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Quantum interference in two-photon excitation with squeezed and coherent fields
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Two-photon excitation of a three-level atom in a ladder configuratior 1-3) by simultaneous illumi-
nation with fields in squeezed vacuum and coherent states results in quantum interference for the excitation
process. The particular configuration considered here is one for which the signal and idler output fields of a
subthreshold nondegenerate optical parametric oscillator are in resonance with the two-stepwise dipole atomic
transitions (1 2,2—3), while a “reference oscillator” field is in two-photon resonance with the quadrupole
transition (1=3). In an extension of the work of Ficek and Drummdithys. Rev. A 43, 6247199))], a
theoretical formulation based on the full quantum master equation for the problem is presented. The combined
effects of quantum interference and the nonclassical character of the squeezed state are investigated, and offer
the potential for a new detection strategy for quantum fluctuations of the electromagnetic field with ultrahigh
frequencieg10's—100's TH2. Based on the theory developed, we analyze quantum interference in excitation
in several special cases relevant to experimental realizations, including the effects of a small focusing angle of
the squeezing onto the atoms, and unusual population inversions. Special emphasis is given to identifying
intrinsically quantum optical field effects versus classical field effects. Procedures that could distinguish be-
tween the twa(i.e., classical and nonclassigalre suggestedS1050-29478)06109-3

PACS numbg(s): 42.50.Ct, 42.50.Dv, 32.80.Wr, 42.50.Hz

I. INTRODUCTION convincingly demonstrate a sensitivity to the fact that the
excitation field was nonclassical.

The interaction of squeezed light with atoms has been To investigate two-photon excitation with squeezed light
extensively studied theoretically over the past deddgg).  further, we carried out yet another experiment beyond that
The phenomena revealed by these studies can be broadigscribed in Ref{8]. Here the objective was to explore ex-
divided into two categories, according to the efficiency withPlicitly the issue of the phase sensitivity of the excitation
which the squeezed field and an atom are coupled. In the firgifocess, where now the quadrature amplitug&(}), de-
case, efficient coupling of atoms to the nonclassical reservoiined by
provided by the squeezed fields leads to a modification of the . A .
radiative processes of the atoms, such as modified atomic Xo(Q)=a(Q)e ""+a"(Q)e'’, (1)
decay rates and altered atomic saturation. In the second case
of inefficient coupling, perhaps surprisingly, the manifestly have appreciable Fourier content for sigagland idler w;
quantum fluctuations of the squeezed state can neverthelesquenciesvg ;= wo* (), offset by /27=12.5 THz from
drive atomic populations in ways not possible if the statisticshe center frequency,. This frequency span is well beyond
of the fields were classical. Examples of the latter case arthe detection capabilities of conventional homodyne photo-
two-photon excitatiorf3—5], photon statistics in resonance detection schemes, so that a new technique is required for
fluorescencd6,7], and squeezing of the collective atomic investigation of such high frequendgw) correlations. The
spin[27]. In contrast to the numerous theoretical advances invhole approach in Ref10] is an attempt to develop such a
the area, experimental work has been proven to be extremelyew detection strategy, whereby the atom itself is employed
difficult with only one experimenit8] having demonstrated a as a nonlinear mixing element for the demodulation of the
purely nonclassical effect of the second category. In particuhigh-frequency fluctuations of the field.
lar, in our experiment of Ref8], a two-photon transition in Briefly reviewing the principles of the experiment of Ref.
a three-level atom (42— 3) was excited by the correlated [10], we recall that it is based on the combination of two-
signal and idler fields of a subthreshold nondegenerate optphoton nonclassical excitation as studied in RR&f. together
cal parametric oscillator. In striking contrast to the classicaWwith coherent excitation leading to quantum interference
quadratic dependance, the excited-state populatignvas  (QI) as described in Refl12]. More specifically, the se-
observed to exhibit a slope less than 2 with respect to thquence 1-2—3 corresponding to the $,F=4
incident intensity; in fact observations with a slope as low as—6P3,F'=5—6Ds5,F"=6 transition in atomic Cs was ex-
1.3 were recorded. An additional attempt in our group tocited by the signal and idler output fields from a subthreshold
couple squeezed light and atoms within the setting of cavityjondegenerate optical parametric oscillatbdtD-OPO at
QED [9] was sensitive only to the fact that the squeezedrequencies ¢, ;) corresponding to the resonance frequen-
states have an asymmetric phase-space distribution for thees (w,q1,w3,) of the 6S;,F=4—6P5,F' =5 and
fluctuations of the quadrature-field amplitudes, but did not6P;,F'=5—6D;, F"=6 transitions, respectively. At the

same time, the atom was illuminated with a coherent “refer-
ence oscillator”’(RO) field of frequencywgg, resonant with
*Permanent address: Institute of Physics and Astronomy, Aarhuhe two-photon transition frequency corresponding to half
University, Aarhus C DK-8000, Denmark. that of the 65,,,F =4—6Dg,F"=6 transition,wro= w3/2.
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Hence, the excited state 3 could be reached via two path- T B>
ways, i.e., either via two dipole stepwise absorptions from . — ®q + 5

the signal and idler fields, resulting in the-12 and 2-3 : M3y O3 3
transitions, respectively, or via quadrupole, two-photon ab- T’ e

sorption from the RO field, which leads to the direct-B ®o=— + 3o Ta 2>
transition. The amplitudes for these two indistinguishable ex- 2_> ————— - (S’
citation pathways interfere coherently to result in QI which

can manifest itself as a modulation of the excited-state popu- Og= D1+ 3s (Eﬂ 21 (J Y2
lation ps3 as the phases of the various excitation fields are — 2

varied. As observed and analyzed in H&D], this effect can f)

lead to phase-sensitive detection of squeezing for signal and 1>

idler fields separated by hundreds of THz, where in RE9]

the correlated signal and idler fields were separated by 25 FI.G. 1.' Schematic representation of the atomic system under
THz. Implicit in this discussion is that the excitation fields consideration.

are phase coherent over the relevant relaxation finower . ] . )

the other which is a necessary condition for the preservatioffkeén to be in a coherent state with eigenvalue given by
of QL. If the excitation lasers were incoherent with each othelfo= €08 '(“0'“ %), where ¢, is the amplitude andp, the
over T, the total excitation probability would simply be the SPatial phase of the field at the position of the atom. We wiill

incoherent sum of the excitation probabilities of each pathlefer toe, as the RO. Second, the fielq| is taken to be the
way of excitation. output of a subthreshold ND-OPO. As us{iBB], the output

In the present paper, our goal is to extend the simpl@f the ND-OPO consists of two energy-carrying sidebands,
theoretical picture given in Ref10], and to provide a gen- Nhamely, the signal and idler fields with spectral distributions
eral theoretical foundation for these types of experimentsgentered at frequenciess;=wo*=A’, respectively, and
We also wish to explore possible extensions of our workplaced symmetrically around the frequensy. A real ND-
with emphasis on the nonclassical properties of the squeez€dPO can generate many such pairs of sidebands, but, due to
fields in contrast to our previous theoretical analysis in Refatomic resonance conditions described below, only a single
[11] which deals with all-coherent-state excitation. To thispair is relevant for the problem considered here. For the pur-
end, in Sec. Il we describe in more detail the radiation sourc@oses of the present analygend as is at the core of our
and atomic system under consideration, and then in Sec. IBxperiment[10]) we assume that the frequenay, of the
present the Hamiltonian formulation of our problem. By coherent fielck, is the same as that of the central frequency
drawing heavily on the prior analysis of R¢g], in Sec. IV o, for the signal and idler fieldsefy= w(). Therefore, the
we derive the master equation for the atom illuminated withelectromagnetic field illuminating the atoms consists of three
signal, idler, and reference oscillator fields, from which themain frequency components centeredegt, w =wy+A’,
Bloch equations that determine the dynamical evolution oftind w;=wo—A’. The detunings of these components of the
the system follow in Sec. V. These equations are solved fodriving field from the atomic eigenfrequencies are defined by
the atomic populations in steady state in Sec. VI. Section VII§,, §; and d;:
is devoted to a discussion of the effects of a small solid angle

over which the squeezed fields are focused onto the atom. w31

Section VIII analyzes the effects of a large solid angle on the Wo= 5" + o,

phase-sensitive features of the atomic populations and popu-

lation inversions with an emphasis on distinguishing between W= W+ B, )

guantum and classical effects. Finally, we end with conclu-
sions in Sec. IX. 0= w0zt b .

Sincewg;=wp+A’, we have that
Il. PHYSICAL SYSTEM
S8s= g+ (A" =A),
The basic structure of the atomic system under consider- )
ation is shown on Fig. 1. A three-level atom with eigenstates 8;=3580—(A"—A).
|1), |2), and|3) is in a ladder configuration with eigenfre-
quencies{w,;,wz,, w3} defined by wij=(E;—E;)/A and In the subsequent analysis, we assume gt w142, i.e.,
full width at half maximum atomic decay rates given py  J; is small, and tha~A’, with the residual detuningég
and y; for the transitions2)—|1) and|3)—|2), respec- andd;, on the order of the atomic linewidths/{,ys). We
tively. In addition, we define A=|[(w3))/2]— w3y  also take the quantum fielg}, to be a broadband field with
=|[(w31)/2]— w4 to characterize the degree of nondegen-respect to the atomic linewidths/{,y3), so thatd, and &,
eracy (i.e., A is the frequency distance of the intermediatedo not enter the description of the dynamics of the system.
excited state 2 from half the two-photon eigenfrequency ofThis assumption allows us to avoid the complexity of finite
the atom; see Fig.)1 bandwidth squeezed excitatih4]. However, the coherent
This model atom is assumed to be illuminated by the fieldoart of the total excitation field, is by definition narrow-
with positive frequency component=g,+ éq, which is  band, so that the detuning, will be important in the sys-
composed of the following two parts: First, the fiedg is  tem’s dynamics.
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Finally we describe the quantum fie&jl(t) in the time 4 2 5
domain via the creation and annihilation operat@¢®) and P3P (Q)=€g 1+ 2 Co9240+ bs) | +2egN(Q),
a'(w) in frequency domain, related to each other as usual by 0 (10)

q(t) =S V(ho'l2¢V)a(w')e'* 'dw’. The operatoré and
a' satisfy the commutation relation where

Meff

[aT(w).a(0)]=8w-o), (4) @(Q)E(l/zw)fe‘mD(r)dr

and the nonclassical properties of the quantum ffg}d:an

be summarized in terms of the expectation values of the cor@nd

relation functions ofa anda’ which are taken to be of the

following form for the output of a ND-OPQ5]: MeﬁEJ IM(Q")|dQ’.

At A I\\ — PN
(@'(w)a(e))=N(w)d(o-o’) ®) From this expression for the excited-state populaggs it

is obvious thatps3 has an oscillating component whose ori-
gin is QIl. Moreover, by monitoring this oscillating term one
(A(0)A(0"))=M(0)5(2wp— 0— ') obtains a handle oM . which is a measure of the nonclas-
sical correlations of the ND-OPO output. However, as ex-
=M(2wy— w)5(2wg—w—w"). (6) plained in Ref[10], in order to claim that nonclassical ob-
servations between the signal and idler outputs of the ND-
The functionsN(w) andM (w) are slowly varying functions OPO have been observed, one must show that the quantum
of frequencyw, peaked at the signal and idler frequencigs  squeezing conditioM (w)|?>N(w)N(2wy— ) is satis-
and w;, and of width given in terms of thécold-cavity  fied. Unfortunately, the detection d&fl .4 using QI lacks a
linewidth of the ND-OPO. Furthermore, as shown in Ref.direct comparison ol with M, although alternative methods
[5], have been proposdda].
For completeness, we note that in the usual homodyne
IM(0)[*<N(0)N(2wo— o) +min[N(»),N(2wy— )], detection of squeezing the Fourier transform of the photocur-
(7)  rentis given by

and

with the complex numbeM written as 2Ngft
_ V(Q)=€jl 1+ —— | +2€3[N(Q)
M(w)=|M(w)[€'*, ® €0
+[M(Q)[cog2¢o+ ¢s)], 11

where ¢, is the phase of the squeezed vacuum. We define

quantum squeezing by the condition|M(w)|?  whereNy=/N(Q')dQ’. The second term in this case is pro-

>N(w)N(2wo— ). Note that for|M(w)|=0 the statistics portional to the usual definition of the spectrum of squeezing

of the field become indistinguishable from a thermal sourcg13,16,17 given by S(Q,8)=2[N(Q)+|M(Q)|cos¥],

(i.e., a phase-symmetric distribution of fluctuations for thewhich takes negative values only if the quantum squeezing

guadrature amplitudes of the figldAlso, we will define a  condition is satisfied.

“classical” squeezed state to be such tha&|(w)|? In summary, comparing the methods of QI and the tradi-

<N(w)N(2wo— ) (i.e., an asymmetric phase-space distri-tional homodyne detection of squeezing, we emphasize that

bution for the quadrature amplitudes, but with a lower boundyhile QI allows access to nonclassical correlations between

set by the vacuum fluctuations for the “quiet” quadrafure fields that differ in frequency by 10’s—100’s of THuia M),

In Sec. VI, the distinction between the cases of quantumhe validation of the condition for quantum squeezing is not

squeezing, classical squeezing, and thermal states will bgo trivial. On the other hand while the usual homodyne

come important when we try to infer the nonclassical statismethod automatically compardés with N, it cannot detect

tics of the exciting fields from the properties of the atomic correlations between fields that are separated in frequency by

excitation, and hence identify intrinsically quantum effects inmore than few tens of GHz, because of the technical limita-

the atomic processes. tions of the speed of available photodetectors. More details
Before proceeding with the full-theory analysis it is worth about this issue can be found in REL0].

recalling the simplified analysis given in RdfL0], which

helps in motivating the subsequent discussion. There, the IIl. HAMILTONIAN EORMULATION

starting point was Mollow's|15] expression for the two-

photon excitation rate, given in terms of the fourth-order Our system is similar to the one studied by Ficek and

correlation functiorD(7) of the excitation fielck, Drummond in Ref[5], with the important addition of the
RO field ;. We have therefore chosen the master equation
D(7)=(e"(t+ et (t+r)e(t)e(t)). (9)  of Ref.[5] as our starting point. Since the bulk of the for-

malism used here to deal with the quantum fields is drawn
Substitutinge (t)=&,+ £, taking the Fourier transform of from Ref.[5], we will briefly explain the origin of and nota-
D(7), and using the relations given by E@, (5), and(6), tions for the various terms. Note, however, that the addition
leads to of the classical RO field as part of the total excitation field,
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leads to a rich new phenomenology arising from quantunfor each of the atomic eigenstates=1, 2, and 3Hg is the
interference of excitation pathways, which is a new arendree-field Hamiltonian given by

within the context of the interaction of squeezed light with

atoms.
With this in mind, we begin by writing the total Hamil-
tonianH,,; of the system as

Higr=Ha+He+Hiy, (12

szhf a'(w)a(w)w do, (14)

whereH , describes the free evolution of atomic operatorsWhere the coherent state fielg) has been ignored i

and is given by

HA|m>:Em|m>!

Hint:iﬁf dw‘

13

s

2 gij(®)S;

IEall

whereg;; are coupling coefficients anf§; atomic operators
defined byS;;=[i)(j|, i,j=1, 2, and 3. As usual these op-
erators satisfy the commutation relation

[Sij +Spql = Siq0jp — Sp g »

where &;; is the Kroniger delta function. Note that in the
electric-dipole approximatiory;s=0. The paramete®, is a
“Rabi-like” frequency that takes the form

(16)

Q,_Mlﬂzfé
°" 4AR%

7

where u, and u, are the dipole moments that couple the

|1)<|2) and|2)«|3) transitions, respectively.

Before proceeding further let us take a moment to exam-
ine Eqg.(15) beginning with the first term which describes the

interaction of the atoms with the quantum fiélgand which
has been extensively discussed in R81. This first term is
responsible for driving theél)«|2) and |2)«|3) atomic

a(w)—H.c.] —ihQy

since it contributes only & number to the overall energy.
The interaction of the field with the atom is described by
Hi, defined to be

[(Szie 2%t d0)— S, 1209t #0)) 4 ( B3S55— B1S11)], (15)

tion, the usual Rabi frequendy«er has been replaced with
the two-photon analog given b@.«=e?r? (note that, for a
three-level system(r),4r),3={(r?);9.

This form of an effective Hamiltonian has been exten-
sively used for the study of two-photon absorption by many
authors[19-27, and is valid under the assumption that the
three-level atom is far from degenerd23] (i.e., w;;>A
> 6,), which we assume to be the case in our work as well.
The parameters3; and B; quantify the strength of the
intensity-dependent Stark shifts of ttie and|3) levels, re-
spectively, due to the virtual transition to the intermediate
(|2)) level [22], and can be shown from RdR0] [Eq. (63)]
and the definition o/ to be related to each other by

L ledl E) "
Bz  |ml Y2|
where the last equality follows from E¢R1) in Ref. [5].

B1= (18

IV. MASTER EQUATION

transitions. To account for the additional coherent-state com- To simplify the subsequent analysis, we rewrite the total

ponent of the fielt,, we add to the interaction Hamiltonian
the second term of Eq15), which is an effective Hamil-

tonian of the form analogous to that for the semiclassical
whereHgp is the part of the Hamiltonian analyzed by Ficek

interaction of a coherent field with an atomic dipdtEs].

HamiltonianH,,; as being composed of two parts, namely,

Hiot=Hept+Ho, (19

However, because this term describes a two-photon transand Drummond in Ref.5] given by

HFD:HA+ HF+|hJ d(,()[
while Hg is an “effectivé€ interaction Hamiltonian given by
Hoz -

and describes the addition of the RO driving fielgl

s

i1Qu[(Szye™ 2 (%0t %0 — S, 021 (%0t o)) 4 ( B3S55— 815111,

E gij(@)S;

IEall

(20

a(w)— H.C.],

(21)

From Eq.(19), we derive a master equation for the atom, composed of two parts,
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J J ) )
(9_{[): (7?) — Qo[ (Szie™ 2?0t P0) — 5, £21(%0!F $0)) —i( B3S33— B1S11),p], (22
FD

with the first term @p/dt)gp being identical to that analyzed by Ficek and Drummond in R&f.and the second describing
the interaction of the atom with the additiong} field. Furthermore, we adopt the simplified notation of H&l, namely,
S,_=(S+)TESi i+1 andwj=w;;1;. Then, expanding Eq22) results in the following expression:

2

=—|21[M(w.)nu iAw;j1(S'pS —S S p+S pS" —pS' S )elleitem2wot— ,2 [M* ()7}, +iAw}]

dp

2

X(STpS] =SS S pST —pS S e I 3 i)y, (b ST+ ST p =257 pS el

2 2
~ &, [N+ 117 (pS S + 57 p- 28] p8Ne =i 2, (Aw)+Aw)((i)ilp—pli)i])

— Qi[(Sqp—pSz)e™ #2090~ (Sy5p— pS;5) € °0 " Y] +iQ [ B3(Szap— pSaa) — B1(S1ap — pS10)]s (23

where the first five terms correspond to the results of Ficek gp,,

and Drummond of Ref[5(a)], Eq. (20), while the last two - —{[M(w1) n1o— 1A wio]+[M(w2) 721

terms are due t@,. In the above equatioty;; , i=1 and 2,

are equal to half the radiative decay constants for the —iAwpy]}pre 2% —{[M* (w,) ni+iAws]
|1)—|2) and |2)—|3) transitions (hence y,;= y,/2 and _

v22=v3/2). The additional damping terms;, and y,; [as +[M* (@1) 77, i AwT,]} p3e” %' — N(w2) y3p22

defined in Eq(21) of Ref.[5(a)]] are in general nonzero, but
because Weqassume that the atom hzgs nonequidistant energy TN(@1) y2p11~ (N(@1) + 1) v2p22

levels, with A large, these terms are rapidly oscillating and +[N(w5) +1]y3p33, (25)
may be dropped. In the above equation, the presence of

squeezing and the fact thit=(aa)#0 introduce the addi- 4

tional damping constants;; [as defined in Eq(21) of Ref.
[5(@]] which are similar to the more traditiona; . How-
ever, relative toy;;, the situation is reversed fom;; , for
which only %4, and 75, contribute, while the termg,; and

77 €nter in fast oscillating terms that may be neglected. In Ak 2i 5,5t _
addition, it can be shown from Ref5] that 7,= 75, TIA@Tlp3e™ 0 Nwa) yapzo— (N(w2) +1)73ps3
=1/v,3, where any nonzero phase associated withhas —QUl(prge” 20t +d0) 4 o e2i(%0tF do)y, (26)
been absorbed without loss of generality into the phase of the

complex numbeM. The termsAw;; are frequency shifts  \yhile for the atomic coherences.,, pys, andpy; we obtain
caused by the presence of squeezing, whilg andAw are

the more familiar Stark and Lamb shifts, respectwﬁy Ip1r 1

plicitly defined in Eq.(21) of Ref.[5(a)]]. More details and _t:(M*(w2)7,§1+mw§1)p3232'50t_ > [N(w5) Y3

dp33 _
ot —==[M(w1) 712~ 1Awiolp1e” 2%+ [M* (wq) 77,

explicit derivation formulas for all the parametess , v;;, d
Awjj, Aw;, andAw can be found in Ref.5]. +N(wy) y2+(N(w1)+l)yz]plz-l-i[(Awg-Fsz)
—(Aw)+Aw1)]p1o+ Qhpae?® %040 —iB1Qlp1y,
V. EQUATIONS OF MOTION 27)

Next, we expand Eq.23) for the various components of
the density matrix, which leads to the following differential

; . ’ P23
equations for the atomic populatiops;, p,», andpazs:

_ o
it —=(M* (wl)ﬂfsz'Aw’fz)Pnez'%t_E{N(wz)ys

+[N(wz) +1]y3+[N(w1) + 1] y2}p2s

P11 .
(M ((1)2) 21— i A('021)pl3e 2 50t+ (M ((1)2) 7]21 - | (Awg-f- sz)pzs_ Qé,leeZI(&OtJr bo)

o
+iAw3)p31e” ' = N(w1) y2p11t+ (N(01) + 1) y2p22 ~1B3Qop2s3 (28)

+Q((prge” 2%t %0l 4 p 2! (%0tH do)) (24  and



PRA 59 QUANTUM INTERFERENCE IN TWO-PHOT® . . . 681

dp13 . where y=/v,v3. In addition all frequencies and detunings
ot = IM*(w) MotiAel]+[M* (w2) 75, of the problem will be normalized tg, beginning with the

_ ' following normalized quantities:
+iA w31} p2” M+ [M* (w2) 751 1A w3y]pgge® 0!

1 _ Awj
+[M* (@1) 7+ iAol pge® 20— > [N(w1)7y2 %)= Sy (3D
+(N(02)+1)y3]p13—i (Awf+Aw;)p1a+ Q) Aw
i . , S—— 1
X (paz— p11)€” (%090 —i( B+ B3)Qp1s. (29 9 vy’ (32
Finally, the last three components of the density majrix, Aw?
P32, and ps; are given by the complex conjugates of Egs. 5_L5ﬂ, (33
(27)—(29) since pij=p]-*i. Also note that due to the trace ' Y
condition Tr(p) =1, only eight out of the nine components of
the density matrix;; , i,j €{1,2,3;, are independent, which

implies that the differential equatior@4)—(26) are not in-  Where Ji are the normalized frequency shifts due to the
dependent, but satisfy dfyy/dt) + (9ol dt) + (3pasl dt) squeez_mg&i are the _norma_llzgd Stark shifts, aﬁb are the
—0. Note that these equations reduce to @jof Ref.[5(b)] normalized ]_amb shifts. Slmlla’rly, we normalize the .two—
if the two-photon excitatior/,= 0. photon Rabi frequency tQ_qEQo/y and the RO detuning
At this point, we will deviate from Ficek and Drum- from the two-photon transition t6o— &/, where, for no-
mond's notation and introduce a normalization that will casttational simplicity,&, will now imply a normalized quantity.

all our equations into a dimensionless form. In particular weBY making these substitutions and change of variables in
define a new dimensionless timdo be Egs. (24—(29) we arrive at the following set of coupled
differential equations for the independent elements of the
T=9t, (300  density matrix:

Ip22

_ o , _ 1
9r = —[M—i(812+ 821 113 #1207 [M* +i (83, + 5’1‘2)]!’3192'50”'aNl(l_Pzz_P33)_a(Nl"'l)Pzz_Z N2p2o

1
+— (N2+1)pas, (349

dpaz (1 . Coiss
W:(E M —i681,|prge™ %7+

1 _ 1 1 o |

5 M* +i 5’1‘2)%’31(5‘2'50%L > Nopor— > (N2+1)pag— Qo prge™ 2 %7+ ¢0) 4 pgie?i(d07+ d0)],
(35

dp12_[1

. 1 1
5 |2 M* +i5’1*2)p32e2'507— > (NZ ;+Nla+(N1+ Da

+Qpae? (%07 d0), (36)

) 1
p1oti (55+5§)_(55+5f)_EQ0 P12

. p2s=i[(83+ 83)+ aQqlp2s— Qopie™ P07 %0,

37

dpaz (1
2

Lo s | caiser Tl L 1
M +|512 p21e 0 2 NZ a+(N2+1) a+(N1+1)a

and

(9,013 A ST 1 s i St 1 . iSr 1
= T [M* (8511 879 1p2% 07 +1( 831~ 81) pase™ +(§ M* 4187, (1= pap)e® 07— 5

1
Nja+(Ny+1) ;}Pls

Qo [p13+ Qo(2pazt pay—1)e (%07 d0), (38

at+ —
a

—i[(55+5f)+
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In Egs. (349—(38), we used the simplified notation 1 3 i 1 .
N;=N(w;) andM =M (w;) for i=1 and 2, definedr to be p13=7 | 5 M*+Q.e o P2zt 25 Qo€ '%0p3s
112
[ Y2 1/1 .
“=<73) ’ (39 t Al MT Qe “2
and made the substitutigny ;=1— poo— pa3. ~
P P22 pss wherep, is defined to be
VI. ATOMIC POPULATIONS - —2is
p13=p1€ 7, (43

While the above set of coupled differential equations
(34)—(38) together with the complex conjugates of Egs.
(36)—(38) fully describes the dynamics of the atomic system
in terms of its density matrix, here we are only interested in
the atomic populations. It is easy to see that the derivation of Q }
the populations is simplified by the fact that the equations of °)
motion decouple into two groups of linearly independent dif- (44)
ferential equations. In particular, to solve for the atomic
populations we only need to consider the closed set of difAs we can see, the detuning of the RO field from the two-
ferential equations fop,,, p33, p13, andps;. By also ne- photon resonancedy,= wy— (w142), is the only detuning
glecting frequency shifts due to the quantum fife&déL and that enters the solution, as we indicated in Sec. Il. Finally,
55) which are small corrections as discussed in R&f.we  substituting Eq.(42) and its complex conjugate into Egs.
solve for the steady-state casép,,/dr=0, dpss/d7=0, (40) and(41) results in a set of two equations fpp, and
(prge~ 2% 9r=0, and d(pze?%M/dr=0, and find a ps3, Which after some algebra can be written in the follow-
simple algebraic set of equations to describe the populatiomg forms:
dynamics of the atom. These equations are

and the quantit is given by

1
N1a+(N2+1) Z

N =

1
a+ —
a

1 A1poot Eipss=1 (45)
Mpis+M*pi3=aN;—| a+2aN;+ P Nz) P22
and
1 1
* Z_aN1+ a N2 |pas, (40 Aopopt Eopsz=1. (46)
. 1 . 4 ~ For the special case when the coherent-figjds resonant
—2i¢pg_ _ 2ido_ *
(Qoe 0= 5 M]piat| Qo™ ™~ 3 M*>p13 with the two-photon transitiofi.e., for §,=0), and assum-
1 L ing thate, is a weak field so that the Stark shift contribution
_t - (i.e., [a+(1/a)]Q,) can be neglected, the quantitids ,
= o Nep2zm o (N2 + Dpaa, 1) 2., A,, andE, can be shown to be equal to

1 1 1
3|M|2—2Qo||v||cosq>—E Nia+(Np+1) — a+2aN1+ZN2)

A]_: 1 1 ’ (47)
||v||2—2||\/||roosc1>—E aN;| Nja+ (Ny+1) ﬂ
1 1](1 1
_ —4Q0|M|cosq>+§ N1a+(N2+1)Z ;—aN1+EN2
E1= 1 1 \ (48)
|M|2—2|M|roos¢—§ aNy| Nja+(Ny+1) Z}
2 2 1 1
4Q2+3|M| —8Q0|M|cosCI>—; Nia+(No+1) —IN,
A= 4
2 4Q2%+|M|>—4Q,|M|cos® ’ “9
and
) 1 1
8Q5—4Q,/M|cosd + ” N;a+ (N,+1) ” (N,+1)
= (50)

2= 4Q2+ [M|2—4Q,|M|cos @ :
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while in the more general case whefg+0 these expres- discussed in Ref5], the parametertl;, N,, andM should

sions become much more complicated. In E43)—(50) the e replaced byN;v(8), Nou(6), and Mu(6), where the
phased is a combination of the phases of the squeeziyg  functionv () is given by

and of the RO¢,, and is given by
v(0)=3[1—%(3+co O)cosd], 6e(0,m), (54
d=2¢+ ¢s. (51

i , i with 6 the angle over which squeezing is propagated. For
Hence the solutions for the atomic populatigns and pss  reasonable experimental parameters with focusing angles,
are given by 6=<20°, the values thatv(#) takes are also small,

v(60)=<0.04, justifying a power expansion of the solutions

(52) given by Eqgs.(52) and (53) with respect to the variable

= =
~1" =2
—
=

P2~ A= = AL :

22 AE - B v(6), which after some algebra reduce to
and

p2~N1v(6)+O0[v*(6)] (55
! (53 d
=T = = i - an
pss AE1—EoA

i i i i B [4a%02+ (IM[2a?+ N Np)v%(6)
In the subsequent discussion we concentrate on this special p 0 N2
case for which,=0 and for which the above solutions are —4a2Qy|M|v(8)cos®]+O[v3(6)]. (56)

valid with parameters given by Egg&l7)—(50).

Note that from the above solution it is clear that the : .
atomic populations have a phase-sensitive modulation deter- From Eq.(55), we see that the exu_ted—stat_e population
mined through the dependence/of andE; on ®, which is P22 of the [2) level, to the lowest term im(6), is propor-
the only phase left in the final answer. Furthermore, we se%iOnal to the power of t_he resonant 'to t!ie)—>|2) trgn5|t|on
that all phase-sensitive terms are of the foivh|Q,cos®, leld component, as given by the field’s occupation number

corresponding to interference between the RO field as gdV1- We also observe thab, exhibits no signs of modulation

scribed byQ, and the quantum field output of the ND-OPO to this order ofu (6).

as described by the correlations of the field-quadrature fluc- However, the populatiops; of t.he |3)_excited statgEq. .
tuations given byM. However, since no crogénterference (56)] has a more complex behavior, with separate contribu-

terms betweei;, N,, andQ, exist, we conclude that these tions from the coherent reference oscillator field described by
1 ) (o] ) . - . . e

correlation functions of the fields must be incoherent witth0 which is Irgespogs.lblrt]a for the dm—;‘.ctalfé traqts)mgn[the

each other. Indeed, as shown in Réf7], the signal and idler Irst term in 9'(5_ )]; the qu_antum I€ld describe wl’ .

outputs of the ND-OPO, when viewed in isolation from eachN2: andM which is responslble for the stepwse excitation

other, are described by their total intensitids and N, 1_’25’3 [the second .tern; in EC(56)f],hand flni’:_lllyda cr?s?]

respectively, and correspond to incoherent thermal fields anff'™ due to quantum interference of the amplitudes of these

hence should not be expected to interfere v@th, although two prl;o%(?sseﬁthe th'r.d terfm in Eq(56)]. I-r|]owevehr ' mipe_c-
they do contribute to the overall excitation probability by On Of this quantum interference term shows that the inter-

virtue of the energy they carry. More explicitly, note that for ferenpe occurs between the amplitude f_or excitation by. the
excitation with thermal fieldsN1 =0) the coupling between RO field, and only part Of the total amphtude fpr excitation
pasandpis, due to the signal and idler fields, vanishes. Bydue to the squeezed fields. IQ particular, if we define
contrast, the quantum correlations between the signal amo=2@Qo 8NdX,= VX +Xg, [With Xg=a[M|v(6) and
idler fields as given byM drive a nonzero coupling of;;  Xq2= VN1N2v(6)] to be the excitation amplitudes due to the
with ps3, as doe€,, (assuming the RO and squeezed fieldscoherent fieldey and the quantum fleléq, respectively, we

are phase coherenthus giving rise to QI. see that the excited-state population is given by
Concluding this section, we note that the precise way in
which ® enters the populations is not completely obvious p33~(xg—2X0qucos¢+x§l)+xﬁz. (57)

from Eqgs.(52) and(53), especially in view of the five addi-

tional parametergM, N;, N,, Q,, anda) and the algebraic  Written in this form,ps3 is obviously the result of two quan-

complexity of the solution. As a result, a global presentationum interfering pathways with amplitudés, andXg, plus a

of all the features of our solution is not possible here, so thathird incoherent contribution whose amplitudeXg,. The

we will instead focus on a few cases of special interest.  physical interpretation of this observation is that excitation

via the RO andM interfere via thep,3 coherence, where

VIl. SQUEEZING OVER A SMALL SOLID ANGLE excitation viaN; andN, proceeds incoherently as discussed

in Sec. VI, so that their contribution to the total excitation

probability adds incoherently.

In the discussion so far we have implicitly assumed that Finally, we point out that an experimentally relevant limit
the squeezing illuminates the atom from the full 4olid is that of a strong RO field relative to the quantum field
angle. However in a typical experimental setup, as for ex{|Xo|>|X4|), in which case the second term in E§6) be-
ample in Refs[8] and[10], the squeezed field will be fo- comes negligibly small compared to the other two, and hence
cused onto the atoms only over a small angle. In that case, dise result forpz; simplifies to

Phase-sensitive populations and quantum optical effects
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p33~4a2Q§ 1- |g|—| v(6)cosd|. (58) <
o]
0.075
From this final expression, we see that by measuring the I ,;,,,«;;;{.,”%””’”Illl""l,,
modulation of the excited-state population, the quariity ) , o '515" il ll .. ll,,lll,ll,"ll,,
can be inferred, and hence an access is gained to the non- 0.05 N \(,,, ll,;zl"’ll,,;' "l:,’lll,'ll,l i “' "'I[’
classical statistics of the squeezed field as described by the g ‘ §§§\\{'\'l'ﬂ "';;'!';,{I,,","llé’l "“'.,"
correlation function M(Q), where, from Eq. (7), <« \\§\§\\\’\\' 'IIII;“ 'l llll‘\\ "l
(a(©)a(Q"))=M(Q)5(Q+Q’), with O and Q' defined 0.025+ \\\\{w it l\\Q\\\;;, " Q W
as the offset frequencies for the signal and idler fields in a \\\{’7' W g 4
rotating frame atw, (i.e., ws=wo+Q and w;=wy— Q). , ! |
Note that the signal and idler fields can have substantial fre- 8 o 16
guency offsets, so th&/w, is not necessarily a small quan- 2 s 8
tity (in the particular example studied in Rdfl0], |wg @ 6 (rag) 3 0 (X,\(ad\

— wi|/2m=25 TH2). This large frequency offset will none-
theless be “demodulated” by the atom which is acting as a
nonlinear mixe{12]. We suggest that this capability opens
new avenues for the detection of nonclassical correlations at 03
ultrahigh frequency offsets which are beyond the range of

conventional homodyne detection, and which we previously . ,,I ‘
discussed in Ref[10]. In particular, note that the form of 02 %l;llt\\\\'ﬂﬁlllllll\\\\\\\ //%\\\\*‘
quadrature amplitudes change from the usual case in quan- s 7 ” l’%llll\\\\\“‘l’lllll \\
tum optics for whichQ/wy<1[24,29. S | //III’IIIII I\\\\\\\ ‘I II \\\\“//IIIIII\\\
tis des < il i e
From an experimental point of view, it is desirable to /”/ ,,///II II/ Illl’/”[[ IIIIII\
maximize the signal-to-noise ratio of the observation, which ””%%%l I ;II”II][W\\\\\\ il ’IIII“&&&&\\\W;N

in the context of Eq.58) implies that we would like to

'"‘""Z%"””I”I””IIIII;IIIIIIIIIIIIIIII “&&\l&\\“\\

maximize 4°Q}, and simultaneously have thiivl|v(6) 8 ”""14;44444ra!a!!ll,,,ll,,,,,; 12 1
~Q,. This combination guarantees that the QI will have the 2 0 4 8
largest possible contrate., 0< p33<8a°Q?), and also that (b) 0 (raq) o ed

the maximum of the signdlproportional topss) will be as . . .
large as possible. Recalling that E&8) has been derived FIG. 2. Atomic populationga) pz, and (b) ps3 vs the focusing
under the assumption that,> X o> Xq1, We see that the angle of squeezing and the quantum interference angkeplotted
above optimization is subject to the constraink@, for a=vVy/ys=V5/3, Qo= N1=N,=0.1, and
>|M|v(6), which, combined with our requirement that IM|=VN(N+1).

IM|v(6)~Q,, leads to the conclusion that for optimum ex- , _ ,
perimental conditions we should havex21, or equiva- asymptotically linear dependence for the two-photon excita-

lently \/y,/75>0.5. Hence the choice of the atom to use Intlon versus the intensity of the incident squeezed vacuum for
this particular type of experiment is crucial, since the accul® case of smal. In particular, the signal for the experi-
racy of the observation is ultimately determined by theMent proposed here, the distinctive functional form@4,
atomic decay rates, and in particular by the ratia/gto v;. could be easier to identify as compared to the linear func-

. tional form N, which can have other origins if necessary
In our experimental work of Refl0], vy,/y;=1.29. ;
Turning now to the size of the modulazltio; in E§8), we precautions are not takefe.g., the scattered background

note that it can be characterized by the visibiltys defined from the squeezed fi_el_d_ also scaleijqS Last but not least,
by the actual data acquisitiofphotocounting could be viewed

in the frequency domain, where, as in Réf0], one looks at
(P33 ma—(P33) min _the Fourier transform of the photocurrent, ir) this way reduc-
V= . (59 ing the background content at the observation frequency and
(P33 max™ (P33)min improving the signal-to-noise ratio. Note that for a photon-

A inaN- = No=N h hat. f counting experiment, witlQ,=0 as in Ref[8], one detects
ssumingN;=N,=N, we have that, for quantum Squeez- , qyna| given by the ternX3= (|M|2a®+N3N,)v?(6) in

ing, N<|M|<VN(N+1), where for classical stateid| Eq. (56). By contrast, Witth nonzero, there is “mixing”
<N. Hence,N/Qo<Vsqueezed VYN(N+1)/Q, and Vassica gain so thakX XO,X0>X The operational advantage is that

<N/Q, for the cases of squeezed and classical field excnathe quantum nmséphoton counting associated w&(ﬁ) can

tion, respectively, with fundamentally different functional

then be dominant over other noises such as dark counts in the
dependences. In particular, for the case of quantum squeez:

photodetectors and scattered light, which were limiting fac-
ing in  minimum uncertainty states,VqgueezetN—0)

q tors in the experiment of Ref8].

—/N/Q, which has a characteristic square-root dependence
on N. Observation of this dependence would constitute an
unambiguous quantum effect of the same nature as that of
Ref. [8]. As a matter of fact, this type of experiment has By increasing the angle of focusing of the squeezed light
certain advantages over that of Rf], where we sought an onto the atoms, the value of(#) increases, and additional

VIIl. SQUEEZING OVER A LARGE SOLID ANGLE
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FIG. 3. Atomic populationga) p,, and (b) ps3 vs the focus-

ing angle of squeezing and the quantum interference angle FIG. 4. Atomic populationsa) p2, and(b) ps; vs the focusing

angle of squeezing and the quantum interference angheplotted

lotted for a=\vy,/v3=+5/3, Q,=0.1, N;=N,=1, and
FM|= NNTD. o 1= for a=\yy/ya=\5/3, Q,=0.1, N;=N,=10, and |M|
' =N(N+1).

terms in the expansion af( #) in Egs.(55) and(56) must be

retained for the solution to be accurate. Figures 2—4 show The particular choice of parameters for Figs. 2—4 is such
graphs of the full solution for the excited-state populationsas to model the atomic system studied in R&€], for which

p22 and pgs as a function of the focusing angkeand of the o~ \/5/3, andwhere the intensity of the RO wa3,~0.1.
quantum interference phade Clearly, along theb axis we  Recall that the theory of Eq$52) and (53) was developed
observe the 2-periodic structuré periodic in the phasé,  under the assumption of weak RO fields, for which Stark
of the RQ of the atomic populations, a direct consequenceshits caused by these can be neglected and hence we limit
of quantum interference, while along thelimension we see o <1 Nevertheless, inclusion of the Stark shifts due to the
increasingly interesting features t_hat appear as the solid ang@O field only requires the use of the full expression for

of coverage is increased. In particular, the e_ffects of QI be defined in Eq(44)], which simply changes the definition of
come much more profound for large focusing angles; fo the quantities,, =,, A,, andA, in Eqs.(47)~(50)
example,.for c?rta;]imb in Figs..3§md 4 it IeadT t(.) complete Note that inlt,rlgze%pelrimerﬁtloﬁ the foc.using anéle was
Z:Ja?bpc:reaﬁtzl?:or% otn ?hiévz)ooi?\):cgisu?:l?;z c?grﬁglzftg%évg:a\ge i ry.smaII6~O.1 rad, and hence only simple sinusoida! 0s-
the atoms by the squeezi(ige’., 9= ) it can be shown from cillations were present rather than the more complex inter-
Eqs.(52) and(53) thal for the particular choice ob= /2, ereCe A that aphear for gher values of shown
Ne=N;i=N=[1/(a"~1)], and[M|=yN(N+1), sumed a minimum uncertainty state withl|2=N(N+1),

p2y="0 (60) whereN=N;=N,, and successive figures have been drawn
for increasingly stronger squeezed fields. There, for Fig. 2
we assum@&l=0.1, for Fig. 3 we usé&l=1, and for Fig. 4 we
useN=10. Note thatVl andN refer to the squeezed field at
(61)  the source, with the facter(6) accounting for “alterations”
in coupling the source to the atoms. We also note that by
It is noted that this interesting case only occurs for atomicchanging the value o&, the corresponding graphs will take
systems with linewidths satisfying,> y5, sinceN has to be  both quantitatively as well as qualitatively different forms
a positive number. than shown in Figs. 2—4.

and

=1
P33z~ 2-
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A. Phase sensitivity of atomic populations and quantum order to have phase-sensitive atomic populations. In the case
optical effects of thermal excitation for whichM =0 and the signal and
As previously noted, the atomic populatiops, andp,;,  idler fields are each in a thermal state with occupation num-

exhibit phase sensitivity via the dependencies expressed #€r given byN; and N, respectively, there is no phase
Egs.(52) and (53) on the termQ,|M|cos® [here we have sensitivity, and the atomic populations can be shown to be
setv(6)=1]. Henceboth Q, and M must be nonzero in equal to

(Nya®+Ny+1)(NoN; +N; +4Q2)
por= 4Q%(1+3Nya®+3N,+2a?) + (14 Ny+ 3NNy + 2N ) (Nja?+Ny+ 1)

(62

and

P 4Q%(1+3N;a? +3N2+2a )+ (1+N,+3N, N1+2N1)(N1a +Ny,+1)°

(63

Note that by settingd,=0 we recover Eqs12) and (13) of Ref. [5(b)].

Next we turn to the casM #0, which implies phase sensitivity but does not necessarily imply a nonclassical effect. In
particular, one should compare the minimum uncertainty quantum states for yWAiék=N(N+1) with the “closest”
classical states, namely, the classical squeezed states for \WHith N? (here, as above, we make the simplifying assumption
thatN;=N,=N). In both cases, we have phase-sensitive atomic populations. In order to identify intrinsically quantum effects
associated with the nonclassical nature of the quantum squeezed vacuum, we concentrate on the regioNsflswhkre
the distinction between the effects of classical and quantum squeezing is maximum. In particular, if we asshirge }hve
can expand the solutions for the atomic populatippsand p33 as given by Eqs(52) and (53) in powers ofN, which leads
to

1 a’+1 N
pl= 1" 1+—£cos<b +O(N) (64)
1+2a?) + 1+2a?) + ©
arEetagl U
and
2+ 1
2 a T2
a 4Q N
S — 1——°é——coscb +O(N) (65)
1+2a?) + 1+2a?) + °
arretagl U

for the case of excitation with quantum squeezing. For the excitation with classical squeezing, we obtain

1 1+ a? N 320%(a*—1)+8Q%(a?—1)+1
pS,= 14— 1+ gcos® 2Q( R ) O(N?) (66)
1+2a?)+ 1+2a?)+ ° 16Q%| (1+2a?)+ )
( a ) 4Qg ( ¢4 ) 4Q(2, 6Qo ( (24 ) 4Q§
and
1
o? a*+ 4Q2 N 4Q%(a*— 1)+ (a®+3a2—1)
pS= 1- 2 o.c0s? | - 2 il N+ O(N?). (67)
1+2a?)+ 1+2a?)+ ° 402 (1+2a?)+ )
(1+2a®)t g | (142604 2 Q3| (1+20%)+ 7o

Equations (64)—(67) show that for smallN, phase- issue of the functional dependance of the modulation size
sensitive modulation onsets for the case of quantum squeegersusN. The distinction between the functional form®
ing proportionally to\/N/QO, while for the case of classical and N is apparently an unambiguous signature of quantum
squeezing the onset of the modulation is proportional tceffects.
N/Q,, which is of higher order ifN. This again raises the For completeness, we note that in the limif=N,=N
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FIG. 5. Atomic populations(—) solid lines are forp,,;
(- - - ) dotted lines are fopss. Here a=\ly,/yz=/1/10 and
Q,=0.1.N=0.1 for (a7 and (@), N=1 for (bs) and (k), and
N=10 for (¢g and (g). Two cases of excitation with quantum
squeezed light|M|= VN(N+1)] [(asy), (bs), and (¢y] and clas-
sical squeezed light|¥1|=N) [(ay), (by), and (g¢)] have been
considered.

<1, expansions of Eq962) and (63), for excitation with
thermal fields, results in

4 2
n 1 32Qa(a*—1)+8Q5(a?—1)+1
P22= 1 1 \2
(1+2a?) + — 16Q% (l+2a2)+—2)
4Q5 o
+0O(N?) (68)
and
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FIG. 6. Atomic populations{(—) solid lines are forp,,;
(- - - -) dotted lines are folpss. Here a=\y,/ys=+5/3 and
Q,=0.1.N=0.1 for (ay) and (g), N=1 for (hy) and (k); and
N=10 for (¢g and (g). Two cases of excitation with quantum
squeezed light|M|= yVN(N+1)] [(asg), (bsg), and (gy]and clas-
sical squeezed light|¥1|=N) [(ay), (by), and (¢)] have been
considered.
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FIG. 7. Atomic populations(—) solid lines are forp,,;
(- - - ) dotted lines are fopsz. Here a=+y,/y3=+10/1 and
Q,=0.1.N=0.1 for (a7 and (@), N=1 for (byy) and (k), and
N=10 for (g and (g). Two cases of excitation with quantum
squeezed light|M|= yN(N+1)] [(asg). (bs), and ()] and clas-
sical squeezed light||=N) [(ay), (by), and (¢)] have been
considered.

" a? 4Q%(a*—1)+(a*+3a?-1)
P33~ 2
(1+2a2)+4Q(2) 4Q?2 (1+2a2)+4Q§)
+0O(N?), (69)

which contain the same terms a$, and p$; as in Eqs.(66)
and (67), but without the modulation.

Figures 5—7 show examples of the quantum interference
patterns that are predicted from our the¢Bgs. (52) and
(53)] (without the assumption tha&t<1) for an extensive set
of parameters. For each figure we choose a different value
for a, with a=/1/10 for Fig. 5, = /5/3 for Fig. 6, and
a=+/10/1 for Fig. 7. According to the definition of [Eq.
(39)], we note that these values correspond to the ratios of
the atomic linewidths equal tg,/y3=0.1, 1.67, and 10 for
Figs. 5, 6, and 7, respectively. With other parameters kept
the same, it is clear that in the first case wj§v y;=0.1 the
atomic population of the second excited level would be in
general greater than the atomic population of the third ex-
cited level, p,,>pa3, while in the third example with
v,1y3=10 the opposite must be true, as is evident from
Figs. 7. In addition, each figure has been plotted for three
different values o, while Q,=0.1 has been kept constant
throughout. For each of these cases we show the atomic
populationsp,, and p3 for excitation with minimum uncer-
tainty quantum squeezind/|>=N(N+ 1) and for classical
squeezingM |?=N2,

B. Quantum optical effects in phase-sensitive inversion

Another interesting feature of the atomic system under
consideration is the fact that it exhibits phase-sensitive inver-
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sion. This subject is of particular interest because, as in Ref. pii
[28], the phase sensitivity is induced by squeezed light. For lij= o (70)
the purposes of the present discussion we find it convenient !
to define a measure of the inversion between|thend|j) Once more making the simplified assumption that
states in terms of the ratio of the populatigns and p;; in N;=N,=N leads to the following expression for the popu-
these two states according to lation inversion between the three- and two-excited levels:
|
N(a®+1)+a® ) , N(a?+1)—a?
- i _ _ 7 " N2
_pm_ | N@FDAI Wi ® | Qg — a¥ Qocos® — M|* Iy .
327 poy (4—W2siP®) Q2+ N(N+1)—|M|? : 7D
where
o= 4a|M| 79
T N(a®+1)+1° (72)

This expression takes fundamentally different forms depending on the statistics of the signal and idler fields used for the
excitation. In particular, for minimum uncertainty squeezed staM$>=N(N+1), we find

N(a?+1)+a? 252 | 07— o - Na?
o N(aZF D) +1  Lasim® Qo= aWqQoCos®+ Iz -
= (4—Visif®)Q; ’
while for classically squeezed statdd|?>=N? we have
N(e?+1)+a? ) N?(a?+1)
ICI _( m—\lfdsmz(b QO_ aq,dQOCOS(I) + m iy
2 (4= WEsi®)Q5+N ’ (74
|
and for thermal statelgv|>=0 we obtain where the difference is the largest, which is for snmdll
=1. AssumingN<1 andN<Q,, allows us to expand Egs.
N(a?+ 1)+ a? o (73) and(74) in powers ofN, leading to
_ N@ZDL 75 W
32~ 2 . N
4Q+N(N+1) 19,= a?— a? 5, C0s®+0(N) (78)
[0}
Here, from Eq(72), ¥, and ¥ are defined to be
for the case of excitation with quantum squeezing, while for
excitation with classical squeezing we obtain that
_ 4ayN(N+1) 76 a J

97 N(a?+1)+1

S a2t | 1- 0t )N a2 Noosd+ o(N?
and Pp=a’t —a _4_Q(2J -« —OCOS +O(N9).
(79
Vo= 4aN 77 Again, for the purposes of completeness, expansion of Eq.
T N(a?+1)+1° (75) gives

Note that in the cases described above, the mean photon flux

as given byN is the same, with only the form &fl changing th— 24
from one expression to the other. Also observe that the in- CZA
version is phase sensitive for both quantum and classical

squeezed states, but not for thermal fields. As before, in oifor the case of thermal fields.

der to differentiate between classi¢dl|=N and quantum The ratio of the atomic linewidth& plays a key role in
IM|=+N(N+1) effects, we must concentrate on the regionthe determination of the values the inversion takes. In par-

2
1— 4_a_
a 2

2
Ry N+ O(N?) (80)
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ticular, if we turn off the quanturfor classical field (i.e., set  quantum effects associated with the interaction of nonclassi-
N=M=0) then1%,=1%=1%=0a? which, when combined cal states of the electromagnetic field with atoms, which very
with the definition of the inversiohs,= p33/p,, and the defi-  distinctively distinguishes between classical and quantum ef-
nition of a= \/m leads topazy3=payy,. This is what fects, and which persists even for very small focusing angles
we would naturally expect from the atomic rates of sponta-0f the squeezed vacuum onto the atdris—Nuv () <1].
neous emission when the system is driven only by the RO For completeness, we note that for the case of thermal
field Q,. excitation the population inversion in the above limit of
Returning now to the discussion of how to distinguishweak fields reduces tty=a?[1—(N/4Q?)], which is the
between intrinsically quantum versus classical effects, weame limit as for classical squeezing. In other words, the case
observe that Eq(78) predicts that even for arbitrarily small of very weak classical squeezed fields resembles the case of
driving fields (i.e., N<1 and Q,<1), and as long as thermalfields, and loses its squeezing charasteales ad),
JIN/Q,~1, we can obtain phase-sensitive inversion that varwhile as we have seen that in the case of quantum squeezing
ies between the extreme values Of,< 242. In other words,  the effects of squeezing persiscale asyN).
the correlations of the fluctuations of the nonclassical field
éq as expressed by, and the QI of the excitation ampli-

tudes, can lead to a complete suppression of the excited-state IX. CONCLUSION
population ($,=0), or, in the opposite extreme, to popula-
tion inversion twice as large as the usual inversidf, ( In this paper we have presented a solution based on the

=2a”). Hence the effect of phase-sensitive inversion can bguantum master equation for the problem of two-photon ex-
viewed as a modification of the relative strength of the sponcitation of a three-level atom by a combination of the signal
taneous emission rates for the-& and 2-1 transitions, and idler output fields from a ND-OPO and a strong coherent
where, for complete suppression of the excited state populgo field. As a result of the combined excitation, and due to
tion, a— ae=0; however in the opposite exireme— aef  the presence of multiple excitation pathways, the atomic
=V2a (recall thata=y,/v;). Similar effects of QI and popylations exhibit phase sensitivity to the relative phase of
modification of the effective decay rates have been extenge fields, and in particular to the asymmetric distribution of
sively studied in the context of Ias“mg without ,|,nvers[(26]. fluctuations for a squeezed state. We have derived analytic
However, in our case we h_a\{e a new playe_r on the S’Cen‘f’expressions for the excited-state populatigns and pss,
namely, the quantum statistics of the exciting fields as deémd have analyzed several examples of quantum interference

Z?\;Iebne(lj)ytl)\z/ the correlations of the quadrature fluctuatlon§n the system including the effects of finite angle of focusing

The above qualitative observations, although not uniqué)f t_he s?uleezedt f|<_a|<t:1 gntct)_ thle atomsh, W.h'Ch IS a crutt:|a_ldex—
fo quantum squeezirigince Eq.(79) implies that the inver- perimental constraint. Particular emphasis was given to iden-

sion modulates above and below the val® even with tifying intrinsically quantum effects associated wit_h the non-
classical squeezingi.e., M=N)], do, however, contain cIassma] nature of the squeezeq vacuum, with specific
quantitatively distinctive differences between the cases of®mparison to the closest classical analog of quantum
excitation with classical versus quantum squeezing. In parSdueezing, for which similar qualitative but different quanti-
ticular, Eq.(79) implies that in the same limiting case as we tative effects can be observed. Additional comparisons to the
have considered abové,e., N<1 andQ,<1), and assum- Simpler case where the signal and idler fields are in a thermal
ing that the value ofx is not very large(i.e., «<1/Q,), the ~ state have been presented. Finally, we have analyzed popu-
population inversion between the three- and two-excitedation inversion in our system, which was shown to be phase
states is roughly Constaﬂtglzz az[l—(N/4Q§)]~%a2 (as-  sensitive due to QI, and demonstrated that for weak excita-
suming as above tha{N/Q,~1). Hence we have a very tion there are distinct differences between excitation with
strong prediction that will distinguish between intrinsically quantum versus classical squeezing.

quantum versus classical effects in a much more profound One notable feature of the class of nonclassical phenom-
way than the difference in functional form that was men-ena that we have considered here is that they manifest for
tioned above, or that which was studied in R&fl, namely, small intensities of the squeezed field, and in fact they be-
that excitation of the atoms by a combination of a very weakcome more pronounced as this intensity decreases. This is in
quantum fieldéq(M =yN(N+1),N<1) and a very weak contrast with a different class of phenome(sach as sub-
classical RO fieldey(Q,<1) will lead to phase-sensitive natural line narrowing1]) for which the nonclassical nature
inversion between the three- and two-excited levels thabf the effects associated with the interaction of nonclassical
could range between 0 andv2. This is in sharp contrast to states of the electromagnetic field with atoms becomes more
excitation by classical squeezed fields, for which the phaspronounced for strong intensities of the squeezed light. How-
sensitivity of the inversion disappears, and which, within theever, contrary to the latter case, the phenomena we have
limits of this calculation, will have a value roughly equal to discussed in this paper are persistent even for very small
32, The price to pay is that we have limited ourselves tocoupling efficiencies of the squeezed light with the atoms.
very weak excitation fields, and hence the excited-statdhis is a crucial feature from an experimentalist point of
populations which ultimately determine the size of the signaview, and the observation of any of the nonclassical effects
to be observed are also very weak, which reduces the signadiscussed in the literature almost always rely on the ability to
to-noise ratio and makes the experiment more difficult. Nevrealize these effects with very small coupling efficiencies.
ertheless, this is a good technique for observing intrinsicallyrherefore, effects which persist independently of coupling
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efficiency are extremely interesting, and so far have been thgignatures of the nonclassical interaction of the squeezed

only type of effects that have been obsery8d Notice that

field with the atoms.

as the coupling efficiency increases, which in our case is

equivalent tov (6) — 1, effects of the second class will also
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