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Creation of gap solitons in Bose-Einstein condensates

O. Zobay, S. Po¨tting, P. Meystre, and E. M. Wright
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

~Received 20 May 1998!

We discuss a method to launch gap solitonlike structures in atomic Bose-Einstein condensates confined in
optical traps. Bright vector solitons consisting of a superposition of two hyperfine Zeeman sublevels can be
created for both attractive and repulsive interactions between the atoms. Their formation relies on the dynamics
of the atomic internal ground states in two far-off-resonance counterpropagating (s1-s2)-polarized laser
beams that form the optical trap. Numerical simulations show that these solitons can be prepared from a
one-component state provided with an initial velocity.@S1050-2947~99!03001-2#

PACS number~s!: 03.75.Fi, 05.30.Jp, 42.50.Vk
-
m

m
on
ry
e

.g

d
o
ic

on
h
t
i

on
th

ro
no

gh

te
er
tic
a
s
e

l-
f
ti
id
in
p
n-
d
o

this
ns
of

ive
hey
nd
es
of

r to
ns,

er-
se
te.
nt

ived
-
tes
ion

es
ap
en-
ec.

lly,

ic
ent

aps
d

at is
con-

so-
d

tive
I. INTRODUCTION

The Gross-Pitaevskii equation~GPE! has been used re
cently to successfully explain various experiments on ato
Bose-Einstein condensates~see, e.g., the references in@1,2#!
and its validity for the description of the condensate dyna
ics at zero temperature is now well accepted. A further c
firmation would be provided by the observation of solita
matter waves, the existence of which is generic to nonlin
Schrödinger wave equations such as the GPE@3,4#. Such
solitary waves could also find applications in the future, e
in the diffractionless transport of condensates.

Various theoretical studies of this problem have alrea
been performed, predicting in particular the existence
bright solitons, with corresponding spatially localized atom
density profiles, for condensates with attractive interacti
@2#. Research on condensates with repulsive interactions
focused on the formation of gray solitons that correspond
dips in the atomic density. Their creation was investigated
Refs.@1,5#, general properties were discussed in@6#, and Ref.
@2# worked out the analogy to the Josephson effect.

Complementary and previous to this work, the formati
of atomic solitons was also examined theoretically in
context of nonlinear atom optics@7–12#. In these studies the
interaction between the atoms was assumed to result f
laser-induced dipole-dipole forces, but this theory has
been experimentally tested so far.

The reliance on attractive interactions to achieve bri
matter-wave solitons in Bose-Einstein condensates is
course a serious limitation, due to the difficulties associa
with achieving condensation in the first place for such int
actions. The purpose of the present article is the theore
exposition of an experimentally realizable geometry that
lows one to create bright gap solitonlike structures in Bo
condensatesfor both attractive and repulsive signs of th
two-body scattering length.Gap solitons result from the ba
ance of nonlinearity and the effective linear dispersion o
coupled system, e.g., counterpropagating waves in a gra
structure, and appear in the gaps associated with avo
crossings. Gap solitons have previously been studied
variety of physical contexts, but particularly in nonlinear o
tics @13#. They were also studied in the framework of no
linear atom optics@8#, but in this case the two states involve
are connected by an optical transition and the effects of sp
PRA 591050-2947/99/59~1!/643~6!/$15.00
ic

-
-

ar

.,

y
f

s
as
o
n

e

m
t

t
of
d
-
al
l-
e

a
ng
ed
a

-

n-

taneous emission can cause significant problems@9#.
Several main reasons motivate our renewed interest in

problem. First, we already mentioned that bright gap solito
are known to exist in nonlinear systems irrespective
whether the nonlinear interaction is repulsive or attract
@14#. With regard to atomic condensates this means that t
should be observable, at least in principle, also for Na a
Rb, where the positive interatomic scattering length giv
rise to a repulsive mean interaction. Further, the study
bright solitary waves is of interest as they might be easie
detect than gray ones and they could find future applicatio
e.g., in atomic interferometry@12#. An additional reason to
study atomic gap solitons is the fact that they consist inh
ently of a superposition of two internal states, in our ca
two different Zeeman sublevels of the atomic ground sta
As such, they offer a further example of a multicompone
Bose condensate, the study of which has already rece
much interest recently@15–17#. Finally, the recent demon
stration of far-off-resonance dipole traps for condensa
opens up the way to the ‘‘easy’’ generation and manipulat
of such spinor systems.

This paper is organized as follows. Section II describ
our model. The physics relevant for the generation of g
solitons and orders of magnitudes for the various experim
tal parameters involved are discussed in Sec. III, while S
IV presents a summary of our numerical results. Fina
conclusions are given in Sec. V.

II. MODEL

The situation we consider for the generation of atom
gap solitons makes use of the recently achieved confinem
of Bose condensates in far-off-resonance optical dipole tr
@18#. We consider explicitly a trap consisting of two focuse
laser beams of frequencyv l counterpropagating in theZ di-
rection and with polarizationss1 and s2, respectively.
These lasers are used to confine a Bose condensate th
assumed for concreteness to consist of Na atoms. The
densate is initially prepared in theug,Fg51,Mg521&
atomic ground state. For lasers far detuned from the re
nance frequencyva of the nearest transition to an excite
hyperfine multipletue,Fe ,Me52Fe , . . . ,Fe& the dynamics
of a single atom in the trap can be described by an effec
Hamiltonian of the form@19#
643 ©1999 The American Physical Society
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He f f5
P2

2m
1d0\d8~R!u0&^0u

1d1\d8~R!~ u21&^21u1u1&^1u!

1d2\d8~R!~ u1&^21ue2iK lZ1u21&^1ue22iK lZ!,

~1!

which is derived by adiabatically eliminating the excite
states in the dipole and rotating wave approximations. In
Hamiltonian~1!, the operatorsR andP denote the center-of
mass position and momentum of the atom of massm, the ket
u j & labels the magnetic sublevel of the Na ground sta
u j &↔ug,Fg51,Mg5 j &, andKl5v l /c. Furthermore,

d8~R!5ds~R!/2, ~2!

where we have introduced the detuningd5v l2va and the
position-dependent saturation parameter

s~R!5
D 2E 2~R!

\2~d21G2/4!
.
D 2E 2~R!

\2d2
. ~3!

In this expression,D denotes the reduced dipole mome
between the statesug& andue&, G is the upper to lower state
spontaneous emission rate, andE(R) is the slowly varying
laser field amplitude at pointR, the plane-wave factors
exp@i(6KlZ2vlt)# having already been removed from th
counterpropagating waves. In the following, we assume
E, which is identical for both fields, varies only in the tran
verseX andY directions and is constant along the trap axisZ:
This approximation is valid if the longitudinal extension
the confined Bose-Einstein condensate is much less than
Rayleigh range of the trapping fields, a condition we assu
is satisfied. The numerical coefficientsdj , which depend on
the specific value ofFe , are of the order of or somewhat les
than unity. Note that except insofar asG appears in the satu
ration parameters(R), the effects of spontaneous emissi
are neglected in this description.1

The first term in the single-particle Hamiltonian~1! de-
scribes the quantized center-of-mass atomic motion, the
ond and third terms describe the~position dependent! light
shifts of thej 50,61 states, and the final term, proportion
to d2 , describes the coupling between thej 561 states by
the counterpropagating fields. For example, coupling

1In the discussion of the atomic dynamics and Eq.~1! we have
assumed that the initial state is coupled only to one excited hy
fine multiplet. However, in the optical trap the detuning of the la
frequency is large compared even to the fine-structure splitting
the excited states, so that in principle several different hyper
multiplets should be taken into account. Fortunately, the couplin
any of these multiplets gives rise to addititional contributions to E
~1! that are of the same analytical structure as the one given ab
Only the values ofdj , D, andG are different. This means that Eq
~1! may still be used in this case, the effects of the additional m
tiplets being included as modifications of the values of the coe
cientsdj . For simplicity, however, we will use the values of th
Fg51→Fe51 transition in the following, i.e.,d051/2, d151/4,
andd2521/4 @19#.
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tween the j 521 and j 51 states arises from the proce
involving absorption of ones1 photon and subsequent re
emission of as2 photon. However, since the circularly po
larized fields are counterpropagating, this process also
volves a transfer of linear momentum 2\Kl along theZ axis
and this accounts for the appearance of the spatially peri
factors, or gratings, exp(62iKlZ) in the coupling terms. As
shown below, these gratings provide the effective linear d
persion that allows for gap solitons in combination with t
nonlinearity due to many-body effects.

To describe the dynamics of the Bose condensate we
troduce the macroscopic wave functionC(R,t)
5@C1(R,t),C21(R,t)#T normalized to the total number o
particles N. Here C0 is omitted as it is coupled toC61
neither byHe f f nor by the nonlinearity if it vanishes initially
which we assume in the following. The time evolution of th
spinor C(R,t) is determined by the two-component Gros
Pitaevskii equation

i\
]C

]t
5He f fC~R,t !

1S @UauC1~R,t !u21UbuC21~R,t !u2#C1~R,t !

@UbuC1~R,t !u21UauC21~R,t !u2#C21~R,t ! D .

~4!

In the following we approximate the nonlinearity coefficien
by Ua'Ub5U54p\2asc /m, with asc the s-wave scatter-
ing length.

To identify the key physical parameters for gap solit
formation, and to facilitate numerical simulations it is co
venient to reexpress Eq.~4! in a dimensionless form by in
troducing scaled variablest5t/tc , r5R/ l c , and c j

5C j /Arc with

tc51/d2d08 , ~5!

l c5tc\Kl /m, ~6!

rc5ud2\d08/Uu, ~7!

where d085d8(R50). Note that for our choice ofd25

21/4 and for red detuning, we haved2d08.0. Equation~4!
then reads

i
]C

]t
5F 2M¹21

d1d8~r !

d2d08
e2ikl zd8~r !/d08

e22ikl zd8~r !/d08 2M¹21
d1d8~r !

d2d08

G S c1

c21
D

1@sgn~d2\d08/U !~ uc1u21uc21u2!#S c1

c21
D , ~8!

where¹2 is the Laplacian in scaled variables and we ha
introduced the dimensionless mass-related parameter

M5d2d08m/2\Kl
2 , ~9!

so thatkl5Kl l c51/2M .
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III. GAP SOLITONS

In this section we discuss the conditions under which
~8! yields gap soliton solutions. To proceed we first intr
duce the reduced equations that yield gap solitons and
discuss the physics underlying their formation. Estimates
the orders of magnitude of various parameters characteri
atomic gap solitons are also given.

A. Reduced soliton equations

Two key approximations underlie the appearance of
solitons. First, we neglect all transverse variations of
electromagnetic and atomic fields, thereby reducing
problem to one spatial variablez. Furthermore, we can se
d8(r )/d0851. Second we express the atomic fields in t
form

c61~z,t!5exp$ i @6klz2~1/4M21!t#%f61~z,t!
~10!

and we assume that the atomic field envelopesf61(z,t) vary
slowly in space in comparison to the plane-wave factors
have been separated out, so that only first-order spatial
rivatives of the field envelopes need be retained and only
spatial harmonics indicated included. Under these assu
tions Eq.~8! reduces to

i S ]

]t
6

]

]zD S f1

f21
D 5S 0 1

1 0D S f1

f21
D

6~ uf1u21uf21u2!S f1

f21
D , ~11!

where the sign of the nonlinear term is equal to the sign
d2\d08/U. For the typical case of a red-detuned laser t
becomes sgn(d2\d08/U)5sgn(U). Aceves and Wabnitz@14#
have shown that these dimensionless equations have th
plicit two-parameter gap soliton solutions~see also Ref.@13#!

f156
sin G

DgA2
S 2

e2u1e7 iG

e2u1e6 iGD v

sechS u7
iG

2 De6 is,

~12!

f2152
D sin G

gA2
S 2

e2u1e7 iG

e2u1e6 iGD v

sechS u6
iG

2 De6 is,

with 21,v,1 a parameter that controls the soliton velo
ity, 0,G,p a shape parameter, and

D5S 12v
11v D 1/4

, g5
1

A12v2
, ~13!

u52g sin G~z2vt!, s52g cosG~vz2t!. ~14!

Thus the optical trapping geometry we propose here can
port atomic gap solitons under the appropriate conditio
Rather than dwell on the details of these soliton solutions
Sec. III B we give a physically motivated discussion of ho
these gap solitons arise and their properties.

Having established that our system can support bright
solitons for both attractive and repulsive interactions, o
goal in the remainder of this paper is to demonstrate thro
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numerical simulations that these solitons, or at least a r
nant of them, can arise for realistic atomic properties and
they can be created from physically reasonable initial con
tions. In particular, the exact gap solitons solutions are
herent superpositions of thej 561 states where the phas
and amplitude of the superposition vary spatially in a spec
manner: It is nota priori clear that these gap solitons can
accessed from an initial state purely in thej 521 state for
example. Furthermore, inclusion of transverse variations
spatial derivatives beyond the slowly varying envelope
proximation introduced above could, in principle, destroy t
solitons@20#. For the numerical simulations to be present
here we work directly with Eq.~8!, which does not invoke
these approximations.

B. Intuitive soliton picture

A simple and intuitively appealing explanation of the re
son why Eq.~8! supports soliton solutions goes as follow
Consider first the one-dimensional nonlinear Schro¨dinger
equation

i ċ52M]2c/]z21gucu2c. ~15!

This equation hasbright soliton solutions if the effects o
dispersion and nonlinearity can cancel each other. For thi
happen, it is necessary thatMg,0. In the usual case the
mass-related coefficientM is positive, so that bright solitons
can exist only in condensates with attractive interactiong
,0. However, consider now the dispersion relationv(k)
5Mk26A11k2 for the linear part of Eq.~8! obtained after
neglecting the transverse dimensions and performing
transformation

c615a61exp$ i @k61z2v~k!t#%. ~16!

Thereby,k615k6kl for the j 561 states andk is a relative
longitudinal wave vector. The dispersion relation consists
two branches, which in the absence of linear coupling ta
the form of two parabolas corresponding to the free dyna
ics of the internal statesu61&. However, the linear coupling
between these states results in an avoided crossing atk50;
see Fig. 1. If the system is in a superposition of eigensta
pertaining to the lower branch of the dispersion relation, th
at the crossing it can be ascribed anegativeeffective mass.
One can thus expect that in this case the system can sup
soliton solutions even though the interaction is repulsive.
contrast, for an attractive interaction soliton creation sho
be possible in all regions of the spectrum with positive
fective mass, but it is nota priori clear whether our propose
scheme would present an advantage over previous sche
in this case@3,4#. For this reason we hereinafter concentra
on the case of a repulsive interaction since that is the cas
which bright solitons are now predicted and this represe
the major advantage of our scheme, i.e., the lifting of
restriction to negative scattering lengths for bright solit
formation.

From the dispersion relation picture, one can easily in
further properties of repulsive interaction solitons. First, th
will exist only for weak enough dispersion, as the low
branch of the dispersion curve has a region with nega
curvature only as long as the dimensionless massM,0.5.
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Also, the maximum possible velocity can be estimated to
of the order of@12(2M )2/3#3/2, which is the group velocity
at the points6k056A(2M )22/321 of vanishing curvature
in the dispersion relation. Finally, for a soliton at rest t
contributions of the internal statesu1& and u21& will ap-
proximately be equal, but solitons traveling with increasi
positive ~negative! velocity will be increasingly dominated
by the u1& (u21&) contribution.

This qualitative discussion is in agreement with the a
lytic results of Ref.@14#. More precisely, the solutions o
Ref. @14# are solitary waves. In the following, we will b
concerned with the creation of long-lived localized wav
packet structures that are brought about by the interplay
tween nonlinearity and dispersion described above. We
continue to refer to these structures as gap solitons for s
plicity.

To conclude this section we point out that although
dispersive properties of the light-induced grating appl
along thez axis are employed to produce a negative effect
mass along that axis, the effective mass along the two tr
verse axes remains positive, that is, the system acquire
effective-mass tensor that is diagonal in the chosen coo
nate system but not uniform. Therefore, the geometry e
ployed here is expected to yield one-dimensional~bright!
soliton effects only along thez axis via the combination o
negative effective mass and repulsive nonlinearity. In p
ticular, the catastrophic self-focusing collapse associa
with the nonlinear Schro¨dinger equation in two or more di
mensions@21# is not an issue here since, for a repulsi
nonlinearity, this would require the effective mass to
negative along two or more axes, which is not the case h

C. Soliton estimates

We now turn to a discussion of the typical orders of ma
nitude that characterize the soliton solutions of Eq.~4!. We
note from the outset that the analytical solutions of Ref.@14#,
as well as our numerical simulations, indicate that th
characteristic scales can be directly inferred from the sc
variables in Eqs.~5!–~7!, which bring the Gross-Pitaevsk
equations into dimensionless form. For example, the spa

FIG. 1. Dispersion relation of the linear part of Eq.~8! for the
parameter valueM50.06. Thek value associated with a condensa
at rest is denoted bykl and the point of vanishing curvature
indicated byk0 .
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extension of the scaled wave functionc, as well as the total
norm *dv(uc1u21uc21u2), is of order unity.2

In order to obtain estimates for the characteristic leng
time, and density introduced in Eqs.~5!–~7! we use the pa-
rameter values of the Na experiment of Ref.@18# as a guid-
ance. For sodium,G561 MHz, the saturation intensityI s
56.2 mW/cm2, and the resonance wavelengthla
5589 nm. Choosing the trap wavelength to be far red
tuned from this value, withl l5985 nm and a maximum
laser intensityI'1 kW/cm2, one obtains a characteristi
scaletc for the time evolution of the condensate of the ord
of 50 ms. The characteristic length is obtained by multip
cation with the recoil velocityv rec51.8 cm/s, which yields
l c'122 mm. This yields the dimensionless massM'0.1.
Finally, the order of magnitude of the characteristic dens
rc51014 cm23, which means that a soliton typically con
tains of the order ofrcl c

3'10021000 atoms. These est
mates are confirmed by our numerical simulations, wh
show that the typical extension of a soliton is severall c in
the z direction and about onel c in the transverse direction
and contains about 1000 atoms.

Our numerical simulations show that the maximum
mensionless atomic density in a soliton is always of the or
of rm50.1, which appears to produce the nonlinearity n
essary to balance the effects of dispersion. From this valu
is possible to obtain a first estimate of the transverse confi
ment of the condensate required in our two-dimensio
model: We assume that the transverse spatial dependen
the atomic density can be modeled as the normalized grou
state densityg(X) of the harmonic trap potentiald8(X)
5mvx

2X2/2 @6#. The soliton density can hence be rough
estimated as r(R)5Q(Z)Q(DZ2Z)g(X)N/DZ, where
Q(Z) is the Heaviside step function,N a typical total number
of atoms in the soliton, andDZ its length. From this condi-
tion, using the typical values forN and DZ previoulsy dis-
cussed leads to a lower limit forvx in the range between 10
and 1000 Hz. Altogether, these various estimates are
within experimental reach.

IV. NUMERICAL RESULTS

Having characterized the idealized gap soliton solutio
of Eq. ~4! we now investigate whether they can be acces
from realistic initial conditions. To this end, we study n
merically the following situation: A condensate ofN0 atoms
in the internal stateu21& is initially prepared in a conven
tional optical dipole trap that provides only a tranverse co
finement potentialVc , the many-body interaction being re
pulsive as before. The potentialVc is taken to be Gaussian
with a trapping frequencyvx at the bottom. Axially, the
condensate is confined by a harmonic magnetic trap of
quencyvz . At t50 the magnetic trap is turned off and th
polarizations of the trapping light fields are switched to t
s1-s2 configuration, withVc being unchanged.

The simulations reported here are performed in two s
tial dimensionsx andz and this lends itself to fast numerica

2Note that the precise values ofd1 andd2 are only of relevance
for the scaling between Eqs.~4! and~8!. They do not influence the
essential physics of the system.
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FIG. 2. Formation of a soliton out of an initial distribution. Depicted is the integrated densityN(z;t)5*dx@ uc1(x,z;t)u2

1uc21(x,z;t)u2# in scaled variables. Parameter values are given in the text.
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solution using the split-step fast-Fourier-transform meth
As a means of illustrating that gap soliton effects along thz
axis can survive the inclusion of transverse dimensions
is justifed since self-focusing collapse, which is sensitive
the number of dimensions, is not operative in our system
thus our two-dimensional simulations can already be
pected to capture the relevant physics without the ad
computational time and complexity of going to more spa
dimensions. In order to estimate atom numbers the trans
mation between Eqs.~8! and~4! is performed after replacing
U by U/A^X2&, where the variancêX2& is determined from
the two-dimensional wave-packet structure that evolv
from the simulation.

The main purpose of the numerical simulations is to sh
that gap solitons can be formed out of condensate wave f
tions whose initial parameters lie within a relatively bro
range. It is only necessary to choosevx , vz , andN0 such
that the spatial extension of the initial condensate and
atom number are comparable to typical soliton values. T
need not take on precisely defined values and the initial w
function does not have to match closely the form of a solit

However, the condensate will not couple effectively to
soliton if it is at rest initially. Such a situation corresponds
the point withk5kl in Fig. 1 where the effective mass is st
positive (kl.k0). The key to an efficient generation of sol
tons is therefore to provide the condensate with an ini
velocity Vin5\Kin /m close to the recoil velocityVr in theZ
direction. This may be achieved, e.g., by suddenly displac
the center of the magnetic trap. The initial wave function c
then be written asc21(x,z,0)5cg(x,z,0)exp(ikinz) with
cg(x,z,0) the ground state of the combined optical and m
netic trap andkin5Kinl c @3#. It is thus placed in the vicinity
of the avoided crossing. Experimentally, condensates h
already been accelerated to velocities in this range by a s
lar method in connection with the excitation of dipole osc
lations @22#.
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Figure 2 shows an illustrative example for the formati
of a soliton out of the initial distribution. It depicts the evo
lution of the transverse averaged atomic density

N~z;t!5E dx@ uc1~x,z;t!u21uc21~x,z;t!u2#, ~17!

as a function of the scaled variablesz andt. In this example,
l l5985 nm, the maximum intensityI 50.88 kW/cm2, vx
56000 s21, vz55100 s21, andVin50.9Vr . The charac-
teristic scales are thusl c51.4 mm and tc577 ms; the co-
efficient M50.06. We choose*dx dzuc21(x,z;0)u256.21,
which corresponds to an initial atom number of 2900, a
proximately. Figure 2 shows the formation of a soliton af
an initial transient phase having a duration of 50tchar , ap-
proximately. This transient phase is characterized by str
‘‘radiation losses.’’ They occur because half of the initi
state pertains to the upper branch of the dispersion rela
v(k) that cannot sustain solitons. The shape of the crea
soliton is not stationary in time but appears to oscillate. F
ther examination shows that norm of thej 521 state is
slightly larger than that of thej 51 state, as is expected for
soliton moving slowly in the negativez direction@14#. Figure
3 shows the atomic densityP(x,z)5uc1(x,z;t)u2

1uc21(x,z;t)u2 in the soliton att5100. The soliton contains
about 500 atoms. The inset depicts the longitudinally in
grated density*dz@ uc1(x,z;t)u21uc21(x,z;t)u2# and the
transverse confinement potential in the shape of an inve
Gaussian. The soliton thus spreads out over half the widt
the potential well, approximately.

Various numerical simulations were performed in order
assess the dependence of soliton formation on the var
initial parameters. When changing the atom numberN0 a
soliton was formed over the whole investigated range
tween 500 and 4000 atoms. With increasingN0 and thus
increasing effects of the nonlinearity the final velocity of t
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soliton changed from negative to positive values. For la
N0 a tendency to form two-soliton wave packets out of t
initial state was observed; however, the formation of each
these solitons is accompanied by large radiation losses
destabilize the other one. As to the transverse confinem
parameter vx soliton formation was observed forvx
>4000 s21. At vx52000 s21 a stable structure was n
longer attained, which is in rough agreement with the e
mate given above. Whereas these numbers indicate a
tively large freedom in the choice ofN0 and vx ~for vz
similar results can be expected!, a somewhat more restrictiv
condition is placed on the initial velocityVin . Its value
should be chosen from the interval between 0.8Vr and 1.0Vr

FIG. 3. Atomic density profile P(x,z)5uc1(x,z;t)u2

1uc21(x,z;t)u2 of the soliton of Fig. 2 att5100. The inset shows
the integrated densityQ(x)5*dz@ uc1(x,z;t)u21uc21(x,z;t)u2#
and the transverse confinement potentialV(x).
v
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e
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nt
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in order to guarantee soliton formation, the lower bound
ing determined by the point of vanishing curvature in t
dispersion relation. ForVin.Vr the initial wave function is
situated more and more on the upper branch of the disper
relation so that the tendency to form solitons is diminish
rapidly.

V. SUMMARY AND CONCLUSION

In conclusion, we have demonstrated that gap soliton
structures can be created in a Bose condensate confined
optical dipole trap formed by two counterpopagati
(s1-s2)-polarized laser beams. Bright solitons can
formed not only for atomic species with attractive intera
tions but also in the repulsive case. This is rendered poss
because the atoms can be ascribed a negative effective
if their velocity is close to the recoil velocity. The repulsiv
interaction solitons are inherently superpositions of two h
perfine Zeeman sublevels. The discussion of character
scales and numerical simulations indicated that the ac
observation of these structures should be achievable wi
the realm of current experimental possibilities.

In our theoretical treatment spontaneous emission was
glected, an approximation justified by the large detunings
the optical trap@18#. The effects of antiresonant terms, whic
were also ignored, might be of more importance. This qu
tion, as well as three-dimensional numerical studies, will
the subject of future work.
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