 is obviously the result of two quan
tum interfering pathways with amplitudesXo andXq1 , plus a
third incoherent contribution whose amplitude isXq2 . The
physical interpretation of this observation is that excitati
via the RO andM interfere via ther13 coherence, where
excitation viaN1 andN2 proceeds incoherently as discuss
in Sec. VI, so that their contribution to the total excitatio
probability adds incoherently.

Finally, we point out that an experimentally relevant lim
is that of a strong RO field relative to the quantum fie
(uX0u@uXqu), in which case the second term in Eq.~56! be-
comes negligibly small compared to the other two, and he
the result forr33 simplifies to
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r33'4a2Qo
2F12

uM u
Qo

v~u!cosF G . ~58!

From this final expression, we see that by measuring
modulation of the excited-state population, the quantityM
can be inferred, and hence an access is gained to the
classical statistics of the squeezed field as described by
correlation function M (V), where, from Eq. ~7!,
^a(V)a(V8)&5M (V)d(V1V8), with V and V8 defined
as the offset frequencies for the signal and idler fields i
rotating frame atv0 ~i.e., vs5v01V and v i5v02V8!.
Note that the signal and idler fields can have substantial
quency offsets, so thatV/vo is not necessarily a small quan
tity ~in the particular example studied in Ref.@10#, uvs
2v i u/2p.25 THz!. This large frequency offset will none
theless be ‘‘demodulated’’ by the atom which is acting a
nonlinear mixer@12#. We suggest that this capability open
new avenues for the detection of nonclassical correlation
ultrahigh frequency offsets which are beyond the range
conventional homodyne detection, and which we previou
discussed in Ref.@10#. In particular, note that the form o
quadrature amplitudes change from the usual case in q
tum optics for whichV/v0!1 @24,25#.

From an experimental point of view, it is desirable
maximize the signal-to-noise ratio of the observation, wh
in the context of Eq.~58! implies that we would like to
maximize 4a2Qo

2, and simultaneously have thatuM uv(u)
'Qo . This combination guarantees that the QI will have t
largest possible contrast~i.e., 0&r33&8a2Qo

2!, and also that
the maximum of the signal~proportional tor33! will be as
large as possible. Recalling that Eq.~58! has been derived
under the assumption thatXo@Xq.Xq1 , we see that the
above optimization is subject to the constraint 2aQo
@uM uv(u), which, combined with our requirement th
uM uv(u)'Qo , leads to the conclusion that for optimum e
perimental conditions we should have 2a@1, or equiva-
lently Ag2 /g3@0.5. Hence the choice of the atom to use
this particular type of experiment is crucial, since the ac
racy of the observation is ultimately determined by t
atomic decay rates, and in particular by the ratio ofg2 to g3 .
In our experimental work of Ref.@10#, Ag2 /g3.1.29.

Turning now to the size of the modulation in Eq.~58!, we
note that it can be characterized by the visibilityV as defined
by

V[
~r33!max2~r33!min

~r33!max1~r33!min
. ~59!

AssumingN15N2[N, we have that, for quantum squee
ing, N,uM u<AN(N11), where for classical statesuM u
,N. Hence,N/Qo,Vsqueezed<AN(N11)/Qo and Vclassical
<N/Qo for the cases of squeezed and classical field exc
tion, respectively, with fundamentally different function
dependences. In particular, for the case of quantum squ
ing in minimum uncertainty states,Vsqueezed(N→0)
→AN/Qo which has a characteristic square-root depende
on N. Observation of this dependence would constitute
unambiguous quantum effect of the same nature as tha
Ref. @8#. As a matter of fact, this type of experiment h
certain advantages over that of Ref.@8#, where we sought an
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asymptotically linear dependence for the two-photon exc
tion versus the intensity of the incident squeezed vacuum
the case of smallN. In particular, the signal for the exper
ment proposed here, the distinctive functional form ofAN,
could be easier to identify as compared to the linear fu
tional form N, which can have other origins if necessa
precautions are not taken~e.g., the scattered backgroun
from the squeezed field also scales asN!. Last but not least,
the actual data acquisition~photocounting! could be viewed
in the frequency domain, where, as in Ref.@10#, one looks at
the Fourier transform of the photocurrent, in this way redu
ing the background content at the observation frequency
improving the signal-to-noise ratio. Note that for a photo
counting experiment, withQo50 as in Ref.@8#, one detects
a signal given by the termXq

25(uM u2a21N1N2)v2(u) in
Eq. ~56!. By contrast, withQo nonzero, there is ‘‘mixing’’
gain so thatXqX0 ,X0

2@Xq
2. The operational advantage is th

the quantum noise~photon counting associated withX0
2! can

then be dominant over other noises such as dark counts in
photodetectors and scattered light, which were limiting fa
tors in the experiment of Ref.@8#.

VIII. SQUEEZING OVER A LARGE SOLID ANGLE

By increasing the angle of focusing of the squeezed li
onto the atoms, the value ofv(u) increases, and additiona

FIG. 2. Atomic populations~a! r22 and ~b! r33 vs the focusing
angle of squeezingu and the quantum interference angleF plotted
for a[Ag2 /g35A5/3, Qo50.1, N15N250.1, and
uM u5AN(N11).
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terms in the expansion ofv(u) in Eqs.~55! and~56! must be
retained for the solution to be accurate. Figures 2–4 sh
graphs of the full solution for the excited-state populatio
r22 andr33 as a function of the focusing angleu and of the
quantum interference phaseF. Clearly, along theF axis we
observe the 2p-periodic structure~p periodic in the phasefo
of the RO! of the atomic populations, a direct consequen
of quantum interference, while along theu dimension we see
increasingly interesting features that appear as the solid a
of coverage is increased. In particular, the effects of QI
come much more profound for large focusing angles;
example, for certainF in Figs. 3 and 4 it leads to complet
suppression of the two-excited-state populationr22. To
elaborate more on this point, assuming complete coverag
the atoms by the squeezing~i.e.,u5p! it can be shown from
Eqs.~52! and ~53! that for the particular choice ofF5p/2,
Ns5Ni5N5@1/(a221)#, anduM u5AN(N11),

r2250 ~60!

and

r335
1
2 . ~61!

It is noted that this interesting case only occurs for atom
systems with linewidths satisfyingg2.g3 , sinceN has to be
a positive number.

FIG. 3. Atomic populations~a! r22 and ~b! r33 vs the focus-
ing angle of squeezingu and the quantum interference angleF
plotted for a[Ag2 /g35A5/3, Qo50.1, N15N251, and
uM u5AN(N11).
w
s

e

gle
-
r

of

c

The particular choice of parameters for Figs. 2–4 is su
as to model the atomic system studied in Ref.@10#, for which
a'A5/3, andwhere the intensity of the RO wasQo'0.1.
Recall that the theory of Eqs.~52! and ~53! was developed
under the assumption of weak RO fields, for which Sta
shifts caused by these can be neglected and hence we
Qo!1. Nevertheless, inclusion of the Stark shifts due to
Qo field only requires the use of the full expression forA
@defined in Eq.~44!#, which simply changes the definition o
the quantitiesJ1 , J2 , L1 , andL2 in Eqs.~47!–~50!.

Note that in the experiment@10# the focusing angle was
very smallu'0.1 rad, and hence only simple sinusoidal o
cillations were present rather than the more complex in
ference patterns that appear for higher values ofu as shown
on Figs. 2–4. In the examples presented here, we have
sumed a minimum uncertainty state withuM u25N(N11),
whereN[N15N2 , and successive figures have been dra
for increasingly stronger squeezed fields. There, for Fig
we assumeN50.1, for Fig. 3 we useN51, and for Fig. 4 we
useN510. Note thatM andN refer to the squeezed field a
the source, with the factorv(u) accounting for ‘‘alterations’’
in coupling the source to the atoms. We also note that
changing the value ofa, the corresponding graphs will tak
both quantitatively as well as qualitatively different form
than shown in Figs. 2–4.

FIG. 4. Atomic populations~a! r22 and ~b! r33 vs the focusing
angle of squeezingu and the quantum interference angleF plotted
for a[Ag2 /g35A5/3, Qo50.1, N15N2510, and uM u
5AN(N11).
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A. Phase sensitivity of atomic populations and quantum
optical effects

As previously noted, the atomic populationsr22 andr33,
exhibit phase sensitivity via the dependencies expresse
Eqs. ~52! and ~53! on the termQouM ucosF @here we have
set v(u)51#. Henceboth Qo and M must be nonzero in
ee
l
t

in

order to have phase-sensitive atomic populations. In the c
of thermal excitation for whichM50 and the signal and
idler fields are each in a thermal state with occupation nu
ber given byN1 and N2 , respectively, there is no phas
sensitivity, and the atomic populations can be shown to
equal to
ct. In

ion
effects
r22
th 5

~N1a21N211!~N2N11N114Qo
2!

4Qo
2~113N1a213N212a2!1~11N213N2N112N1!~N1a21N211!

~62!

and

r33
th 5

4Qo
2~N1a21N21a2!1~N1a21N211!N2N1

4Qo
2~113N1a213N212a2!1~11N213N2N112N1!~N1a21N211!

. ~63!

Note that by settingQo50 we recover Eqs.~12! and ~13! of Ref. @5~b!#.
Next we turn to the caseMÞ0, which implies phase sensitivity but does not necessarily imply a nonclassical effe

particular, one should compare the minimum uncertainty quantum states for whichuM u25N(N11) with the ‘‘closest’’
classical states, namely, the classical squeezed states for whichuM u25N2 ~here, as above, we make the simplifying assumpt
thatN15N2[N!. In both cases, we have phase-sensitive atomic populations. In order to identify intrinsically quantum
associated with the nonclassical nature of the quantum squeezed vacuum, we concentrate on the region of smallN&1, where
the distinction between the effects of classical and quantum squeezing is maximum. In particular, if we assume thatN!1, we
can expand the solutions for the atomic populationsr22 andr33 as given by Eqs.~52! and ~53! in powers ofN, which leads
to

r22
q 5

1

~112a2!1
1

4Qo
2
F 11

a211

~112a2!1
1

4Qo
2

AN

Qo
cosFG1O~N! ~64!

and

r33
q 5

a2

~112a2!1
1

4Qo
2

F 12

a21
1

4Qo
2

~112a2!1
1

4Qo
2

AN

Qo
cosFG1O~N! ~65!

for the case of excitation with quantum squeezing. For the excitation with classical squeezing, we obtain

r22
cl 5

1

~112a2!1
1

4Qo
2
F 11

~11a2!

~112a2!1
1

4Qo
2

N

Qo
cosFG1

32Qo
4~a421!18Qo

2~a221!11

16Qo
4S ~112a2!1

1

4Qo
2D N1O~N2! ~66!

and

r33
cl 5

a2

~112a2!1
1

4Qo
2

F 12

a21
1

4Qo
2

~112a2!1
1

4Qo
2

N

Qo
cosFG2

4Qo
2~a421!1~a413a221!

4Qo
2S ~112a2!1

1

4Qo
2D 2 N1O~N2!. ~67!
ize

um
Equations ~64!–~67! show that for small N, phase-
sensitive modulation onsets for the case of quantum squ
ing proportionally toAN/Qo , while for the case of classica
squeezing the onset of the modulation is proportional
N/Qo , which is of higher order inN. This again raises the
z-

o

issue of the functional dependance of the modulation s
versusN. The distinction between the functional formsAN
and N is apparently an unambiguous signature of quant
effects.

For completeness, we note that in the limitN15N25N
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!1, expansions of Eqs.~62! and ~63!, for excitation with
thermal fields, results in

r22
th 5

1

~112a2!1
1

4Qo
2

1
32Qo

4~a421!18Qo
2~a221!11

16Qo
4S ~112a2!1

1

4Qo
2D 2 N

1O~N2! ~68!

and

FIG. 5. Atomic populations:~ ! solid lines are forr22;
~• • • •! dotted lines are forr33. Here a[Ag2 /g35A1/10 and
Qo50.1. N50.1 for (asq) and (acl), N51 for (bsq) and (bcl), and
N510 for (csq) and (ccl). Two cases of excitation with quantum
squeezed light@ uM u5AN(N11)# @(asq), (bsq), and (csq)# and clas-
sical squeezed light (uM u5N) @(acl), (bcl), and (ccl)# have been
considered.

FIG. 6. Atomic populations:~ ! solid lines are forr22;
~• • • •! dotted lines are forr33. Here a[Ag2 /g35A5/3 and
Qo50.1. N50.1 for (asq) and (acl), N51 for (bsq) and (bcl); and
N510 for (csq) and (ccl). Two cases of excitation with quantum
squeezed light@ uM u5AN(N11)# @(asq), (bsq), and (csq)# and clas-
sical squeezed light (uM u5N) @(acl), (bcl), and (ccl)# have been
considered.
r33
th 5

a2

~112a2!1
1

4Qo
2

2
4Qo

2~a421!1~a413a221!

4Qo
2S ~112a2!1

1

4Qo
2D 2 N

1O~N2!, ~69!

which contain the same terms asr22
cl andr33

cl as in Eqs.~66!
and ~67!, but without the modulation.

Figures 5–7 show examples of the quantum interfere
patterns that are predicted from our theory@Eqs. ~52! and
~53!# ~without the assumption thatN!1! for an extensive se
of parameters. For each figure we choose a different va
for a, with a5A1/10 for Fig. 5, a5A5/3 for Fig. 6, and
a5A10/1 for Fig. 7. According to the definition ofa @Eq.
~39!#, we note that these values correspond to the ratios
the atomic linewidths equal tog2 /g350.1, 1.67, and 10 for
Figs. 5, 6, and 7, respectively. With other parameters k
the same, it is clear that in the first case withg2 /g350.1 the
atomic population of the second excited level would be
general greater than the atomic population of the third
cited level, r22.r33, while in the third example with
g2 /g3510 the opposite must be true, as is evident fro
Figs. 7. In addition, each figure has been plotted for th
different values ofN, while Qo50.1 has been kept constan
throughout. For each of these cases we show the ato
populationsr22 andr33 for excitation with minimum uncer-
tainty quantum squeezinguM u25N(N11) and for classical
squeezinguM u25N2.

B. Quantum optical effects in phase-sensitive inversion

Another interesting feature of the atomic system un
consideration is the fact that it exhibits phase-sensitive inv

FIG. 7. Atomic populations:~ ! solid lines are forr22;
~• • • •! dotted lines are forr33. Here a[Ag2 /g35A10/1 and
Qo50.1. N50.1 for (asq) and (acl), N51 for (bsq) and (bcl), and
N510 for (csq) and (ccl). Two cases of excitation with quantum
squeezed light@ uM u5AN(N11)# @(asq), (bsq), and (csq)# and clas-
sical squeezed light (uM u5N) @(acl), (bcl), and (ccl)# have been
considered.
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sion. This subject is of particular interest because, as in R
@28#, the phase sensitivity is induced by squeezed light.
the purposes of the present discussion we find it conven
to define a measure of the inversion between theu i & and u j &
states in terms of the ratio of the populationsr i i andr j j in
these two states according to
fl

in
ic
o

on
f.
r
nt

I i j [
r i i

r j j
. ~70!

Once more making the simplified assumption th
N15N2[N leads to the following expression for the pop
lation inversion between the three- and two-excited level
for the
I 32[
r33

r22
5

S 4
N~a211!1a2

N~a211!11
2C2sin2F DQo

22aCQocosF2uM u2
N~a211!2a2

N~a211!11
1N2

~42C2sin2F!Qo
21N~N11!2uM u2 , ~71!

where

C[
4auM u

N~a211!11
. ~72!

This expression takes fundamentally different forms depending on the statistics of the signal and idler fields used
excitation. In particular, for minimum uncertainty squeezed states,uM u25N(N11), we find

I 32
q 5

S 4
N~a211!1a2

N~a211!11
2Cq

2sin2F DQo
22aCqQocosF1

Na2

N~a211!11

~42Cq
2sin2F!Qo

2 , ~73!

while for classically squeezed statesuM u25N2 we have

I 32
cl 5

S 4
N~a211!1a2

N~a211!11
2Ccl

2sin2F DQo
22aCclQocosF1

N2~a211!

N~a211!11

~42Ccl
2sin2F!Qo

21N
, ~74!
.

for

Eq.

ar-
and for thermal statesuM u250 we obtain

I 32
th 5

4
N~a211!1a2

N~a211!11
Qo

21N2

4Qo
21N~N11!

. ~75!

Here, from Eq.~72!, Cq andCcl are defined to be

Cq[
4aAN~N11!

N~a211!11
~76!

and

Ccl[
4aN

N~a211!11
. ~77!

Note that in the cases described above, the mean photon
as given byN is the same, with only the form ofM changing
from one expression to the other. Also observe that the
version is phase sensitive for both quantum and class
squeezed states, but not for thermal fields. As before, in
der to differentiate between classicaluM u5N and quantum
uM u5AN(N11) effects, we must concentrate on the regi
ux

-
al
r-

where the difference is the largest, which is for smallN
&1. AssumingN!1 andN,Qo , allows us to expand Eqs
~73! and ~74! in powers ofN, leading to

I 32
q 5a22a2

AN

Qo
cosF1O~N! ~78!

for the case of excitation with quantum squeezing, while
excitation with classical squeezing we obtain that

I 32
cl 5a21S 12a42

a2

4Qo
2DN2a2

N

Qo
cosF1O~N2!.

~79!

Again, for the purposes of completeness, expansion of
~75! gives

I 32
th 5a21S 12a42

a2

4Qo
2DN1O~N2! ~80!

for the case of thermal fields.
The ratio of the atomic linewidthsa plays a key role in

the determination of the values the inversion takes. In p
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ticular, if we turn off the quantum~or classical! field ~i.e., set
N5M50! then I 32

q 5I 32
cl 5I 32

th 5a2, which, when combined
with the definition of the inversionI 325r33/r22 and the defi-
nition of a5Ag2 /g3, leads tor33g35r22g2 . This is what
we would naturally expect from the atomic rates of spon
neous emission when the system is driven only by the
field Qo .

Returning now to the discussion of how to distingui
between intrinsically quantum versus classical effects,
observe that Eq.~78! predicts that even for arbitrarily sma
driving fields ~i.e., N!1 and Qo!1!, and as long as
AN/Qo'1, we can obtain phase-sensitive inversion that v
ies between the extreme values 0<I 32

q <2a2. In other words,
the correlations of the fluctuations of the nonclassical fi
«̂q as expressed byM, and the QI of the excitation ampli
tudes, can lead to a complete suppression of the excited-
population (I 32

q 50), or, in the opposite extreme, to popul
tion inversion twice as large as the usual inversion (I 32

q

52a2). Hence the effect of phase-sensitive inversion can
viewed as a modification of the relative strength of the sp
taneous emission rates for the 3→2 and 2→1 transitions,
where, for complete suppression of the excited state pop
tion, a→aeff50; however in the opposite extremea→aeff

5&a ~recall thata5Ag2 /g3!. Similar effects of QI and
modification of the effective decay rates have been ex
sively studied in the context of lasing without inversion@26#.
However, in our case we have a ‘‘new player’’ on the sce
namely, the quantum statistics of the exciting fields as
scribed by the correlations of the quadrature fluctuati
given byM.

The above qualitative observations, although not uniq
to quantum squeezing@since Eq.~79! implies that the inver-
sion modulates above and below the valuea2 even with
classical squeezing~i.e., M5N!#, do, however, contain
quantitatively distinctive differences between the cases
excitation with classical versus quantum squeezing. In p
ticular, Eq.~79! implies that in the same limiting case as w
have considered above,~i.e., N!1 andQo!1!, and assum-
ing that the value ofa is not very large~i.e., a!1/Qo!, the
population inversion between the three- and two-exci
states is roughly constant,I 32

cl .a2@12(N/4Qo
2)#' 3

4 a2 ~as-
suming as above thatAN/Qo'1!. Hence we have a very
strong prediction that will distinguish between intrinsica
quantum versus classical effects in a much more profo
way than the difference in functional form that was me
tioned above, or that which was studied in Ref.@8#, namely,
that excitation of the atoms by a combination of a very we
quantum field«̂q(M5AN(N11),N!1) and a very weak
classical RO field«̂0(Qo!1) will lead to phase-sensitive
inversion between the three- and two-excited levels t
could range between 0 and 2a2. This is in sharp contrast to
excitation by classical squeezed fields, for which the ph
sensitivity of the inversion disappears, and which, within
limits of this calculation, will have a value roughly equal
3
4 a2. The price to pay is that we have limited ourselves
very weak excitation fields, and hence the excited-s
populations which ultimately determine the size of the sig
to be observed are also very weak, which reduces the sig
to-noise ratio and makes the experiment more difficult. N
ertheless, this is a good technique for observing intrinsic
-
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quantum effects associated with the interaction of noncla
cal states of the electromagnetic field with atoms, which v
distinctively distinguishes between classical and quantum
fects, and which persists even for very small focusing ang
of the squeezed vacuum onto the atoms@N→Nv(u)!1#.

For completeness, we note that for the case of ther
excitation the population inversion in the above limit
weak fields reduces toI 32

th .a2@12(N/4Q2)#, which is the
same limit as for classical squeezing. In other words, the c
of very weak classical squeezed fields resembles the cas
thermal fields, and loses its squeezing character~scales asN!,
while as we have seen that in the case of quantum squee
the effects of squeezing persist~scale asAN!.

IX. CONCLUSION

In this paper we have presented a solution based on
quantum master equation for the problem of two-photon
citation of a three-level atom by a combination of the sign
and idler output fields from a ND-OPO and a strong coher
RO field. As a result of the combined excitation, and due
the presence of multiple excitation pathways, the atom
populations exhibit phase sensitivity to the relative phase
the fields, and in particular to the asymmetric distribution
fluctuations for a squeezed state. We have derived ana
expressions for the excited-state populationsr22 and r33,
and have analyzed several examples of quantum interfer
in the system including the effects of finite angle of focusi
of the squeezed field onto the atoms, which is a crucial
perimental constraint. Particular emphasis was given to id
tifying intrinsically quantum effects associated with the no
classical nature of the squeezed vacuum, with spec
comparison to the closest classical analog of quan
squeezing, for which similar qualitative but different quan
tative effects can be observed. Additional comparisons to
simpler case where the signal and idler fields are in a ther
state have been presented. Finally, we have analyzed p
lation inversion in our system, which was shown to be ph
sensitive due to QI, and demonstrated that for weak exc
tion there are distinct differences between excitation w
quantum versus classical squeezing.

One notable feature of the class of nonclassical phen
ena that we have considered here is that they manifes
small intensities of the squeezed field, and in fact they
come more pronounced as this intensity decreases. This
contrast with a different class of phenomena~such as sub-
natural line narrowing@1#! for which the nonclassical natur
of the effects associated with the interaction of nonclass
states of the electromagnetic field with atoms becomes m
pronounced for strong intensities of the squeezed light. Ho
ever, contrary to the latter case, the phenomena we h
discussed in this paper are persistent even for very sm
coupling efficiencies of the squeezed light with the atom
This is a crucial feature from an experimentalist point
view, and the observation of any of the nonclassical effe
discussed in the literature almost always rely on the ability
realize these effects with very small coupling efficiencie
Therefore, effects which persist independently of coupl
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efficiency are extremely interesting, and so far have been
only type of effects that have been observed@8#. Notice that
as the coupling efficiency increases, which in our case
equivalent tov(u)→1, effects of the second class will als
start to manifest themselves, and one needs to take into
count more carefully the full expression ofr33, as well as to
consider the frequency spectra, in order to unveil additio
le

n

ev

tt

s

he

is

c-

al

signatures of the nonclassical interaction of the squee
field with the atoms.
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