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Mapping approach to the semiclassical description of nonadiabatic quantum dynamics
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Institute of Physical and Theoretical Chemistry, Technical University of Munich, D-85748 Garching, Germany
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~Received 3 August 1998!

A theoretical formulation is outlined that allows us to extend the semiclassical Van Vleck–Gutzwiller
formulation to the description of nonadiabatic quantum dynamics on coupled potential-energy surfaces. In this
formulation the problem of a classical treatment ofdiscrete quantum degrees of freedom~DoF! such as
electronic states is bypassed by transforming the discrete quantum variables to continuous variables. The
mapping approach thus consists of two steps: an exact quantum-mechanical transformation of discrete onto
continuous DoF~the ‘‘mapping’’! and a standard semiclassical treatment of the resulting dynamical problem.
Extending previous work@G. Stock and M. Thoss, Phys. Rev. Lett.78, 578 ~1997!#, various possibilities for
obtaining a mapping from discrete to continuous DoF are investigated, in particular the Holstein-Primakoff
transformation, Schwinger’s theory of angular momentum@in Quantum Theory of Angular Momentum, edited
by L. C. Biedenharn and H. V. Dam~Academic, New York, 1965!#, and the spin-coherent-state representation.
Although all these representations are exact on the quantum-mechanical level, the accuracy of their semiclas-
sical evaluation is shown to differ considerably. In particular, it is shown that a generalization of Schwinger’s
theory appears to be the only transformation that provides an exact description of a generalN-level system
within a standard semiclassical evaluation. Exploiting the connection between spin-coherent states and
Schwinger’s representation for a two-level system, furthermore, a semiclassical initial-value representation of
the corresponding spin-coherent-state propagator is derived. Although this propagator represents an approxi-
mation, its appealing numerical features make it a promising candidate for the semiclassical description of
large molecular systems with many DoF. Adopting various spin-boson-type models~i.e., a two-level system
coupled to a single or many DoF!, computational studies are presented for Schwinger’s and the spin-coherent-
state representation, respectively. The performance of the semiclassical approximation in the case of regular
and chaotic classical dynamics as well as for multimode electronic relaxation dynamics is discussed in some
detail. @S1050-2947~99!01901-0#

PACS number~s!: 03.65.Sq, 31.15.Gy, 03.65.Ge
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I. INTRODUCTION

The description of quantum-mechanical dynamics e
ploying a semiclassical approach has been an active fiel
research since the first days of quantum mechanics@1#. Is-
sues raised include the fundamental question of the clas
limit of quantum mechanics, the understanding and interp
tation of quantum effects through a classical analysis,
the modeling of dynamical processes in complex syste
that defy a rigorous quantum-mechanical treatment.

A classical description is well established in cases wh
both the system under consideration and the observable
calculated have an obvious classical analog~say the
translational-energy distribution after a scattering event!. It is
less clear, however, how to incorporate discrete quant
mechanical degrees of freedom~DoF! into a classical theory
For example, consider a two-level system coupled to one
many continuous DoF. Accounting for a large variety of ph
nomena in chemical and solid-state physics as well as
quantum optics, this model represents one of the best stu
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problems@2#. Yet, even for this simple system, the classic
limit is not completely understood.

A formal solution to the problem can be obtained within
path-integral formulation. The idea is to construct a path
tegral for the full problem, and subsequently employ
stationary-phase evaluation for the continuous DoF. Ado
ing this formalism for a description of nonadiabatic scatt
ing, Pechukas showed that the classical particles~i.e., the
nuclei! move in a nonlocal force field generated by the qua
tum particles~i.e., the electrons! @3#. Employing a classical-
path-type evaluation of the electronic transition-amplitud
the ‘‘quantum force’’ becomes localized in space and tim
@4,5#, thus leading to Stu¨ckelberg’s theory of curve crossing
@6#. In this formulation, nonadiabatic transitions of classic
trajectories are described in terms of a connection formula
the Wentzel-Kramers-Brillouin wave functions associat
with the two coupled electronic states. The intuitively a
pealing picture of trajectories hopping between coup
potential-energy surfaces has been adopted by a numb
semiclassical@4–10# and quantum-classical@5,11# descrip-
tions. A problem of this approach to the semiclassical
scription of nonadiabatic dynamics is, however, that in g
eral only the full ~and computationally prohibitive! path-
integral formulation is ‘‘semiclassically exact’’ in the sens
that it requires only the basic semiclassical Van Vlec

i-
64 ©1999 The American Physical Society



ll
a

te
n

n

ns
nd

t

ha
di

er

si

o
te
th
-

b-
lo
th

le,
t

th

is
re
o

th
llu
g
is

nc
a
nd
la
rg

te
in
y

he
u

e
g
ti

pa

il-

i-
tan-

log
a-

of
-
in

s re-
o
se-
ing
nd

on-
h is
mi-

it is
us

ion
state
tion
ral
n of
-
quite
tion
k. In
las-
this
ork

y
nd

nd
the
in-
ical

ent
em.

tion
al

ear
his

a-
l as
de-
of

s its
es.

PRA 59 65MAPPING APPROACH TO THE SEMICLASSICAL . . .
Gutzwiller approximation@1# to the quantum propagator. A
other formulations appear to involve additional approxim
tions which often are difficult to control.

Some years ago, McCurdy, Meyer, and Miller sugges
an alternative way to the semiclassical description of no
diabatic dynamics@12–16#. Exploiting various quantum-
classical analogies including Heisenberg’s corresponde
principle@12#, a classical pseudopotential ansatz@13#, as well
as the correspondence of spin and classical angular mom
tum @15#, they constructed classical Hamiltonian functio
for the full vibronic system, thus treating both electronic a
nuclear DoF’s on the same dynamical~i.e., classical! footing.
The most successful version, sometimes referred to as
‘‘classical electron-analog’’ model@14#, is based on a
classical-path ansatz of the Hamiltonian function, and
been employed to several test problems including nona
batic collision processes@17#. In an extension to existing
classical-path formulations which do not account for int
ference effects of individual classical paths@18–22#, the
classical electron-analog model suggests a semiclas
treatment of the dynamics within classicalS-matrix theory
@23#. Although the idea of establishing a classical analog
is conceptionally appealing, the approach is not comple
satisfying from a theoretical point of view. Starting out wi
an approximate classical~rather than an exact quantum
mechanical! formulation, there are two interrelated pro
lems:~i! The formulations are not unique, i.e., various ana
gies result in different classical models. Furthermore,
formulations do not determine the boundary~or initial! con-
ditions of the semiclassical propagator.~ii ! The nature of the
approximations involved is difficult to specify. For examp
none of the models@12–16# are semiclassically exact, bu
give approximate results even for a two-level system@14#.

Recently we have proposed a ‘‘mapping approach’’ to
semiclassical description of nonadiabatic dynamics@24#. In
this formulation the problem of a classical treatment of d
crete quantum DoF is bypassed by transforming the disc
quantum variables to continuous variables. Based
Schwinger’s theory of angular momentum@25#, the mapping
of discrete DoF onto continuous DoF is achieved through
representation of spin operators by boson operators. To i
trate the concept, consider a molecular system comprisinN
electronic states andM vibrational modes: The basic idea
to ~i! map theN discrete DoF ontoN continuous DoF and~ii !
solve the resulting dynamical problem ofN1M continuous
DoF employing standard semiclassical methodology. Si
the mapping is quantum mechanically exact, the appro
allows us—without any further approximations—to exte
well-established techniques of classical trajectory calcu
tions to nonadiabatic problems on coupled potential-ene
surfaces.

As both electronic and nuclear DoF are formally trea
by classical mechanics, the classical limit of the mapp
formulation is in the same spirit as the models of McCurd
Meyer, and Miller. In particular, a requantized version of t
classical electron-analog model recently introduced by S
and Miller @26# is equivalent to the semiclassical limit of th
mapping proposed in Ref.@24#. However, since the mappin
approach establishes an equivalence of discrete and con
ous DoFon a quantum-mechanical level, this approach is
free from the problems associated with these models. In
-
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ticular, ~i! the mapping unambiguously defines the Ham
tonian as well as the boundary~or initial! conditions of the
semiclassical propagator, and~ii ! the approach is semiclass
cal exact since no additional assumption except for the s
dard semiclassical approximation is needed. Thequasiclas-
sical limit ~i.e., without semiclassical phases! of the mapping
approach and its relation to the classical electron-ana
models@12–16# as well as to other classical-path formul
tions @18–22# have been discussed in Ref.@27#.

Bosonization techniques such as Schwinger’s theory
angular momentum@25# and the Holstein-Primakoff trans
formation @28# are well known, and have been applied
various fields including nuclear physics@29#, solid-state
physics @30,31#, and quantum optics@32#. On a quantum-
mechanical level, all these representations are exact, thu
sulting in a completely equivalent formulation. This is n
longer true, however, if the transformed problem is sub
quently treated within a semiclassical framework. Depend
on the transformation under consideration, the validity a
accuracy of the semiclassical approximation may differ c
siderably. Since the very concept of the mapping approac
to use these transformations as a starting point for a se
classical treatment of nonadiabatic quantum dynamics,
essential to investigate the classical limit of vario
bosonization techniques.

An alternative concept to obtain a continuous descript
of discrete quantum variables is based on the coherent-
representation of the quantum system under considera
@33,34#. In particular, the spin-coherent-state path integ
has been used to investigate the semiclassical descriptio
spin systems@35–37#. At a first sight, the usage of spin
coherent states and the mapping approach appear to be
different concepts. However, there exists a close connec
between these approaches which is discussed in this wor
particular, we use the mapping method to derive a semic
sical spin-coherent-state propagator. It is shown that
propagator can be considered as a generalization of the w
by Suzuki@38#.

The outline of the paper is as follows. Section II briefl
reviews existing mapping formalisms for a spin system a
for the more general case of anN-level system. Furthermore
the connection of the mappings to the formalism of seco
quantization is discussed. Section III is concerned with
semiclassical evaluation of the mapping formalism. After
troducing the semiclassical propagator and its numer
implementation via an initial-value representation@39–44#,
the virtues and shortcomings of the semiclassical treatm
of several mappings are investigated for a two-level syst
It is shown that the mapping proposed in Ref.@24# appears to
be the only transformation that provides an exact descrip
of a generalN-level system within a standard semiclassic
evaluation. Adopting the well-known spin-boson model~i.e.,
a two-level system coupled to a single or many nucl
DoF!, we furthermore present computational studies for t
mapping. The performance of the semiclassical approxim
tion in the case of regular and chaotic dynamics as wel
for multimode relaxation dynamics is discussed in some
tail. Section IV discusses the semiclassical description
nonadiabatic dynamics via spin-coherent states as well a
connection to the mapping procedure. Section V conclud
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II. MAPPING FORMALISM

There are a variety of formalisms that allow for a ma
ping of a discrete quantum system onto a continuous an
~for reviews, see Refs.@29,30#!. The most prominent ex
amples are Schwinger’s theory of angular momentum@25#
and the Holstein-Primakoff transformation@28#. In this sec-
tion we briefly review both methods, and generalize the f
mulations to the representation ofN-level systems.

A. Spin system

Let us consider a spin DoF, which is described by the s
operatorsS1 , S2 , and S3 , with commutation relations (\
[1)

@Sj ,Sk#5 i e jklSl , ~2.1!

as well as the corresponding raising and lowering opera

S65S16 iS2 . ~2.2!

These operators act in the Hilbert space of spin statesusm&
with

S3usm&5musm&, 2s<m<s, s5 1
2 ,1,32 , . . . .

~2.3!

Consider, furthermore, a (2s11)-dimensional subspace o
the Hilbert space with fixeds. Then, according to Schwing
er’s theory of angular momentum@25#, this discrete spin
DoF can be represented by two bosonic oscillators descr
by creation and annihilation operatorsan

† andam with com-
mutation relations
i
tio
ti-
te
g

-
og

-
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ed

@an ,am
† #5dn,m ~2.4!

and basis statesun1 ,n2& which satisfy

a1
†a1un1 ,n2&5n1un1 ,n2&, ~2.5a!

a2
†a2un1 ,n2&5n2un1 ,n2&. ~2.5b!

The mapping relations read

S1→a2
†a1 , ~2.6a!

S2→a1
†a2 , ~2.6b!

S3→~a2
†a22a1

†a1!/2, ~2.6c!

usm&→
~a1

†!s2m~a2
†!s1m

A~s1m!! ~s2m!!
u01,02&5u~s2m!1 ,~s1m!2&.

~2.6d!

The idea of this transformation goes back to Jordan@45#.
Therefore, it is sometimes called Jordan-Schwinger repre
tation. The mapping preserves the commutation relati
~2.1!. As can be seen from Eq.~2.6d!, the image of the (2s
11)-dimensional spin Hilbert space is the subspace of
two-oscillator Hilbert space with 2s quantum of excitation—
the so-called physical subspace@29,46#. This subspace is in-
variant under the action of any operator which results
mapping~2.6! from an arbitrary spin operatorA(S1 ,S2 ,S3).
Thus, starting in this subspace, the system will always
main in it. As a consequence, the mapping yields the follo
ing identity for the matrix-elements of an operatorA
^smuAusm8&5^~s2m!1 ,~s1m!2uAu~s2m8!1 ,~s1m8!2u&, ~2.7!

whereA denotes the transformed operator which results fromA through the mapping relations~2.6!. In particular, ifA denotes
the time-evolution operator of the spin system, we have the the following exact identity for the propagator:

^smue2 iHtusm8&5^~s2m!1 ,~s1m!2ue2 iHt u~s2m8!1 ,~s1m8!2&. ~2.8!
the
rs
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n the
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-
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off
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In the Schwinger representation the identity operator
the spin Hilbert space is mapped onto the constant of mo
a1

†a11a2
†a2 . The existence of this constant of motion is u

lized by the Holstein-Primakoff transformation to elimina
one boson DoF, thus representing the spin DoF by a sin
oscillator @28#

S1→A2sa†A12a†a/2s, ~2.9a!

S2→A2sA12a†a/2sa, ~2.9b!

S3→a†a2s, ~2.9c!

usm&→
~a†!s1m

A~s1m!!
u0&5us1m&. ~2.9d!
n
n

le

The Holstein-Primakoff transformation also preserves
commutation relation~2.1!. Due to the square-root operato
in Eqs.~2.9!, however, the mutual adjointness ofS1 andS2

as well as the self-adjointness ofS3 is only guaranteed in the
physical subspace$u0&, . . . ,us1m&% of the transformation
@30#. This flaw of the Holstein-Primakoff transformation ou
side the physical subspace does not present a problem o
quantum-mechanical level of description. This is because
physical subspace again is invariant under the action of
operator which results from the mapping~2.9! of an arbitrary
spin operatorA(S1 ,S2 ,S3). As discussed in Sec. III B, how
ever, the square-root operators may cause serious prob
in the semiclassical evaluation of the Holstein-Primak
transformation.

Let us briefly mention some formal aspects of the abo
introduced formalism, which have been discussed in de
by Blaizot and Marshallek@29#. First, it is noted that both the
Schwinger and Holstein-Primakoff representations are
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unitary transformations in the usual sense. Nevertheles
transformation may be defined in terms of a formal mapp
operator acting in the fermionic-bosonic product Hilbe
space. Furthermore, the interrelation of the Schwinger re
sentation and the Holstein-Primakoff representation has b
investigated in the context of the quantization of tim
dependent self-consistent fields. It has been shown tha
representations are related to each other by a nonun
transformation. This lack of unitarity is a consequence of
nonexistence of a unitary polar decomposition of the crea
and annihilation operatorsan and an

† @47# and the resulting
difficulties in the definition of a proper phase operator
quantum optics@48#.

Finally, it is noted that there exist alternative mappings
spin to continuous DoF. For example, Ref.@30# discusses
various mappings which~like the Holstein-Primakoff trans
formation! represent a spin system by a single boson D
The possibility of utilizing spin-coherent states for this pu
pose is discussed in Sec. IV.

B. N-level system

Let us now consider anN-level system with basis state
ucn& (n51, . . . ,N) and the Hamiltonian

H5(
n,m

hnmucn&^cmu. ~2.10!

In obvious analogy to Schwinger’s theory of angular m
mentum, thisN-level system can be represented byN oscil-
lators, whereby the mapping relations for the operator
the basis states read@24#

ucn&^cmu→an
†am , ~2.11a!

ucn&→u01 , . . . ,1n , . . . ,0N&. ~2.11b!

Herean andam
† are the usual oscillator creation and anni

lation operators with bosonic commutation relations~2.4!,
and u01 , . . . ,1n , . . . ,0N& denotes a harmonic-oscillato
eigenstate with a single quantum excitation in the moden.
According to Eq. ~2.11a!, the bosonic representation o
Hamiltonian~2.10! is given by

H5(
n,m

hnman
†am , ~2.12!

and the mapping preserves the commutation relations of
operator basis

@ ucn&^cmu , uck&^c l u #5ucn&^c l u dm,k2uck&^cmu d l ,n .
~2.13!

The image of theN-level Hilbert space is the subspace of t
N-oscillator Hilbert space with a single quantum excitatio
Again, this~physical! subspace is invariant under the acti
of any operator which results by mapping~2.11a! from an
arbitraryN-level system operator. As a consequence we
tain the propagator identity
a
g
t
e-
en
-
he
ry
e
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d
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^cnue2 iHtucm&5^01 , . . . ,1n , . . . ,0Nu

3e2 iHt u01 , . . . ,1m , . . . ,0N&.

~2.14!

For a two-level system, mapping~2.11! obviously coincides
with Eq. ~2.6! for s5 1

2 .
It is interesting to note that different bosonic Hamilt

niansH may correspond to the same original HamiltonianH.
This ambiguity reflects the fact that in the physical subsp
an identity transformation of the bosonic HamiltonianH
→H8 does not change the dynamics in this subspace.
example, the two bosonic Hamiltonians

H5E1V~a1
†a21a2

†a1!, ~2.15!

H85E~a1
†a11a2

†a2!1V~a1
†a21a2

†a1! ~2.16!

are equivalent in the physical subspace$u01,12&,u11,02&%,
and correspond to the same ‘‘discrete’’ two-level syste
Hamiltonian

H5E1V~ uc1&^c2u1uc2&^c1u!. ~2.17!

SinceH andH8 are equivalent in the physical subspace, bo
Hamiltonians generate the same quantum dynamics in
subspace. However, this is not necessarily true if approxi
tions are employed in the evaluation of the dynamics. F
example, adopting a semiclassical approximation, the qu
tum mechanically equivalent HamiltoniansH and H8 may
yield different results. Experience shows that it is useful fi
to transform the Hamiltonian on the quantum-mechani
level to the simplest possible form~which in the present cas
would beH!, and then to apply the semiclassical approxim
tion.

As discussed above for the case of spin systems, form
ism ~2.11! is not the only way to construct a mapping of a
N-level system. First of all it is clear that one may aga
eliminate one boson DoF by exploiting the identity opera
(nan

†an as constant of motion. Furthermore, one may e
press theN2-dimensional operator basis in terms of powe
of the spin matricesS1 , S2 , and S3 . Employing the
Holstein-Primakoff~or Schwinger! transformation, the entire
N-level system can thus be represented by one~or two! os-
cillator~s!. On a classical level, this strategy has been f
lowed by Meyer and Miller in their spin matrix mappin
method@15#. Unfortunately, the higher powers of the sp
operators result in highly nonlinear equations of motio
which are unfavorable for a semiclassical treatment.

The continuous quantum system~2.12! obtained by the
mapping procedure can also be considered as the result
second-quantization procedure restricted to the one-par
space. Although this point of view may appear artificial~be-
cause we do not deal with many-particle theory!, it neverthe-
less elucidates the concept underlying the mapping appro
and is therefore briefly considered in the following.

One way to derive a second-quantization formalism t
has been anticipated by Dirac@49# is to represent the time
dependent wave function pertaining to theN-level system
~2.10! as
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uc~ t !&5(
n

cn~ t !ucn&, ~2.18!

where the complex coefficientscn obey the time-dependen
Schrödinger equation

i ċn5(
m

hnmcm . ~2.19!

Let us introduce the expectation value of the HamiltonianH,

H̃5^c~ t !uHuc~ t !&5(
n,m

cn* cmhnm

5 1
2 (

n,m
~XnXm1PnPm!hnm , ~2.20!

where cn5(Xn1 iPn)/A2, and we have assumed thathnm

5hnm* . As first pointed out by Dirac, Hamilton’s equation

for H̃ and the real variablesXn and Pn are completely
equivalent to the equation of motion~2.19! for the complex
coefficientscn @49,50#. Equation~2.20! can therefore be in-
terpreted as classical Hamiltonian function representingN
coupled harmonic oscillators.

Following the basic concept of second quantization, t
is, to quantize not only observables but also the state ve
the classical oscillators are subsequently interpreted as q
tum oscillators. Replacing the amplitudescn* and cn by the
creation and annihilation operatorsan

† andan , the procedure
directly leads to the quantum-mechanical mapping Ham
tonian~2.12!. We note in passing that in the above derivati
we have used bosonic creation and annihilation operat
thus retaining Hamiltonian~2.12! and the basis state~2.11b!
of the mapping representation. Being restricted to a sin
particle space, however, the many-particle statistic does
matter, and one could also use fermionic operators, thus
taining the Hamiltonian~2.10! in the discrete representation

It is interesting to note that the derivation of the classi
Hamiltonian function in the classical electron-analog mo
@14# is virtually identical up to Eq.~2.20!. As discussed in
Sec. I, however, this formulation does not establish
quantum-mechanicalequivalence of theN-level system
~2.10! and theN-oscillator system@Eq. ~2.12!#. As a conse-
quence, the classical model Hamiltonian neglects the c
mutator@an ,an

†#51, which results in the2 1
2 (nVnn term in

the quantum Hamiltonian@Eq. ~3.32!# describing the zero-
point energy excitation of the electronic oscillators@27#. In
order to achieve meaningful semiclassical quantization c
ditions ‘‘Langer-like modifications’’ were subsequently in
voked to the off-diagonal elements of the Hamiltonian fun
tion. While the origin as well as the value of the
modifications are difficult to justify in the classical mod
~see the discussion in Refs.@51,52#!, the zero-point energy
term naturally arises in the quantum-mechanical derivati

III. SEMICLASSICAL DESCRIPTION

The mapping procedure introduced above results
quantum-mechanical Hamiltonians with well-defined clas
cal analogs, thus rendering the semiclassical evaluatio
straightforward matter. Following a brief description
t
r,
n-

l-

rs,

e-
ot
e-

l
l
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-
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semiclassical methods used in this work, the virtues a
shortcomings of the semiclassical treatment of several m
pings are studied for the case of a two-level system. Emp
ing Schwinger’s formulation to the spin-boson model, w
furthermore perform computational studies on the semic
sical description of nonadiabatic dynamics.

A. Semiclassical propagator

Let us consider ann-dimensional quantum system wit
HamiltonianH, which is assumed to possess a well-defin
classical analog. In order to obtain the semiclassical appr
mation to the transition amplitudeKt( f u i ) between the initial
stateu i & and the final stateu f &, the amplitude is expressed i
terms of the coordinate-dependent propagatorKt(x8ux)

Kt~ f u i ![^ f ue2 iHt u i &5E dx8E dx^ f ux8&Kt~x8ux!^xu i &,

~3.1!

which then is evaluated within the semiclassical Van Vlec
Gutzwiller approximation@1#

Kt
VVG~x8ux!5(

traj

eiSx2 ipn/2

Adet~2p i ]x8/]p!
. ~3.2!

Here the sum runs over all trajectories that start from po
x05x at time 0 and end up at pointxt5x8 at timet, Sx is the
classical action along such a trajectory, and the monodro
matrix elements]x8/]p account for the dependency of th
trajectory xt with respect to its initial momentump0 . The
Maslov-indexn counts the zeroes of the Van Vleck determ
nant. The evaluation of the semiclassical Van Vlec
Gutzwiller propagator@Eq. ~3.2!# amounts to the solution o
a boundary-value problem. That is, given a trajectory ch
acterized by the positionx(t)5xt and momentump(t)
5pt , we need to find the roots of the equationxt
5xt(x0 ,p0). To circumvent this cumbersome root searc
one may rewrite the propagator as an initial-value probl
@39–44#. As a consequence, the semiclassical propagato
given as a phase-space integral over the initial conditionsx0
andp0 , which is amenable to a Monte Carlo evaluation. F
this reason, semiclassical initial-value representations are
garded as keys to the application of semiclassical method
multidimensional systems.

In this work, we use a Herman-Kluk-type representati
of the propagator@40#, which can be written as

Kt
HK(x8ux)5E dx0dp0

~2p!n
Cxtpt

eiSx^x8uxtpt&^x0p0ux&.

~3.3!

Here the classical action is given as

Sx5E
0

t

dt~ ẋtpt2HCl!, ~3.4!

and the dynamics of the trajectoriesxt andpt is governed by
the classical Hamiltonian functionHCl. Furthermore, we
have introduced coherent statesuxtpt&, which in the position
representation are given by Gaussian wave packets
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^xuxtpt&5S g

p D n/4

expH 2
g

2
~x2xt!

21 ipt~x2xt!J .

~3.5!

Throughout this paper, we have chosen a width paramete
g51. The complex functionCxtpt

describes the spreading o
the Gaussian wave packets during their propagation in
anharmonic potential@40#

Cxtpt
5AdetF1

2S ]pt

]p0
1

]xt

]x0
2g i

]xt

]p0
1

i

g

]pt

]x0
D G . ~3.6!

In what follows, it is advantageous to rewrite the Herma
Kluk propagatorKt(x8ux…5^x8uKtux& in the basis-free form

Kt
HK5E d2z0

pn
uzt&Czt

eiSz^z0u. ~3.7!

Here the integration measure is given by

d2z05d~Rez0!d~ Imz0!5dx0dp0/2n, ~3.8!

and we have used complex variablesz5(z1 , . . . ,zn)5(x
1 ip)/A2 and coherent states

uz&5expS 2(
j

uzj u2/2DexpS (
j

zjaj
†D u0&5uxp&eipx/2

~3.9!

to simplify the notation. The functionCzt
is given by

Czt
5Adet~]zt /]z0!5Cxtpt

~3.10!

andSz denotes the action

Sz5E
0

t

dtS i

2
~zt* żt2 żt* zt!2HClD . ~3.11!

This action coincides~besides a boundary-value term! with
the action that appears in the coherent-state path integral
is therefore reminiscent of the origin of the Herman-Kl
propagator@53#. It should be noted that representation~3.7!
of the Herman-Kluk propagator is only valid for a widt
parameterg51. To account for arbitrary values ofg, the
usual coherent statesuz& need to be replaced by squeez
states.

It is noted that there exist several choices for the class
HamiltonianHCl which correspond to different operator o
derings. One possibility, which is supported by the deri
tion of the Herman-Kluk propagator from the coherent-st
path integral@53#, is to use the coherent-state matrix eleme
~or Q function!

HN
Cl~z!5^zuHuz&. ~3.12!

This choice corresponds to a normal ordering of the quan
Hamiltonian with respect to creation and annihilation ope
tors. In this case it is appropriate to use a correction term
the action, i.e.,
of

n

-

nd

al

-
e
t

m
-
in

Sz→Sz1
1

2E0

t

dt(
j

]2HN
Cl

]zj]zj*
, ~3.13!

to treat low-energy states correctly@54#. Another possibility
is to use a symmetricallyx-p-ordered Hamiltonian, i.e., the
Wigner function

HW
Cl~x,p!5E dseisp^x2s/2uHux1s/2&. ~3.14!

Both possibilities have been discussed within the Wentz
Kramers-Brillouin theory@54,55# as well as in the context o
semiclassical approximations to phase-space path integ
@56#. In the computational studies reported below we ha
employed the Wigner representation~3.14! of the Hamil-
tonian, which seemed to yield slightly better results. F
simple analytically solvable problems such as the harmo
oscillator, both choices are obviously equivalent.

B. Two-level system

In order to compare semiclassical approximations
tained for various mappings introduced above, it is instr
tive to investigate the dynamics of a simple two-level syst
with electronic matrix elementshnn5En andhnm5V (n,m
51,2, nÞm). Let us first consider the Schwinger represe
tation ~2.11! of the Hamiltonian

HS5 (
n51,2

Enan
†an1V~a1

†a21a2
†a1!. ~3.15!

Using the symmetrically ordered Wigner function~3.14!, the
classical Hamiltonian reads

HS
Cl5 (

n51,2
En~zn* zn2 1

2 !1V~z1* z21z2* z1!

5 (
n51,2

En
1
2 ~xn

21pn
221!1V~p1p21x1x2!.

~3.16!

The transition amplitude in the Schwinger representation
given as

Kt~1u2![^C1ue2 iHtuC2&5^11,02ue2 iH Stu01,12&.
~3.17!

Employing the Herman-Kluk propagator~3.7!, the semiclas-
sical transition amplitude reads

Kt
S~1u2!5E d2z10

p E d2z20

p
^1102uz1t ,z2t&

3Cz1t ,z2t
eiSz^z10,z20u01,12&. ~3.18!

As is well known, the Van Vleck–Gutzwiller approximatio
is exact if the Hamiltonian is quadratic@1#. This is the case
for the Schwinger representation as well as for its gener
zation toN-level systems~2.11!.

The Holstein-Primakoff~HP! representation of the two
level system Hamiltonian is given by
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HHP5E1~12a†a!1E2a†a1V~a† A12a†a1A12a†a a!.

~3.19!

The semiclassical approximation for the transition amplitu
reads

Kt~1u2!5^0ue2 iH HPtu1&5E d2z0

p
^0uzt&Czt

eiSz^z0u1&.

~3.20!

While the classical Hamiltonian~3.16! pertaining to the
Schwinger representation is well defined, the choice o
classical Hamiltonian in the Holstein-Primakoff represen
tion is quite ambiguous. This is because the square-root
erator in Eq.~3.19! is only well defined in the physical sub
space, but otherwise leads to an imaginary contribution
the Hamiltonian. The simplest choice for a classical rep
sentation of the square-root operator is to use the clas
approximation for Wigner function of a function of an op
erator, i.e.,

„f ~a†a!…W5 f „~a†a!W…. ~3.21!

This way we obtain the classical Hamiltonian

HHP
Cla5E1~ 3

2 2z* z!1E2~z* z2 1
2 !1V~z* 1z!A3

2 2z* z
~3.22!

and the corresponding equation of motion

ż52 i
]HHP

Cla

]z*
. ~3.23!

Obviously, this Hamiltonian is only well defined ifz* z, 3
2 .

In the computational evaluation we therefore have to res
the sampling of initial values to this region and exclude t
jectories which approachz* z5 3

2 . The resulting sampling
scheme may be viewed as a practical implementation of
restriction onto the physical subspace on the classical le

Another classical Hamiltonian can be obtained in the f
lowing way. Representing the square-root operatorf (a†a)
5A12a†a through an expansion in terms of harmon
oscillator eigenstates, the Wigner function of this operato
given by

„f ~a†a!…W~z!52e22uzu2 (
m50

`

~21!mA12mLm~4uzu2!,

~3.24!

whereLm(x) denotes a Laguerre polynomial. Note that t
real part of Eq.~3.24! is given by the term withm50, while
the rest of the sum (m.1) gives the imaginary part. Sinc
the Hamiltonian has to be real valued, it appears to be s
sible to take only the real part into account, thus yielding
classical Hamiltonian

HHP
Clb5E1~ 3

2 2z* z!1E2~z* z2 1
2 !14V~z* 1z!e22uzu2.

~3.25!

It is noted that Eq.~3.25! can also be obtained by a quantum
mechanical transformation of the Hamilton operator acco
ing to
e

a
-
p-

to
-
al

ct
-

e
l.

-

is

n-
e

-

HHP→HHP8 5E1~12a†a!1E2a†a1V~ u0&^1u1u1&^0u!,
~3.26!

whereu0& and u1& are the ground and first excited states
the oscillator. This transformation represents an identity
the physical subspace. The Wigner function of the opera
HHP8 is then identical to Eq.~3.25!. We note in passing tha
the interaction termV(u0&^1u1u1&^0u) in HHP8 corresponds
to the mapping

uC1&^C1u→u0&^0u, ~3.27a!

uC2&^C2u→u1&^1u, ~3.27b!

uC1&^C2u→u0&^1u, ~3.27c!

which was proposed by Garbaczewski@30# some time ago.
Let us illustrate these theoretical considerations by a r

resentative computational example. Figure 1 shows the ti
dependent population probabilityP1(t)5uKt(1u2)u2 ob-
tained for a two-level system with the parametersE22E1
50.658 eV, andV50.132 eV. Shown are the quantum r
sult ~full line! as well as the semiclassical results pertain
to the two variants of the semiclassical Holstein-Primak
representation,HHP

Cla ~dashed line! andHHP
Clb ~dotted line!. As

discussed above, the semiclassical approximation to the
level system is exact in the Schwinger representati
whereas the corresponding Holstein-Primakoff represe
tion is not exact due to the higher powers of dynamical va
ables. In fact, both versions of the Holstein-Primakoff rep
sentation are found to yield rather poor results. While
first variant at least reproduces the correct frequency of
Rabi oscillations, the second variant is incorrect in both f
quency and amplitude. As already mentioned, the reason
this failure lies in the complicated structure of the Ham
tonian which results in highly nonlinear equations of motio
The same problem occurs when higher powers of the s
operatorsS1 , S2 , and S3 are used to represent a gene
N-level system (N.2). Although all these representation
are exact on the quantum-mechanical level, the Schwin
representation as well as its generalization toN-level systems
@Eq. ~2.11!# are therefore clearly superior for a semiclassi
evaluation.

FIG. 1. Rabi oscillations of a two-level system. The full lin
represents the correct quantum result, while the broken lines co
spond to results obtained by two variants of the semiclass
Holstein-Primakoff representation.
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C. Nonadiabatic dynamics

In the following we adopt the bosonic representation
troduced in Eqs.~2.11! to describe nonadiabatic dynamics o
coupled potential-energy surfaces. To this end, we iden
the ucn& with electronic states and the matrix elementshnm
of the Hamiltonian with operators of the nuclear dynami
First numerical studies describing bound state@24# and reac-
tive @26,57# nonadiabatic dynamics appeared to be qu
promising. Here we wish to focus on specific problems
sociated with the semiclassical calculation of nonadiab
dynamics. Employing a multidimensional molecular mod
we furthermore present first results of a semiclassical
scription of nonadiabatic relaxation processes.

As is well known, a vibronic problem can be described
the adiabatic as well as diabatic electronic representati
The Hamiltonian matrix elements in the adiabatic repres
tation read@58#

hnm5„T~p!1Wn~x!…dn,m2Lnm~x,p!, ~3.28!

where Wn denotes the adiabatic Born-Oppenheim
potential-energy surfaces,T is the kinetic energy, andL rep-
resents the non-Born-Oppenheimer operator. In the diab
representation we obtain

hnm5„T~p!1V0~x!…dn,m1Vnm~x!, ~3.29!

whereVnm represent the elements of the diabatic poten
matrix, andV0 is a state-independent potential term. T
adiabatic representation is unique, and is often advantag
for an interpretation of nonadiabatic relaxation processes
the other hand, transitions betweendiabatic electronic states
are important for an interpretation of spectroscopic data@59#.
This is because in the vicinity of a surface crossing the e
tronic dipole transition operator is only smooth in the diab
tic representation. For further information on general co
cepts of non-Born-Oppenheimer dynamics, see, for exam
Refs.@58,59#.

As is clear from the derivation above, the mapping can
employed to any electronic representation under consi
ation. Quantum mechanically, adiabatic and diabatic rep
sentations are related through a unitary transformation,
thus contain equivalent information. This is no longer tru
however, once a classical approximation is made: Depen
on whether the approximation is employed in the diabatic
in the adiabatic representation, the resulting classical Ha
tonian contains identical first-order nonadiabatic couplin
but different second-order nonadiabatic couplings@60#. The
reason for this ambiguity of the classical description is
lated to the general problem of classically vanishing comm
tators of quantum-mechanically noncommuting operat
@61#. As already discussed above, characteristics of class
dynamics may therefore critically depend on the represe
tion chosen. In particular, this choice may determine if
system shows regular or chaotic behavior, thus rendering
interpretation of~unique! quantum dynamics in terms o
~ambiguous! classical dynamics a problem@62#.

For the numerical studies discussed below, we consid
model of the spin-boson type@2#, that is, an electronic two
state system with the diabatic matrix elements
-
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T~p!1V0~x!5 1
2 (

j
v j~pj

21xj
2!, ~3.30a!

Vnn~x!5En1(
j

k j
~n!xj1~k j

~n!!2/2v j . ~3.30b!

Here xj and pj are the dimensionless position and mome
tum of the jth vibrational mode with the vibrational fre
quency v j and the state-dependent linear coordinate s
k j

(n)/v j . En denotes the vertical transition energy of the d
abatic stateucn&. The off-diagonal diabatic couplingV12
5V21 is assumed to be constant. Introducing, furthermo
Cartesian electronic variables

Xn5~an
†1an!/A2, ~3.31a!

Pn5 i ~an
†2an!/A2, ~3.31b!

the molecular Hamiltonian in the diabatic bosonic repres
tation finally reads

H5h0~x,p!1 1
2 (

n,m
~XnXm1PnPm!Vnm~x!, ~3.32a!

h0~x,p!5T~p!1V0~x!2 1
2 (

n
Vnn~x!, ~3.32b!

where the nonlinearity of the spin-boson problem becom
evident in Eq.~3.32a!. The mapping Hamiltonian~3.32! with
matrix elements~3.30! represents the basis for the compu
tional studies reported below.

To facilitate the discussion of computational results, let
introduce several time-dependent quantities that reflect
nonadiabatic dynamics under consideration. The semicla
cal wave function for the nonadiabatic system~3.32! can be
written as

^xuC~ t !&5(
n

Fn~x,t !ucn&, ~3.33a!

Fn~x,t !5E dX0dP0

~2p!N E dx0dp0

~2p!M
w0CXtxt

eiSXx^xuxtpt&xn~ t !,

~3.33b!

xn~ t !5^1uXntPnt& )
mÞn

^0uXmtPmt&. ~3.33c!

Here CXtxt
and SXx denote the Herman-Kluk determinan

~3.6! and the classical action~3.4!, respectively, incorporat-
ing both the electronic$Xn ,Pn% and nuclear$xj ,pj% DoF.
The weight functionw0 accounts for the overlap of the mu
tidimensional Gaussian at timet50 with the initial vibronic
wave function and̂ kuXntPnt& denotes the projection of th
electronic coherent stateuXntPnt& on the correspondingkth
harmonic-oscillator eigenfunction. Furthermore we wish
introduce the autocorrelation function of the system,

J~ t !5^C~ t !uC~0!&, ~3.34!



tio
m
er
be
s

tic
n

c-

to

c
n

of
c-
ec
th
ot
ic

le
h

iz
w

n
th

ns

v
de
ng
n

a

o
1
ti

e

n

e-

ms

tion
le
gle
he
son
em-
ut

us-

n

ics

nic

lent

72 PRA 59MICHAEL THOSS AND GERHARD STOCK
describing the overlap of the time-dependent wave func
with its initial state. As is well known, the Fourier transfor
of J(t) yields the electronic absorption spectrum. Moreov
the time evolution of the autocorrelation function can
used as a measure of the phase-space exploration of the
tem @63#.

An important quantity in the discussion of nonadiaba
dynamics is thetotal time-dependent electronic populatio
probability defined by

Pn~ t !5^C~ t !uPnuC~ t !&, ~3.35!

wherePn5ucn&^cnu is the projection operator on the ele
tronic stateucn&. Within the mapping formalism~2.11! there
are several ways to define an electronic projection opera
Employing the bosonic representation of the state vector@Eq.
~2.11b!#, we obtain

Pn5u01 , . . . ,1n , . . . ,0N&^01 , . . . ,1n , . . . ,0Nu,
~3.36!

thus resulting in a projection of thenth electronic DoF on the
first excited harmonic-oscillator state, while all other ele
tronic DoF’s are projected on the harmonic-oscillator grou
state. Alternatively, one may directly employ Eq.~2.11a!,
thus yielding

Pn5 1
2 ~Xn

21Pn
221!. ~3.37!

Calculating the electronic population probabilityPn(t)
through definition~3.37! again corresponds to a projection
the nth electronic DoF on the first excited harmoni
oscillator state, while the trace is taken over all other el
tronic DoF. Since quantum mechanically the dynamics of
electronic oscillators is restricted to single excitations, b
electronic projectors are equivalent in a quantum-mechan
evaluation. In a semiclassical evaluation, however, this
only approximately true. In practice, nevertheless, both e
tronic projectors were found to lead to similar results. In t
calculations reported below, definition~3.36! has been em-
ployed.

The computational methods employed can be summar
as follows. To calculate the semiclassical wave function,
have evaluated the phase-space integral in Eq.~3.33! via a
standard Monte Carlo scheme. Hereby the initial conditio
for both electronic and nuclear DoF are obtained through
sampling of the initial Gaussian overlap functio
^Xn0Pn0u0& and ^xj 0pj 0u0&, respectively, u0& being the
ground state of the harmonic oscillator. In order to impro
the statistics of the Monte Carlo scheme, we have exclu
strongly chaotic trajectories from the sampling. Followi
Kay @64#, we have employed the modulus of the Herma
Kluk determinant~3.6! as a criterion of regularity of the
dynamics and rejected all trajectories withuCtu.e. To keep
the number of rejected trajectories at less than 10%, we h
used the valuese5100 for Figs. 2 and 5,e550 000 for Figs.
3 and 6, ande52000 for Figs. 4 and 7, respectively. T
ensure convergence within this simple sampling scheme,6

trajectories needed to be sampled. The equations of mo
for the N electronic andM nuclear DoF as well as for th
corresponding 2(N1M )32(N1M ) stability matrix were
solved using a standard Runge-Kutta-Merson scheme. O
n
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Silicon Graphics Origin 200, the computations typically r
quired from one hour~for Fig. 1! up to one day~for Fig. 4!
CPU time. The molecular parameters of the model syste
under consideration are collected in Table I.

To study the main features of the semiclassical evalua
of the mapping formalism, let us first consider the simp
case of a weakly coupled spin-boson problem with a sin
vibrational mode, henceforth referred to as model I. T
quantum and classical dynamics of one-mode spin-bo
systems have been investigated by a number of workers
ploying a mixed quantum-classical description, i.e., witho
the inclusion of semiclassical phases@22,62#. The virtues and
shortcomings of a true semiclassical description are ill
trated in Fig. 2, which compares exact quantum results~full

TABLE I. Molecular parameters of the model Hamiltonia
~3.30! including vibrational frequenciesv, coordinate shiftsk, ver-
tical electronic gapsE22E1 , and diabatic couplingsV12. For mod-
els I and II we havek (2)52k (1)5k, and for model III,k (2)5k
andk (1)50. All quantities are given in eV.

v k E22E1 V12

Model I 0.066 0.066 0.658 0.132
Model II 0.066 0.099 0.0 0.066
Model III 0.07 0.09 0.91 0.06

0.18 0.22
0.26 0.34

FIG. 2. Semiclassical description of the nonadiabatic dynam
exhibited by a one-mode spin-boson model~model I!. Shown are
exact quantum~full lines! and semiclassical~broken lines! results
for ~a! the modulus of the autocorrelation functionJ(t), ~b! the
normP11P2 of the semiclassical wave function, and the electro
population probabilities~c! P1 and ~d! P2 . The dotted lines corre-
spond to normalized semiclassical data, which are in excel
agreement with the quantum reference data.
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PRA 59 73MAPPING APPROACH TO THE SEMICLASSICAL . . .
lines! to semiclassical results~broken lines! as obtained from
Eq. ~3.33!. In all cases considered, we have assumed tha
system is initially in the electronic stateuc2& and in the vi-
brational ground state of the unshifted harmonic oscillato
Shown are~a! the modulus of the autocorrelation functio
J(t) defined in Eq.~3.34!, the population probabilities~c! P1
and ~d! P2 of the diabatic electronic statesuc1& and uc2&,
respectively, and~b! the normP11P2 of the semiclassica
wave function. The quantum results exhibit a high-frequen
Rabi oscillation due to the electronic coupling which is s
perimposed by a low-frequency beating due to the vib
tional motion. It is noted that electronic population probab
ties Pn(t) directly reflect the nonadiabatic dynamics of t
system, i.e., in the absence of electronic coupling we h
P1(t)[0, P2(t)[1.

Since the norm of the semiclassical wave function is o
approximately conserved, the semiclassical results are
played as rough data~dashed lines! and normalized data
@e.g., Pn

N5Pn /(P11P2), dotted lines#. The thus-obtained
normalized results for the autocorrelation function and el
tronic population probabilities are seen to match the quan
reference data quantitatively. Employing a similar model
was shown in Ref.@24# that the semiclassical wave functio
~3.33! maps the exact quantum-mechanical result in alm
every detail. It is interesting to note that the deviation of t
norm shown in Fig. 2~b! is not a numerical problem, bu
rather confirms the common wisdom that a two-level syst
as well as its bosonic representation is a prime example
quantum system, and therefore difficult to describe withi
semiclassical theory. Nevertheless, besides the well-kn
problem of norm conservation, the semiclassical mapp

FIG. 3. The performance of the semiclassical mapping formu
tion for a highly chaotic system~model II!. The semiclassical de
scription ~dotted lines! is able to match the exact quantum resu
~full lines! up to the timet'100 fs. The labeling is the same as
Fig. 2.
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approach clearly reproduces the nonadiabatic quantum
namics of the system. For simplicity, in the following w
will restrict the discussion to normalized quantities.

Model I corresponds to a molecular system whose und
lying classical dynamics is mostly regular. Although the
exist a small fraction of chaotic trajectories, studies of va
ous classical Poincare´ sections reveal that phase space is p
dominately ordered@65#. To illustrate the performance of th
mapping approach in the chaotic regime, we have adopt
model termed model II, in which the trajectories fill the com
plete energetically accessible phase space@65#. Figure 3
shows that the irregular classical dynamics is reflected i
complex structure of the time-dependent quantities. Furth
more, the semiclassical results are seen to deviate from
quantum data after several recurrences. Since the numb
trajectories required to converge the phase-space integr
Eq. ~3.33! increases exponentially in time, it is clear that
practice the semiclassical description of irregular dynam
is restricted to short times. Recently, several sophistica
strategies have been proposed to overcome this prob
@66–68#. Here we just wish to conclude that—apart fro
generic problems associated with irregular dynamics—
semiclassical mapping approach is able to account for no
diabatic quantum dynamics in the chaotic regime.

To demonstrate the capability of the approach, let us
nally consider a multidimensional model problem. As d
cussed in detail in Ref.@59#, a molecular system comprisin
two coupled electronic states and~at least! three vibrational
modes may give rise to irreversible relaxation behavior
the electronic and vibrational dynamics. Here we adop
three-mode model that was discussed by Wolfseder

- FIG. 4. Electronic relaxation dynamics exhibited by a thre
mode spin-boson model~model III!. The semiclassical results~dot-
ted lines! qualitatively reproduce the exact quantum results~full
lines! for the decay of the autocorrelation function and the excit
state population. The labeling is the same as in Fig. 2.
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74 PRA 59MICHAEL THOSS AND GERHARD STOCK
Domcke in the context of photoinduced electron-trans
processes@69#. Figure 4 demonstrates that the autocorre
tion function and the excited-state population probability e
hibit irregular structures and decay on different time sca
respectively. For larger times~not shown in Fig. 4!, both
quantities fluctuate around their long-time limits, thus clea
showing the irreversible relaxation behavior of a strong
coupled few-mode system@59#. This vibronic relaxation dy-
namics is reflected in complex classical motion with mix
regular and irregular phase-space structures@70#, thus ren-
dering the semiclassical description a challenging probl
Figure 4 reveals that the semiclassical mapping appro
qualitatively accounts for the decay of the autocorrelat
function and the electronic population. For times*40 fs,
the rapid increase of the norm indicates that the sim
Monte Carlo sampling employed is no longer sufficient
converge the phase-space integral in Eq.~3.33!.

IV. SPIN COHERENT STATES

The mapping approach relates a quantum system with
crete DoF to a system with continuous DoF which is am
nable to a semiclassical treatment. Another possibility to
tain a continuous description of discrete DoF is based on
coherent states of the particular system under investiga
@33,34#. This approach is well known for spin system
@36,71#, but can also be applied toN-level systems. A gen-
eral semiclassical formulation based on a stationary-ph
approximation of the coherent-state path integral is given
Ref. @35#. Here we pursue a different route to a semiclass
spin-coherent-states description, and exploit the connec
between spin-coherent states and Schwinger’s represent
of the corresponding spin system@72–74#. Employing the
Herman-Kluk propagator ~3.3! for a nonadiabatically
coupled two-state system, we derive a new semiclass
initial-value representation for the corresponding sp
coherent-state propagator and apply the formulation to v
ous models of nonadiabatic dynamics.

A. Notation

Let us start with a brief review of spin-coherent-sta
theory. For simplicity we focus on a two-level~or spin 1

2 )
system, and leave the discussion of the more generalN-level
system to a separate article@65#. The coherent states for
two-level system with basis statesuc1& anduc2& can be writ-
ten as@37,71#

um&5
m

A11umu2
uc1&1

1

A11umu2
uc2&, ~4.1!

wherem is a complex parameter. As with the coherent sta
of the harmonic oscillator, these states are nonorthogona

^mum8&5
11m* m8

A11umu2A11um8u2
, ~4.2!

and overcomplete,

15
2

pE d2m

~11umu2!2
um&^mu. ~4.3!
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Here the integration is over the complex plane,

d2m5d~Rem!d~ Im m!. ~4.4!

Sometimes it is useful to parametrize the complex param
m by polar and azimuthal anglesu andf (0<u<p,0<f
<2p) @75#

m5eiftanS u

2D . ~4.5!

The semiclassical approximation for the transition amplitu

^c8ue2 iHtuc&5S 2

p D 2E d2m f

~11um f u2!2E d2m i

~11um i u2!2
^c8um f&

3^m f ue2 iHtum i&^m i uc& ~4.6!

is given through the stationary-phase evaluation of the p
integral for the coherent state propagator, which forma
reads@37#

^m f ue2 iHtum i&5E
m i

m f
Dm eiSm, ~4.7!

with the action

Sm5E
0

t

dtS i

2

ṁm* 2mṁ*

11umu2
2^muHum& D . ~4.8!

Although action~4.8! is nonquadratic inm andm* , the semi-
classical approximation to the path integral~4.7! yields ~up
to a normalization factor! the exact quantum-mechanical r
sult. As discussed by several workers@37,76#, this result,
somewhat surprising on first sight, relies on the linearity
Heisenberg’s equation of motion for the spin operators.

In the light of this fact, generalized coherent-state the
appears as a promising alternative for a semiclassical tr
ment of discrete quantum systems. In its present form, h
ever, the theory is not suited for a computational evaluati
First the regularization procedure used to eliminate the i
nite normalization factor@37# hampers a numerical imple
mentation. To facilitate the calculation of multidimension
problems, furthermore, the boundary-value problem ass
ated with the semiclassical approximation for the sp
coherent-state path integral needs to be rewritten in term
an initial-value problem. With this end in mind, an initia
value representation for the semiclassical spin-coherent-s
propagator is derived below.

B. Semiclassical propagator

Within the theoretical framework of time-depende
Hartree-Fock theory, Suzuki proposed an initial-value rep
sentation for a spin-coherent-states propagator@38#. Adopt-
ing a two-level system with quantum HamiltonianH, this
propagator reads

Kt
SU5Nt

2

pE d2m0

~11um0u2!2
um t&e

iSm^m0u, ~4.9!
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whereNt is a time-dependent factor guaranteeing the pre
vation of the norm of the semiclassical propagator. The
namics of the classical trajectories is determined by the eq
tion of motion

ṁ52 i ~11umu2!2
]^muHum&

]m*
. ~4.10!

For a two-level system~or, more generally, for spin system
with a Hamiltonian that depends linearly on the spin ope
tors S1 , S2 , and S3) Suzuki’s propagator gives the exa
quantum-mechanical result and the normalization factorNt
51. A comparison of Eq.~4.9! with Eq. ~3.7! reveals that
Suzuki’s propagator for spin-coherent states resembles
propagator of Herman and Kluk@Eq. ~3.7!# employing
harmonic-oscillator coherent states. Missing the determin
factor Czt

, Suzuki’s expression resembles Heller’s ‘‘froze
Gaussian approximation’’@77#, and is thus expected to onl
yield approximate results in the case of a general nonlin
Hamiltonian.
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In order to derive a semiclassically exact initial-value re
resentation for the spin-coherent-states propagator, we a
consider an electronic two-level system~3.32! coupled toM
nuclear DoF. Introducing complex notations for an electro
DoF Z5(Z1 ,Z2) and a nuclear DoFz5(z1 , . . . ,zM), the
classical bosonic Hamiltonian@Eq. ~3.32!# reads

H5h0~z!1 (
n,m51

2

Zn* ZmVnm~z!, ~4.11!

and the equations of motion are given by

Żj52 i
]H

]Zj*
, żj52 i

]H

]zj*
. ~4.12!

The Herman-Kluk propagator@Eq. ~3.7!# pertaining to sys-
tem ~4.11!, can be written as
^c8uKt
HKuc&5^n18 ,n28ue

2 iHt un1 ,n2&5E d2z0

pM E d2Z1

p E d2Z2

p
uzt&^n18 ,n28uZ1t

,Z2t
&CZtzt

eiSZ,z^Z10
,Z20

un1 ,n2&^z0u,

~4.13!
nic
.
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where uc& and uc8& denote the initial and final electroni
states under consideration. Note that because of the map
relation ~2.11b!, the quantum numbers in Eq.~4.13! fulfill
the identityn181n28515n11n2 .

In order to express propagator~4.13! in terms of spin-
coherent states, we introduce the following parametrizati
of the complex electronic variables@72#:

Z1t
5AI tsinS u t

2 Dei ~f t2c t!/2, ~4.14a!

Z2t
5AI tcosS u t

2 De2 i ~f t1c t!/2. ~4.14b!

Using Eq.~4.12!, we obtain the equations of motion for th
new electronic variables:

İ 50, ~4.15a!

ċ5V111V2212V12

cos~f!

sin~u!
, ~4.15b!

ḟ5V222V1122V12cot~u!cos~f!, ~4.15c!
ing

s

u̇522V12sin~f!. ~4.15d!

Due to the change of variables in Eq.~4.14!, two of these
equations of motion can readily be solved: The electro
populationI 5uZ1u21uZ2u2 is a constant of motion, and Eq
~4.15b! can formally be integrated to give

c t5E
0

t

dsH V111V2212V12

cos~f!

sin~u! J 1c0 . ~4.16!

Note that the nuclear DoFz as well as the determinant facto
CZtzt

do not depend onc0 . Because the equations of motio

for f,u and the nuclear DoF are independent ofc, more-
over, the electronic variables have a simple dependence
the initial phasec0 , ~i.e.,Z1t

,Z2t
;e2 ic0/2), thus allowing us

to carry out the integration overc0 in the semiclassica
propagator. Expressing the electronic DoF in Eq.~4.13! in
terms of the new variables~4.14!, and employing the com-
plex notation introduced in Eq.~4.5!, the Herman-Kluk
propagator can be written in the following form:
Kt
HK5E

0

`

dI
I 2

2
e2IE d2z0

pM

2

pE d2m0

~11um0u2!2
uzt&um t&CZtzt

exp$2 i ~12I !~c t2c01f t2f0!/2%eiSm,z
I

^m0u^z0u, ~4.17!
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where the action is given by

Sm,z
I 5E

0

t

dtF i

2
~zt* żt2 żt* zt!2h0~z!G

1I E
0

t

dtF i

2
~mt* ṁt2ṁt* mt!2hel~z,m!G ,

~4.18!

and

hel5
V221V11m* m1V21m1V12m*

11m* m
~4.19!

denotes the part of the Hamiltonian which involves ele
tronic variables. The derivation of Eq.~4.17! shows explic-
itly that only three electronic variables (u t ,f t ,c t) are time
dependent and thus need to be propagated~and sampled a
t50), while the implementation of Eq.~3.18! requires the
propagation of four variables (X1t

, P1t
, X2t

, andP2t
).

Up to now the Herman-Kluk propagator~3.7! has merely
been rewritten without any further approximations. A co
parison reveals, however, that the form of the propaga
~4.17! is already very similar to Suzuki’s expression~4.9!.
The most essential difference between the two formulati
is the sampling over the initial value of the electronic pop
lation I in the Schwinger representation which is absent
Suzuki’s propagator. Replacing the sampling by a fix
value I 51 ~which corresponds to the quantum-mechani
value of the electronic population!, we obtain

Kt
SC5

2

pE d2z0

pM E d2m0

~11um0u2!2
uzt&um t&CZtzt

eiSm,z^m0u^z0u,

~4.20!

where the actionSm,z is given by Eq.~4.18!, with I 51. Ap-
proximating the Herman-Kluk determinant factorCZtzt

by

the normalization factorNt , the spin-coherent-state propag
tor ~4.20! reduces to Suzuki’s expression~4.9!.

The semiclassical spin-coherent-state initial-value rep
sentations~4.17! and~4.20! are a central result of this pape
The derivation outlined above elucidates the close conn
tion of Schwinger’s representation and spin-coherent-s
theory. Furthermore, various levels of approximation to
semiclassical spin-coherent-state propagator have been
cussed:~i! the semiclassically exact propagator~4.17!, ~ii !
the spin-coherent-state propagator~4.20! obtained from Eq.
~4.17! by approximating the sampling over the electron
populationI by its quantum valueI 51, and ~iii ! Suzuki’s
propagator~4.9! obtained from Eq.~4.20! by replacing the
determinantCZtzt

by the normalization factorNt . While for
a simple two-level system all three descriptions are ex
their performances differ considerably in the general cas
a nonlinear Hamiltonian~see below!. Finally it should be
stressed that—similarly to the Holstein-Primakoff repres
tation ~3.20!—the spin-coherent-state propagator~4.20! re-
quires the sampling of only two~two instead of four! elec-
tronic variables @78#. Unlike the Holstein-Primakoff
representation, however, the latter propagator is exact f
-
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two-level system, and is found to yield much better resu
for general nonadiabatic problems.

C. Nonadiabatic dynamics

In what follows, we again adopt the model problems
troduced in Sec. III C, and investigate the computational p
formance and accuracy of the spin-coherent-state propag
~4.20! and Suzuki’s propagator~4.9!. For brevity, and since
the quality of the approximation is quite similar for the tim
dependent quantities studied above, we focus on the dis
sion of the autocorrelation function.

Let us first consider model I, which represents a relativ
weakly coupled one-mode spin-boson problem that exhi
predominantly regular classical dynamics. Figure 5 compa
exact quantum~full line! and semiclassical~broken lines!
results, thus demonstrating that for this relatively simple
ample both the spin-coherent-state propagator~4.20! and Su-
zuki’s propagator~4.9! are in excellent agreement with th
quantum reference. The main difference between the
semiclassical approximations is found in the norm of t
semiclassical wave function shown in Fig. 5~b!. While the
determinant factor of the spin-coherent-state propagator
serves the norm fairly well, the norm of Suzuki’s propaga
is seen to decrease rapidly.

Comparing Figs. 5 and 2, it is interesting to note that
more approximate spin-coherent-state propagator~4.20! in
fact yields slightly better results than the propagator~4.17!,
including the sampling of the electronic populationI. This
curiosity is related to the fact that trajectories withI 51 are
typically more regular than trajectories with higher values
I. As a consequence, no trajectories were rejected in the s
pling of the phase-space integral in Eq.~4.20!, whereas in the
numerical implementation of the initial-value representat
~4.17! strongly chaotic trajectories needed to be excluded~cf.
the discussion in Sec. III C!. A closer analysis reveals tha
these rejected trajectories typically have large values of
electronic populationI, and therefore do not occur in th
semiclassical spin-coherent-state propagator.

FIG. 5. ~a! Modulus of the autocorrelation functionJ(t) for
model I as obtained by an exact quantum calculation~full line! and
by a semiclassical evaluation employing the spin-coherent-s
propagator~dotted line! and Suzuki’s propagator~thin line!. ~b!
Norm of the semiclassical wave function pertaining to the t
semiclassical formulations.
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The situation is quite different for model II which repre
sents a strongly coupled one-mode spin-boson problem
exhibits predominantly chaotic classical dynamics. Figur
demonstrates that both spin-coherent-state propagators
duce much poorer results than the semiclassical propag
based on Schwinger’s representation shown in Fig. 3. O
ously, the sampling of the electronic population is importa
to account for the underlying chaotic dynamics of the s
tem.

As a last example, Fig. 7 shows the autocorrelation fu
tion for model III which represents a strongly coupled thre
mode system that exhibits ultrafast electronic relaxation
namics. This quite challenging problem clearly illustrates
quality of the three semiclassical approximations under c
sideration. While the results obtained by semiclassically
act propagator is in very good agreement with the quan
results ~see Fig. 4! and the spin-coherent-state propaga
yields a qualitative agreement, the results obtained by Su
ki’s propagator are totally unreliable.

In conclusion, it has been shown that the spin-cohere
state propagator~4.20! represents a valuable formulation fo
the semiclassical description of nonadiabatic dynamics
the case of predominantly chaotic classical dynamics,
performance of this propagator has been found to be infe
compared to the semiclassical propagator~4.17! based on
Schwinger’s representation. Since its numerical impleme
tion is advantageous, the spin-coherent-state propagator
ertheless represents a promising approach to the semic
cal description of large molecular systems with many Do

FIG. 6. Quantum and semiclassical spin-coherent-state re
for the autocorrelation function of model II.

FIG. 7. Quantum and semiclassical spin-coherent-state re
for the autocorrelation function of model III.
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V. CONCLUSIONS

The mapping approach to the semiclassical description
nonadiabatic quantum dynamics consists of~i! an exact
quantum-mechanical transformation of discrete quant
DoF onto continuous DoF, and~ii ! a standard semiclassica
treatment of the resulting dynamical problem. Since ap
from the basic semiclassical Van Vleck–Gutzwiller appro
mation, no further assumptions or approximations are
volved, the approach appears to be appealing both fro
conceptional and a computational point of view.

We have discussed various possibilities to obtain a m
ping from discrete to continuous DoF, in particular th
Holstein-Primakoff transformation, Schwinger’s transform
tion, and the spin-coherent-state representation. Although
these representations are exact on a quantum-mecha
level, the accuracy of their semiclassical evaluation has b
shown to differ considerably. In particular, it has been sho
that the generalization of Schwinger’s theory proposed
Ref. @24# appears to be the only transformation that provid
an exact description of a generalN-level system within a
standard semiclassical evaluation. On the other hand, it
been found that highly nonlinear terms in the mappi
Hamiltonian ~arising, e.g., in the Holstein-Primakoff trans
formation! hamper a successful semiclassical evaluation.

Apart from the choice of the quantum-mechanical ma
ping, there are several possibilities to establish a class
Hamiltonian function from the quantum Hamiltonian. F
example, the semiclassical approximation depends on
choice of the representation„e.g., diabatic@Eq. ~3.29!# or
adiabatic@Eq. ~3.28!#…, as well as on the operator orderin
„e.g., normal ordering@Eq. ~3.12!# or symmetric ordering
@Eq. ~3.14!#… of the Hamiltonian. While this represents a ge
eral and well-known question, the semiclassical evaluat
of the mapping formulation involves the additional proble
that quantum-mechanical identity transformations within
physical subspace may lead to different classical expressi
This issue has been discussed in the context of the choic
the classical Hamiltonian@Eqs.~2.15! or ~2.16!# as well as of
electronic projectors@Eqs.~3.36! or ~3.37!#.

Exploiting the relation between spin-coherent states
Schwinger’s representation for a two-state system, we h
derived a semiclassical initial-value representation of
corresponding spin-coherent-state propagator. Several le
of approximation have been discussed:~i! the semiclassically
exact propagator~4.17!, ~ii ! the spin-coherent-state propag
tor ~4.20! obtained from Eq.~4.17! by approximating the
sampling over the electronic populationI by its quantum
valueI 51, and~iii ! Suzuki’s propagator~4.9! obtained from
Eq. ~4.20! by replacing the determinantCZtzt

by the normal-

ization factorNt . Although the spin-coherent-state propag
tor ~4.20! represents an approximation, the appealing
merical features of this propagator makes it a promis
candidate for the semiclassical description of large molec
systems with many DoF.

Several continuations of this work appear promising.
the context of quantum signatures of irregular classical m
tion, it would be interesting to explore which classical ma
ping Hamiltonian results in the correct quantum-mechan
level statistic. First studies employing classical Poincare´ sec-
tions have show that the order of phase space may sig

lts

lts
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cantly depend on the particular bosonization chosen@65#.
Furthermore, the semiclassical spin-coherent-state form
tion can be extended in several ways, for example, to
count for the dynamics ofN-level systems. Finally, in orde
to push the limits of the semiclassical approach to the
scription of truly multidimensional dynamics, one needs
employ improved strategies to converge the phase-spac
tegrations underlying the semiclassical initial-value repres
tation. Examples include quasirandom sampling within
Sobol algorithm@79# and several integral conditioning meth
ods @66–68#. Furthermore, suitable approximations to t
cs

s

r

hy

.

la-
c-

-
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e

semiclassically exact propagator such as the spin-cohe
state propagator~4.20! appear to be a promising way to th
semiclassical description of complex systems.
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