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Creation of gap solitons in Bose-Einstein condensates
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We discuss a method to launch gap solitonlike structures in atomic Bose-Einstein condensates confined in
optical traps. Bright vector solitons consisting of a superposition of two hyperfine Zeeman sublevels can be
created for both attractive and repulsive interactions between the atoms. Their formation relies on the dynamics
of the atomic internal ground states in two far-off-resonance counterpropagatingr()-polarized laser
beams that form the optical trap. Numerical simulations show that these solitons can be prepared from a
one-component state provided with an initial veloc[t$31050-29479)03001-3

PACS numbe(s): 03.75.Fi, 05.30.Jp, 42.50.Vk

I. INTRODUCTION taneous emission can cause significant problgghs
Several main reasons motivate our renewed interest in this

The Gross-Pitaevskii equatioiGPE has been used re- problem. First, we already mentioned that bright gap solitons
cently to successfully explain various experiments on atomi@re known to exist in nonlinear systems irrespective of
Bose-Einstein condensatésee, e.g., the references[ih2]) whether the nonlinear interaction is repulsive or attractive
and its validity for the description of the condensate dynam{14]- With regard to atomic condensates this means that they
ics at zero temperature is now well accepted. A further conshould be observable, at least in principle, also for Na and
firmation would be provided by the observation of solitary Rb, where the positive interatomic scattering length gives
matter waves, the existence of which is generic to nonlineafise to a repulsive mean interaction. Further, the study of
Schralinger wave equations such as the GFEH]. Such  bright solitary waves is of interest as they might be easier to
solitary waves could also find applications in the future, e.g.detect than gray ones and they could find future applications,
in the diffractionless transport of condensates. e.g., in atomic interferometr[/.I.Z]. An additional reason to

Various theoretical studies of this problem have alreadystudy atomic gap solitons is the fact that they consist inher-
been performed, predicting in particular the existence ofntly of a superposition of two internal states, in our case
bright solitons, with corresponding spatially localized atomictwo different Zeeman sublevels of the atomic ground state.
density profiles, for condensates with attractive interactioné\s such, they offer a further example of a multicomponent
[2]. Research on condensates with repulsive interactions hd&ose condensate, the study of which has already received
focused on the formation of gray solitons that correspond tgnuch interest recently15—-17. Finally, the recent demon-
dips in the atomic density. Their creation was investigated irftration of far-off-resonance dipole traps for condensates
Refs.[1,5], general properties were discussefidh and Ref. ~ 0pens up the way to the “easy” generation and manipulation
[2] worked out the analogy to the Josephson effect. of such spinor systems.

Complementary and previous to this work, the formation ~ This paper is organized as follows. Section Il describes
of atomic solitons was also examined theoretically in theour model. The physics relevant for the generation of gap
context of nonlinear atom opti¢g—17. In these studies the solitons and orders of magnitudes for the various experimen-
interaction between the atoms was assumed to result frofi@l parameters involved are discussed in Sec. lll, while Sec.
laser-induced dipole-dipole forces, but this theory has notV presents a summary of our numerical results. Finally,

been experimentally tested so far. conclusions are given in Sec. V.
The reliance on attractive interactions to achieve bright
matter-wave solitons in Bose-Einstein condensates is of Il. MODEL

course a serious limitation, due to the difficulties associated

with achieving condensation in the first place for such inter- The situation we consider for the generation of atomic
actions. The purpose of the present article is the theoreticgap solitons makes use of the recently achieved confinement
exposition of an experimentally realizable geometry that al-of Bose condensates in far-off-resonance optical dipole traps
lows one to create bright gap solitonlike structures in Bosd18]. We consider explicitly a trap consisting of two focused
condensategor both attractive and repulsive signs of the laser beams of frequenay, counterpropagating in the di-
two-body scattering lengtiGap solitons result from the bal- rection and with polarizationsr™ and o, respectively.
ance of nonlinearity and the effective linear dispersion of alhese lasers are used to confine a Bose condensate that is
coupled system, e.g., counterpropagating waves in a gratirgssumed for concreteness to consist of Na atoms. The con-
structure, and appear in the gaps associated with avoidetensate is initially prepared in thég,Fg=1M,=—1)
crossings. Gap solitons have previously been studied in atomic ground state. For lasers far detuned from the reso-
variety of physical contexts, but particularly in nonlinear op-nance frequency, of the nearest transition to an excited
tics [13]. They were also studied in the framework of non- hyperfine multiplefe,F,,M.=—F,, ... F¢) the dynamics
linear atom optic$8], but in this case the two states involved of a single atom in the trap can be described by an effective
are connected by an optical transition and the effects of sporHamiltonian of the forn{19]
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p2 tween thej=—1 andj=1 states arises from the process
Heff=ﬁ+doﬁ5'(R)|0><0| involving absorption of oner photon and subsequent re-
emission of ao~ photon. However, since the circularly po-

+d1A 8" (R)(|—1)(—1|+]1)(1]) larized fields are counterpropagating, this process also in-

volves a transfer of linear momentunt B, along theZ axis

and this accounts for the appearance of the spatially periodic
(1) factors, or gratings, exp(2iK,2) in the coupling terms. As

shown below, these gratings provide the effective linear dis-
which is derived by adiabatically eliminating the excited persion that allows for gap solitons in combination with the
states in the dipole and rotating wave approximations. In theonlinearity due to many-body effects.
Hamiltonian(1), the operator® andP denote the center-of- To describe the dynamics of the Bose condensate we in-
mass position and momentum of the atom of ntasthe ket  troduce the macroscopic wave function®(R,t)
[j) labels the magnetic sublevel of the Na ground states=[V¥,(R,t),¥_,;(R,t)]" normalized to the total number of

+d,78" (R)(|1)(—1[e? 12+ |- 1)(1]e”2KiZ),

li)~19,Fg=1My=]), andK,=w,/c. Furthermore, particlesN. Here ¥, is omitted as it is coupled t&V .,
neither byH .¢; nor by the nonlinearity if it vanishes initially,
8'(R)=6s(R)/2, (2 which we assume in the following. The time evolution of the

) i spinorW(R,t) is determined by the two-component Gross-
where we have introduced the detunifig w; — w, and the  pjtaeyskii equation

position-dependent saturation parameter

A 4
DZSZ(R) DZSZ(R) IﬁW:Heff‘I’(R,t)
R e wee ®
N [Ua W1 (RD[Z+Up W1 (RH[Z1F 1 (R,Y)
In this expressionD denotes the reduced dipole moment [Up| W1 (RD[P+ UV (RH[ZIW_4(R,t) )
between the statég) and|e), T is the upper to lower state 4)

spontaneous emission rate, afiR) is the slowly varying

laser field amplitude at poinR, the plane-wave factors In the following we approximate the nonlinearity coefficients
exdi(£KZ—wt)] having already been removed from the by U,~U,=U=4r#%%as./m, with ay. the swave scatter-
counterpropagating waves. In the following, we assume thahg length.

&, which is identical for both fields, varies only in the trans-  To identify the key physical parameters for gap soliton
verseX andY directions and is constant along the trap a&is formation, and to facilitate numerical simulations it is con-
This approximation is valid if the longitudinal extension of venient to reexpress E@4) in a dimensionless form by in-
the confined Bose-Einstein condensate is much less than theducing scaled variablesr=t/t;, r=R/l;, and ;
Rayleigh range of the trapping fields, a condition we assume- v,/ m with

is satisfied. The numerical coefficierds, which depend on

the specific value oF ., are of the order of or somewhat less te=1/d, 5, (5)
than unity. Note that except insofar Bsappears in the satu-
ration parametes(R), the effects of spontaneous emission l.=tAK,/m, (6)
are neglected in this descriptidn.

The first term in the single-particle Hamiltonida) de- pe=|dof 84U, (7)

scribes the quantized center-of-mass atomic motion, the sec-
ond and third terms describe tijposition dependeptight  \yhere 8,=06"(R=0). Note that for our choice ofd,=

shifts of thej =0,=1 states, and the final term, proportional _1/4 and for red detuning, we hawss}>0. Equation(4)
to d,, describes the coupling between the =1 states by  ihen reads

the counterpropagating fields. For example, coupling be-

d,8’ .
—MV? ; (, ) e?125' (1)1 8,
o
n the discussion of the atomic dynamics and Ex).we have iﬂ: 270 £ )
assumed that the initial state is coupled only to one excited hyper- d7 ikiz o , ) dy8'(r) |\ ¥-1
fine multiplet. However, in the optical trap the detuning of the laser e s (nlsy  —MVi+ ——

!
frequency is large compared even to the fine-structure splitting of d25o

the excited states, so that in principle several different hyperfine y
multiplets should .be take_n intq account..lf(_)rtunately, _the.coupling to +[sgnd,7 6/U) (|| >+ r-4]?)] ! ) , (8)
any of these multiplets gives rise to addititional contributions to Eq. Yo1

(1) that are of the same analytical structure as the one given above. ] o )

Only the values ofl;, D, andT are different. This means that Eq. whereV? is the Laplacian in scaled variables and we have
(1) may still be used in this case, the effects of the additional mulintroduced the dimensionless mass-related parameter
tiplets being included as modifications of the values of the coeffi-

cientsd; . For simplicity, however, we will use the values of the M =d,S;m/2h K2, 9
Fy=1—F.=1 transition in the following, i.e.dy=1/2, d,=1/4,

andd,=—1/4[19]. so thatk,=K,l.=1/2M.
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lll. GAP SOLITONS numerical simulations that these solitons, or at least a rem-
nant of them, can arise for realistic atomic properties and that

(8)lnig;('jssseacnogomindigﬁj Sti):;e E:r%nd'rgzgzgwsrﬁvrvsr}['cigti?they can be created from physically reasonable initial condi-
y gap . - lop . tions. In particular, the exact gap solitons solutions are co-
duce the reduced equations that yield gap solitons and then o f thiee + 1 h he bh
discuss the physics underlying their formation. Estimates for erent superpositions o the= =1 states where the phase
' . : ._._and amplitude of the superposition vary spatially in a specific
the orders of magnitude of various parameters charactenzmi% L L 4
. . . anner: It is not priori clear that these gap solitons can be
atomic gap solitons are also given. . .
accessed from an initial state purely in the —1 state for
example. Furthermore, inclusion of transverse variations and
spatial derivatives beyond the slowly varying envelope ap-
Two key approximations underlie the appearance of gagroximation introduced above could, in principle, destroy the
solitons. First, we neglect all transverse variations of thesolitons[20]. For the numerical simulations to be presented
electromagnetic and atomic fields, thereby reducing thdiere we work directly with Eq(8), which does not invoke
problem to one spatial variable Furthermore, we can set these approximations.
&' (r)/5,=1. Second we express the atomic fields in the

form B. Intuitive soliton picture

Woa(z, 1) =expli[ £ kz— (1AM —1) 7]} b, 1(2,7) A simple and intuitively appealing explanation of the rea-
- - 10) son why Eq.(8) supports soliton solutions goes as follows.
Consider first the one-dimensional nonlinear Sdimiger
and we assume that the atomic field envelopesg(z,t) vary  equation
slowly in space in comparison to the plane-wave factors that )
have been separated out, so that only first-order spatial de- i =—Ma?yl 922+ g| | . (15)
rivatives of the field envelopes need be retained and only the
spatial harmonics indicated included. Under these assumgHhis equation hadright soliton solutions if the effects of

A. Reduced soliton equations

tions Eq.(8) reduces to dispersion and nonlinearity can cancel each other. For this to
happen, it is necessary thtg<O0. In the usual case the
(9 0 b1 0 1\ ¢ mass-related coefficieM is positive, so that bright solitons
Wor—az 6. 1 o/l , can exist only in condensates with attractive interactigns

< 0. However, consider now the dispersion relati@(k)
b1 =MKk?= 1+K? for the linear part of Eq(8) obtained after
b4 1D neglecting the transverse dimensions and performing the
transformation
where the sign of the nonlinear term is equal to the sign of
d,% 63/U. For the typical case of a red-detuned laser this Yr1=a.1expfi[K1z— w(K) 7]} (16)
becomes sgmi,7 5,/U)=sgnU). Aceves and Wabnitz14] i i i
have shown that these dimensionless equations have the ﬁ'[éhereby,kﬂ: k=k forthej==1 states andt is a relative

licit two-parameter gap soliton solutiofsee also Ref13 ngitudinal wave vector. The dispersion relation consists of
P P 9ap (2 £13) two branches, which in the absence of linear coupling take

sinT / @204 o¥il'\V ; . the form of two parabolas corresponding to the free dynam-
== -, +ir) secVE 01—) e*'7, ics of the internal statds-1). However, the linear coupling
AY\/E\ e’+e between these states results in an avoided crossiker @t
_ (120  see Fig. 1. If the system is in a superposition of eigenstates
A sin F/ e?f+e*l pertaining to the lower branch of the dispersion relation, then
N y 2 \ N @204 =il at the crossing it can be ascribedegativeeffective mass.
One can thus expect that in this case the system can support
with —1<v<1 a parameter that controls the soliton veloc-soliton solutions even though the interaction is repulsive. In

i(|¢1|2+|¢—1|2)(

eiia',

b=

Y 0+ir
sec _?

ity, 0<I'<m a shape parameter, and contrast, for an attractive interaction soliton creation should
be possible in all regions of the spectrum with positive ef-
1-p\14 1 fective mass, but it is na priori clear whether our proposed
A= 1+o0) ' Y7 102 (13 scheme would present an advantage over previous schemes

in this cas€3,4]. For this reason we hereinafter concentrate
on the case of a repulsive interaction since that is the case in
which bright solitons are now predicted and this represents
Thus the optical trapping geometry we propose here can suphe major advantage of our scheme, i.e., the lifting of the
port atomic gap solitons under the appropriate conditionstestriction to negative scattering lengths for bright soliton
Rather than dwell on the details of these soliton solutions, irformation.
Sec. Il B we give a physically motivated discussion of how From the dispersion relation picture, one can easily infer
these gap solitons arise and their properties. further properties of repulsive interaction solitons. First, they
Having established that our system can support bright gapill exist only for weak enough dispersion, as the lower
solitons for both attractive and repulsive interactions, oubranch of the dispersion curve has a region with negative
goal in the remainder of this paper is to demonstrate throughurvature only as long as the dimensionless ndss0.5.

#=—ysinl'(z—v7), o=—ycosl'(vz—7). (14
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extension of the scaled wave functign as well as the total
norm fdv (| 1)+ |_1]?), is of order unity?

In order to obtain estimates for the characteristic length,
time, and density introduced in Eq&)—(7) we use the pa-
rameter values of the Na experiment of Rdf8] as a guid-
ance. For sodiuml’=61 MHz, the saturation intensiti;
=6.2 mW/cnf, and the resonance wavelength,
=589 nm. Choosing the trap wavelength to be far red de-
tuned from this value, witl\;=985 nm and a maximum
laser intensityl~1 kW/cn?, one obtains a characteristic
scalet, for the time evolution of the condensate of the order
of 50 us. The characteristic length is obtained by multipli-
cation with the recoil velocity,..=1.8 cm/s, which yields
l;~1—2 pm. This yields the dimensionless mags=0.1.

Finally, the order of magnitude of the characteristic density
pc=10" cm~3, which means that a soliton typically con-
tains of the order ofp.l2~100-1000 atoms. These esti-
mates are confirmed by our numerical simulations, which
show that the typical extension of a soliton is sevégain

] ) ] ] the z direction and about onk, in the transverse direction
Also, the maximum possible velocity can be estimated to bgnq contains about 1000 atoms.

of the order off 1—(2M)*®]¥?, which is the group velocity Our numerical simulations show that the maximum di-
at the pointstk,=* ((2M) ~2"—1 of vanishing curvature mensionless atomic density in a soliton is always of the order
in the dispersion relation. Finally, for a soliton at rest theof p,,=0.1, which appears to produce the nonlinearity nec-
contributions of the internal statd&) and|—1) will ap-  essary to balance the effects of dispersion. From this value it
proximately be equal, but solitons traveling with increasingis possible to obtain a first estimate of the transverse confine-
positive (negative velocity will be increasingly dominated ment of the condensate required in our two-dimensional
by the|1) (]—1)) contribution. model: We assume that the transverse spatial dependence of

This qualitative discussion is in agreement with the anathe atomic density can be modeled as the normalized ground-
Iytic results of Ref.[14]. More precisely, the solutions of state densityg(X) of the harmonic trap potentiab’(X)

Ref. [14] are solitary waves. In the following, we will be :mwi)(?/z [6]. The soliton density can hence be roughly
concerned with the creation of long-lived localized wave-estimated asp(R)=0(Z)®(AZ—2Z)g(X)N/AZ, where
packet structures that are brought about by the interplay beg (z) is the Heaviside step functio, a typical total number
tween nonlinearity and dispersion described above. We wilpf atoms in the soliton, and Z its length. From this condi-
continue to refer to these structures as gap solitons for simion, using the typical values fdX and AZ previoulsy dis-
plicity. _ _ _ cussed leads to a lower limit fas, in the range between 100

To conclude this section we point out that although theand 1000 Hz. Altogether, these various estimates are well
dispersive properties of the light-induced grating appliedwithin experimental reach.
along thez axis are employed to produce a negative effective
mass along that axis, the effective mass along the two trans-
verse axes remains positive, that is, the system acquires an
effective-mass tensor that is diagonal in the chosen coordi- Having characterized the idealized gap soliton solutions
nate system but not uniform. Therefore, the geometry emef Eq. (4) we now investigate whether they can be accessed
ployed here is expected to yield one-dimensioftaight)y  from realistic initial conditions. To this end, we study nu-
soliton effects only along the axis via the combination of merically the following situation: A condensate Nf, atoms
negative effective mass and repulsive nonlinearity. In parin the internal staté—1) is initially prepared in a conven-
ticular, the catastrophic self-focusing collapse associatetional optical dipole trap that provides only a tranverse con-
with the nonlinear Schidinger equation in two or more di- finement potentiaV,, the many-body interaction being re-
mensions[21] is not an issue here since, for a repulsivepulsive as before. The potentid]. is taken to be Gaussian,
nonlinearity, this would require the effective mass to bewith a trapping frequency, at the bottom. Axially, the
negative along two or more axes, which is not the case hereondensate is confined by a harmonic magnetic trap of fre-
quencyw,. At t=0 the magnetic trap is turned off and the
polarizations of the trapping light fields are switched to the
o -0~ configuration, withV, being unchanged.

We now turn to a discussion of the typical orders of mag- 1€ simulations reported here are performed in two spa-
nitude that characterize the soliton solutions of B). We  tial dimensionsc andz and this lends itself to fast numerical
note from the outset that the analytical solutions of IRed],
as well as our numerical simulations, indicate that these
characteristic scales can be directly inferred from the scale?Note that the precise values df andd. are only of relevance
variables in Eqs(5)—(7), which bring the Gross-Pitaevskii for the scaling between Eqél) and(8). They do not influence the
equations into dimensionless form. For example, the spatiassential physics of the system.

FIG. 1. Dispersion relation of the linear part of E§) for the
parameter valudl = 0.06. Thek value associated with a condensate
at rest is denoted bk, and the point of vanishing curvature is
indicated bykg.

IV. NUMERICAL RESULTS

C. Soliton estimates
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100

FIG. 2. Formation of a soliton out of an initial distribution. Depicted is the integrated demsfts; )= [dx[|¢(X,z;7)|?
+|¥_1(x,z;7)|?] in scaled variables. Parameter values are given in the text.

solution using the split-step fast-Fourier-transform method. Figure 2 shows an illustrative example for the formation
As a means of illustrating that gap soliton effects alongzhe of a soliton out of the initial distribution. It depicts the evo-
axis can survive the inclusion of transverse dimensions thifution of the transverse averaged atomic density
is justifed since self-focusing collapse, which is sensitive to
the number of dimensions, is not operative in our system and
thus our two-dimensional simulations can already be ex- N(Z?T):J’ dX|¢a(x,z 0>+ g1 (x,z;7)?], (17)
pected to capture the relevant physics without the added
computational time and complexity of going to more spatialas a function of the scaled variableandr. In this example,
dimensions. In order to estimate atom numbers the transfoik;=985 nm, the maximum intensity=0.88 kW/cn?, w,
mation between Eq$8) and(4) is performed after replacing =6000 s, »,=5100 s!, andV;,=0.9V,. The charac-
U by U/\(X?), where the variancéX?) is determined from teristic scales are thug=1.4 um andt.=77 us; the co-
the two-dimensional wave-packet structure that evolveckfficient M=0.06. We choosd dx d4y_4(x,z;0)|>=6.21,
from the simulation. which corresponds to an initial atom number of 2900, ap-
The main purpose of the numerical simulations is to showproximately. Figure 2 shows the formation of a soliton after
that gap solitons can be formed out of condensate wave fun@n initial transient phase having a duration ot 5Q,, ap-
tions whose initial parameters lie within a relatively broad proximately. This transient phase is characterized by strong
range. It is only necessary to choasg, w,, andNy such  “radiation losses.” They occur because half of the initial
that the spatial extension of the initial condensate and thetate pertains to the upper branch of the dispersion relation
atom number are comparable to typical soliton values. Thew(k) that cannot sustain solitons. The shape of the created
need not take on precisely defined values and the initial waveoliton is not stationary in time but appears to oscillate. Fur-
function does not have to match closely the form of a solitonther examination shows that norm of the —1 state is
However, the condensate will not couple effectively to aslightly larger than that of thg=1 state, as is expected for a
soliton if it is at rest initially. Such a situation corresponds tosoliton moving slowly in the negativedirection[14]. Figure
the point withk=k, in Fig. 1 where the effective massis still 3 shows the atomic density P(x,z)=|¢1(x,z;7)|?
positive k;>ko). The key to an efficient generation of soli- +|¢_4(x,z7)|? in the soliton atr=100. The soliton contains
tons is therefore to provide the condensate with an initiaabout 500 atoms. The inset depicts the longitudinally inte-
velocity V;,=%K;, /m close to the recoil velocity, inthez  grated densityfdZ|,(x,z;7)|?+|¢_1(x,z;7)|?] and the
direction. This may be achieved, e.g., by suddenly displacingransverse confinement potential in the shape of an inverted
the center of the magnetic trap. The initial wave function canGaussian. The soliton thus spreads out over half the width of
then be written asy_1(X,z,0)=¢4(X,z,0)explki,z) with  the potential well, approximately.
#4(X,2,0) the ground state of the combined optical and mag- Various numerical simulations were performed in order to
netic trap and;,=K,,l. [3]. It is thus placed in the vicinity assess the dependence of soliton formation on the various
of the avoided crossing. Experimentally, condensates havaitial parameters. When changing the atom numNgra
already been accelerated to velocities in this range by a simsoliton was formed over the whole investigated range be-
lar method in connection with the excitation of dipole oscil- tween 500 and 4000 atoms. With increasiNg and thus
lations[22]. increasing effects of the nonlinearity the final velocity of the
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in order to guarantee soliton formation, the lower bound be-

V(x) ing determined by the point of vanishing curvature in the
dispersion relation. Fov,;,>V, the initial wave function is
Q(x) situated more and more on the upper branch of the dispersion

relation so that the tendency to form solitons is diminished
rapidly.

V. SUMMARY AND CONCLUSION

In conclusion, we have demonstrated that gap solitonlike
structures can be created in a Bose condensate confined in an
optical dipole trap formed by two counterpopagating
(o*-07)-polarized laser beams. Bright solitons can be
formed not only for atomic species with attractive interac-
tions but also in the repulsive case. This is rendered possible
because the atoms can be ascribed a negative effective mass
if their velocity is close to the recoil velocity. The repulsive
interaction solitons are inherently superpositions of two hy-
perfine Zeeman sublevels. The discussion of characteristic

FIG. 3. Atomic density profile P(x,2)=|y(x,z;7)|? scales a_nd numerical simulations indicated th_at the aqtu_al
+]¢_4(x,z:7)|? of the soliton of Fig. 2 at=100. The inset shows observation of these structures should_ b_g _ach|evable within
the integrated densityQ(x)=[dZ|,(x.z;7)|2+|_(x,z;7)|2]  the realm of current experimental possibilities.
and the transverse confinement potervi@x). In our theoretical treatment spontaneous emission was ne-

glected, an approximation justified by the large detunings in
soliton changed from negative to positive values. For largdhe optical tra 18]. The effects of antiresonant terms, which
N, a tendency to form two-soliton wave packets out of the'Vere also ignored, might be of more importance. This ques-
initial state was observed; however, the formation of each ofion as well as three-dimensional numerical studies, will be
these solitons is accompanied by large radiation losses thit€ subject of future work.
destabilize the other one. As to the transverse confinement
parameter w, soliton formation was observed fot,
=4000 s At w,=2000 s! a stable structure was no  We have benefited from numerous discussions with E. V.
longer attained, which is in rough agreement with the esti-Goldstein. This work was supported in part by the Office of
mate given above. Whereas these numbers indicate a relstaval Research under Contract No. 14-91-J1205, by the Na-
tively large freedom in the choice dfy and wy (for w, tional Science Foundation under Grant No. PHY95-07639,
similar results can be expectgd somewhat more restrictive by the U.S. Army Research Office, and by the Joint Services
condition is placed on the initial velocity;,. Its value  Optics Program. S.P. was partially supported by the Studien-
should be chosen from the interval betweerM).8nd 1.0/, stiftung des Deutschen Volkes.
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