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Mapping approach to the semiclassical description of nonadiabatic quantum dynamics
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A theoretical formulation is outlined that allows us to extend the semiclassical Van Vleck—Gutzwiller
formulation to the description of nonadiabatic quantum dynamics on coupled potential-energy surfaces. In this
formulation the problem of a classical treatmentdi$crete quantum degrees of freedofoF) such as
electronic states is bypassed by transforming the discrete quantum variables to continuous variables. The
mapping approach thus consists of two steps: an exact quantum-mechanical transformation of discrete onto
continuous DoRthe “mapping”) and a standard semiclassical treatment of the resulting dynamical problem.
Extending previous workG. Stock and M. Thoss, Phys. Rev. Let8, 578 (1997], various possibilities for
obtaining a mapping from discrete to continuous DoF are investigated, in particular the Holstein-Primakoff
transformation, Schwinger’s theory of angular momenfimQuantum Theory of Angular Momentuedited
by L. C. Biedenharn and H. V. Da\cademic, New York, 196§, and the spin-coherent-state representation.
Although all these representations are exact on the quantum-mechanical level, the accuracy of their semiclas-
sical evaluation is shown to differ considerably. In particular, it is shown that a generalization of Schwinger’s
theory appears to be the only transformation that provides an exact description of a deferell system
within a standard semiclassical evaluation. Exploiting the connection between spin-coherent states and
Schwinger’s representation for a two-level system, furthermore, a semiclassical initial-value representation of
the corresponding spin-coherent-state propagator is derived. Although this propagator represents an approxi-
mation, its appealing numerical features make it a promising candidate for the semiclassical description of
large molecular systems with many DoF. Adopting various spin-boson-type m@gelsa two-level system
coupled to a single or many DaFcomputational studies are presented for Schwinger’s and the spin-coherent-
state representation, respectively. The performance of the semiclassical approximation in the case of regular
and chaotic classical dynamics as well as for multimode electronic relaxation dynamics is discussed in some
detail.[S1050-294{@9)01901-7

PACS numbegps): 03.65.Sq, 31.15.Gy, 03.65.Ge

I. INTRODUCTION problems[2]. Yet, even for this simple system, the classical
limit is not completely understood.
The description of quantum-mechanical dynamics em- A formal solution to the problem can be obtained within a
ploying a semiclassical approach has been an active field gfath-integral formulation. The idea is to construct a path in-
research since the first days of quantum mechdigsls- tegral for the full problem, and subsequently employ a
sues raised include the fundamental question of the classicatationary-phase evaluation for the continuous DoF. Adopt-
limit of quantum mechanics, the understanding and interpreing this formalism for a description of nonadiabatic scatter-
tation of quantum effects through a classical analysis, anthg, Pechukas showed that the classical parti¢ies, the
the modeling of dynamical processes in complex systemaucle) move in a nonlocal force field generated by the quan-
that defy a rigorous quantum-mechanical treatment. tum particles(i.e., the electrong 3]. Employing a classical-
A classical description is well established in cases wherg@ath-type evaluation of the electronic transition-amplitude,
both the system under consideration and the observable to ltiee “quantum force” becomes localized in space and time
calculated have an obvious classical anal@ny the [4,5], thus leading to Sttkelberg’s theory of curve crossings
translational-energy distribution after a scattering envéhis  [6]. In this formulation, nonadiabatic transitions of classical
less clear, however, how to incorporate discrete quantumtrajectories are described in terms of a connection formula of
mechanical degrees of freedd®oF) into a classical theory. the Wentzel-Kramers-Brillouin wave functions associated
For example, consider a two-level system coupled to one owith the two coupled electronic states. The intuitively ap-
many continuous DoF. Accounting for a large variety of phe-pealing picture of trajectories hopping between coupled
nomena in chemical and solid-state physics as well as ipotential-energy surfaces has been adopted by a number of
quantum optics, this model represents one of the best studiegtmiclassica[4—10] and quantum-classicéb,11] descrip-
tions. A problem of this approach to the semiclassical de-
scription of nonadiabatic dynamics is, however, that in gen-
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Gutzwiller approximatiorj1] to the quantum propagator. All ticular, (i) the mapping unambiguously defines the Hamil-
other formulations appear to involve additional approxima-tonian as well as the boundagr initial) conditions of the
tions which often are difficult to control. semiclassical propagator, aqg) the approach is semiclassi-
Some years ago, McCurdy, Meyer, and Miller suggestectal exact since no additional assumption except for the stan-
an alternative way to the semiclassical description of nonaedard semiclassical approximation is needed. ghasiclas-
diabatic dynamics[12—16. Exploiting various quantum- sicallimit (i.e., without semiclassical phages the mapping
classical analogies including Heisenberg's correspondencapproach and its relation to the classical electron-analog
principle[12], a classical pseudopotential angdt3], as well models[12-16 as well as to other classical-path formula-
as the correspondence of spin and classical angular mometiens[18—22 have been discussed in RE27].
tum [15], they constructed classical Hamiltonian functions Bosonization techniques such as Schwinger's theory of
for the full vibronic system, thus treating both electronic andangular momentuni25] and the Holstein-Primakoff trans-
nuclear DoF’s on the same dynami¢i., classicglfooting.  formation [28] are well known, and have been applied in
The most successful version, sometimes referred to as theirious fields including nuclear physid29], solid-state
“classical electron-analog” mode[14], is based on a physics[30,31], and quantum optic32]. On a quantum-
classical-path ansatz of the Hamiltonian function, and hagnechanical level, all these representations are exact, thus re-
been employed to several test problems including nonadiasyiting in a completely equivalent formulation. This is no
batic collision processefl7]. In an extension to existing |gnger true, however, if the transformed problem is subse-
classical-path formulations which do not account for inter-o,ently treated within a semiclassical framework. Depending
ferenf:e effects of individual classical patf8-22, .the . on the transformation under consideration, the validity and
classical electron-analog model suggests a Sem'dE‘SS'C?\‘Ecuracy of the semiclassical approximation may differ con-

treatment of the dynamics within classica&matrix theory ; . . .
) L . siderably. Since the very concept of the mapping approach is
[23]. Although the idea of establishing a classical analogoqo use tﬁese transform;/tions az a startingp[?oir?t fglroa semi-

is conceptionally appealing, the approach is not completely ) . i T
satisfying from a theoretical point of view. Starting out with classmgll treatment ?f ntonatcrillabatllc q.ua?tullm _(tjynzfamlcs_, It is
an approximate classicdrather than an exact quantum- essential to Investigate the classical limit of various

mechanical formulation, there are two interrelated prob- POSonization techniques. , , o
lems: (i) The formulations are not unique, i.e., various analo- An alternative concept to obtain a continuous description
gies result in different classical models. Furthermore, thef discrete quantum variables is based on the coherent-state
formulations do not determine the bounddoy initial) con- ~ representation of the quantum system under consideration
ditions of the semiclassical propagatir) The nature of the [33,34. In particular, the spin-coherent-state path integral
approximations involved is difficult to specify. For example, has been used to investigate the semiclassical description of
none of the model§12—16 are semiclassically exact, but spin systemg35-37. At a first sight, the usage of spin-
give approximate results even for a two-level sysfdm. coherent states and the mapping approach appear to be quite
Recently we have proposed a “mapping approach” to thedifferent concepts. However, there exists a close connection
semiclassical description of nonadiabatic dynani4]. In between these approaches which is discussed in this work. In
this formulation the problem of a classical treatment of dis-particular, we use the mapping method to derive a semiclas-
crete quantum DoF is bypassed by transforming the discretsical spin-coherent-state propagator. It is shown that this
guantum variables to continuous variables. Based ompropagator can be considered as a generalization of the work
Schwinger’s theory of angular momentd2b], the mapping by Suzuki[38].
of discrete DoF onto continuous DoF is achieved through the The outline of the paper is as follows. Section Il briefly
representation of spin operators by boson operators. To illugeviews existing mapping formalisms for a spin system and
trate the concept, consider a molecular system compri$ing for the more general case of &hlevel system. Furthermore
electronic states anill vibrational modes: The basic idea is the connection of the mappings to the formalism of second
to (i) map theN discrete DoF ontdN continuous DoF angii) guantization is discussed. Section Il is concerned with the
solve the resulting dynamical problem Nf+ M continuous  semiclassical evaluation of the mapping formalism. After in-
DoF employing standard semiclassical methodology. Sinc&roducing the semiclassical propagator and its numerical
the mapping is quantum mechanically exact, the approacimplementation via an initial-value representati39—44,
allows us—without any further approximations—to extendthe virtues and shortcomings of the semiclassical treatment
well-established techniques of classical trajectory calculaef several mappings are investigated for a two-level system.
tions to nonadiabatic problems on coupled potential-energit is shown that the mapping proposed in R&#]| appears to
surfaces. be the only transformation that provides an exact description
As both electronic and nuclear DoF are formally treatedof a generalN-level system within a standard semiclassical
by classical mechanics, the classical limit of the mappingsvaluation. Adopting the well-known spin-boson mog@ed.,
formulation is in the same spirit as the models of McCurdy,a two-level system coupled to a single or many nuclear
Meyer, and Miller. In particular, a requantized version of theDoF), we furthermore present computational studies for this
classical electron-analog model recently introduced by Sumapping. The performance of the semiclassical approxima-
and Miller [26] is equivalent to the semiclassical limit of the tion in the case of regular and chaotic dynamics as well as
mapping proposed in Ref24]. However, since the mapping for multimode relaxation dynamics is discussed in some de-
approach establishes an equivalence of discrete and contintail. Section IV discusses the semiclassical description of
ous DoFon a quantum-mechanical leyehis approach is nonadiabatic dynamics via spin-coherent states as well as its
free from the problems associated with these models. In paconnection to the mapping procedure. Section V concludes.
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IIl. MAPPING FORMALISM [an.ah]= 0 m (2.4

There are a variety of formalisms that allow for a map- . . .
. . X and basis statg#,,n,) which satisfy
ping of a discrete quantum system onto a continuous analog

(for reviews, see Refd.29,3()). The most prominent ex- alay|ng,ny)=ny|n;,n,), (2.59
amples are Schwinger's theory of angular momen{@5|
and the Holstein-Primakoff transformati¢f8]. In this sec- azazlnl,n2>=nz|n1,n2). (2.5h
tion we briefly review both methods, and generalize the for-
mulations to the representation Nflevel systems. The mapping relations read
A. Spin system S, —ajay, (2.6a
Let us consider a spin DoF, which is described by the spin S_HaTaz (2.6b
operatorsS;, S,, and Sz, with commutation relations#( 17
=1) Sy—(ala,—alay)/2, (2.60
S ,Sd=ie , 2.1 _
[ i Sk] jk|S| ( ) | (aDs m(a’2r)5+m |0 _| ~ .\
as well as the corresponding raising and lowering operators sm)— st (s—m)! 1,02) =[(s=m)y,(s+m)y).
S, =S,+iS,. 2.2 (2.69

The idea of this transformation goes back to Jor{4)].
Therefore, it is sometimes called Jordan-Schwinger represen-
tation. The mapping preserves the commutation relations
(2.1). As can be seen from E¢2.60, the image of the (&
' (2.3 +1)-dimensional spin Hilbert space is the subspace of the
two-oscillator Hilbert space with2quantum of excitation—
Consider, furthermore, a 62-1)-dimensional subspace of the so-called physical subspa@9,46. This subspace is in-
the Hilbert space with fixed. Then, according to Schwing- variant under the action of any operator which results by
er's theory of angular momentu25], this discrete spin mapping(2.6) from an arbitrary spin operatod(S,,S,,S;).
DoF can be represented by two bosonic oscillators describeThus, starting in this subspace, the system will always re-
by creation and annihilation operatca§ anda,, with com-  main in it. As a consequence, the mapping yields the follow-
mutation relations ing identity for the matrix-elements of an operatdr

These operators act in the Hilbert space of spin state
with

Sslsm=m|sm), -—s<ms<s, s=313, ...

(smAlsm’)=((s—m)y,(s+m)y|Al(s—m')1,(s+m"),|), (2.7

whereA denotes the transformed operator which results frbthrough the mapping relatiort.6). In particular, if. A denotes
the time-evolution operator of the spin system, we have the the following exact identity for the propagator:

(sme Msm')=((s—m)y,(s+m),le M(s—m");,(s+m’),). (2.9

In the Schwinger representation the identity operator inThe Holstein-Primakoff transformation also preserves the
the spin Hilbert space is mapped onto the constant of motionommutation relatior§2.1). Due to the square-root operators
ala,+ala,. The existence of this constant of motion is uti- in Egs.(2.9), however, the mutual adjointness 8f andS_
lized by the Holstein-Primakoff transformation to eliminate as Well as the self-adjointness $f is only guaranteed in the

one boson DoF, thus representing the spin DoF by a singlBhysical subspacg|0), . .. |s+m)} of the transformation
oscillator[28] [30]. This flaw of the Holstein-Primakoff transformation out-

side the physical subspace does not present a problem on the
guantum-mechanical level of description. This is because the

S,—v2sa'J1-a'a/2s, (298 physical subspace again is invariant under the action of any
operator which results from the mappit@9 of an arbitrary
S_—\2sy1-a'ai2sa, (2.99 spin operatotd(S;,S,,S3). As discussed in Sec. 111 B, how-

ever, the square-root operators may cause serious problems
in the semiclassical evaluation of the Holstein-Primakoff
S;—a'a-—s, (2.99 transformation.
Let us briefly mention some formal aspects of the above
(ahys+m introduced formalism, which have been discussed in detalil
|sim)— ———|0)=|s+m). (2.909 by Blaizot and Marshallek29)]. First, it is noted that both the
V(s+m)! Schwinger and Holstein-Primakoff representations are not
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unitary transformations in the usual sense. Nevertheless, a (ale My =(0q, ..., 1, ... Q|
transformation may be defined in terms of a formal mapping _

operator acting in the fermionic-bosonic product Hilbert xXe M0y, ... 1y, .00,
space. Furthermore, the interrelation of the Schwinger repre- (2.14

sentation and the Holstein-Primakoff representation has been

investigated in the context of the quantization of time-gq, 5 two-level system, mappin@.11 obviously coincides
dependent self-consistent fields. It has been shown that thgi, Eq. (2.6 for s=1.

representations are related to each other by a nonunitary | ig interesting to note that different bosonic Hamilto-

transformation. This lack of unitarity is a consequence of the,i3nsH may correspond to the same original Hamiltoran

nonexistence of a unitary polar deTcomposition of the creatioRrp;g ambiguity reflects the fact that in the physical subspace

and annihilation operators, anda, [47] and the resulting 5 jgentity transformation of the bosonic Hamiltoni&h
difficulties in the definition of a proper phase operator in_, ' goes not change the dynamics in this subspace. For

quantum optic$48]. _ _ _ example, the two bosonic Hamiltonians
Finally, it is noted that there exist alternative mappings of
spin to continuous DoF. For example, REBO] discusses H=E+V(ala,+ala,) (2.15
- 1 2 ’ .

various mappings whicklike the Holstein-Primakoff trans-
formation represent a spin system by a single boson DoF. + + + +
The possibility of utilizing spin-coherent states for this pur- H'=E(aja;+aza) +V(ajaptaza;) (2.1
pose is discussed in Sec. IV.
are equivalent in the physical subspald®,,1,),/11,0,)},

B. N-level system and correspond to the same “discrete” two-level system

Hamiltonian
Let us now consider ah-level system with basis states
[¢n) (n=1,...N) and the Hamiltonian H=E+V(| )| + | ) (h1]). (2.17
H= 2, Nyl o) Pl - (2.10  SinceH andH' are equivalent in the physical subspace, both
n,m

Hamiltonians generate the same quantum dynamics in this
subspace. However, this is not necessarily true if approxima-
In obvious analogy to Schwinger’s theory of angular mo-tions are employed in the evaluation of the dynamics. For

mentum, thisN-level system can be representedMyscil-  example, adopting a semiclassical approximation, the quan-

lators, whereby the mapping relations for the operator antum mechanically equivalent Hamiltoniamé and H' may

the basis states reqd4] yield different results. Experience shows that it is useful first
to transform the Hamiltonian on the quantum-mechanical

|,/,n><,/,m|_>a;f]am, (2.113 level to the simplest possible fortwhich in the present case
would beH), and then to apply the semiclassical approxima-
tion.
[} =101, ... 30, o, 0y). (2.11h As discussed above for the case of spin systems, formal-

ism (2.11) is not the only way to construct a mapping of an
Herea, anda/, are the usual oscillator creation and annihi- N-level system. First of all it is clear that one may again
lation operators with bosonic commutation relatio2s4),  eliminate one boson DoF by exploiting the identity operator
and [0y, ...,1,,...,0y) denotes a harmonic-oscillator = a'a, as constant of motion. Furthermore, one may ex-
eigenstate with a single quantum excitation in the mode press theN2-dimensional operator basis in terms of powers
According to Eq.(2.113, the bosonic representation of of the spin matricesS;, S,, and S;. Employing the
Hamiltonian(2.10 is given by Holstein-Primakoffior Schwingey transformation, the entire
N-level system can thus be represented by @rewo) os-
+ cillator(s). On a classical level, this strategy has been fol-
H:nZ‘n Nam@nam, (212 |owed by Meyer and Miller in their spin matrix mapping
' method[15]. Unfortunately, the higher powers of the spin
) ) _ operators result in highly nonlinear equations of motion,
and the mapping preserves the commutation relations of thghich are unfavorable for a semiclassical treatment.
operator basis The continuous quantum systef®.12) obtained by the
mapping procedure can also be considered as the result of a
o)l » [l 1= 9] Smi— [0l 61 - second-quantization procedure restricted to the one-particle
(213 space. Although this point of view may appear artificize-
cause we do not deal with many-particle thepiyneverthe-
The image of thé\-level Hilbert space is the subspace of the less elucidates the concept underlying the mapping approach
N-oscillator Hilbert space with a single quantum excitation.and is therefore briefly considered in the following.
Again, this(physica) subspace is invariant under the action One way to derive a second-quantization formalism that
of any operator which results by mappiri@.11a from an  has been anticipated by Dir&§49] is to represent the time-
arbitrary N-level system operator. As a consequence we obdependent wave function pertaining to thielevel system
tain the propagator identity (2.10 as
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semiclassical methods used in this work, the virtues and
(1)) =2 ca(D)] ), (218  shortcomings of the semiclassical treatment of several map-
" pings are studied for the case of a two-level system. Employ-
where the complex coefficients, obey the time-dependent iNg Schwinger's formulation to the spin-boson model, we
Schradinger equation furthermore perform computational studies on the semiclas-
sical description of nonadiabatic dynamics.
IC“_% PmCon - (2.19 A. Semiclassical propagator
Let us consider am-dimensional quantum system with
HamiltonianH, which is assumed to possess a well-defined
_ classical analog. In order to obtain the semiclassical approxi-
H=(y(t)|H| ()=, c*Cuham mation to the transition amplitud€,(f|i) between the initial
n.m state|i) and the final statéf), the amplitude is expressed in
terms of the coordinate-dependent propag#tgx’|x)

Let us introduce the expectation value of the Hamiltorfign

:%2 (XoXmt PaPm)hnm, (2.20
' Kt(f|i)E(f|e‘iH‘|i)=f dx’f dx{f|x" YK (X" [X){x]i),

wherec,=(X,+iP,)/y2, and we have assumed tHat,, 3.1)

=h}.,. As first pointed out by Dirac, Hamilton's equations
for H and the real variableX, and P, are completely which then is evaluated within the semiclassical Van Vleck—
equivalent to the equation of motid@.19 for the complex  Gutzwiller approximatiorf1]

coefficientsc, [49,50. Equation(2.20 can therefore be in-

terpreted as classical Hamiltonian function representing g'Scimi2
coupled harmonic oscillators KV (X' |x)= 2 . . (3.2
' traj +/de{ 27 dx'/dp)

Following the basic concept of second quantization, that

'i’ tolqua_ntllze n(.)ﬁ only observgbles bUtI also the stz;te VeClOfiere the sum runs over all trajectories that start from point
the classical oscillators are subsequently interpreted as quap=_ ot time 0 and end up at poirt=x' at timet, S, is the

tum oscillators. Replacing the amplitudes andc, by the  (j5ssical action along such a trajectory, and the monodromy
creation and annihilation operata$ anda,, the procedure matrix elementsix’/dp account for the dependency of the
directly leads to the quantum-mechanical mapping Hamilyajectory x, with respect to its initial momentum,. The
tonian(2.12. We note in passing that in the above derivationpasiov-index» counts the zeroes of the Van Vleck determi-
we have used bosonic creation and annihilation operatorg,ant. The evaluation of the semiclassical Van Vieck—
thus retaining Hamiltoniaf2.12 and the basis stat®.119  Gytzwiller propagatofEq. (3.2)] amounts to the solution of
of the mapping representation. Being restricted to a singley boundary-value problem. That is, given a trajectory char-
particle space, however, the many-particle statistic does nQj.terized by the positiork(t)=x, and momentump(t)
matter, and one could also use fermionic operators, thus re= p,, we need to find the roots of the equatioq
taining the Hamiltoniar{2.10 in the discrete representation. =x,(Xo,Po). TO circumvent this cumbersome root search,
It is interesting to note that the derivation of the classicalyne may rewrite the propagator as an initial-value problem
Hamiltonian function in the classical electron-analog model[39_44]. As a consequence, the semiclassical propagator is
[14] is virtually identical up to Eq(2.20. As discussed in  given as a phase-space integral over the initial conditigns
Sec. |, however, this formulation does not establish &4y \which is amenable to a Monte Carlo evaluation. For
quantum-mechanicalequivalence of theN-level system g rea50n, semiclassical initial-value representations are re-
(2.10 and theN-oscillator systeniEq. (2.12]. As a conse-  garded as keys to the application of semiclassical methods to
quence, the classical model Hamiltonian neglects the comy, itidimensional systems.
mutator( &, ,a}]=1, which results in the-3 £,V,,, term in In this work, we use a Herman-Kluk-type representation

the quantum HamiltoniafEqg. (3.32] describing the zero-  of the propagatof40], which can be written as
point energy excitation of the electronic oscillat¢gy]. In

order to achieve meaningful semiclassical quantization con-

dxod .
ditions “Langer-like modifications” were subsequently in- KtHK(x’|x)=f 0 Pno Crip & (X' [%P1)(XoPolX)-
voked to the off-diagonal elements of the Hamiltonian func- (2m)
tion. While the origin as well as the value of these (3.3

modifications are difficult to justify in the classical model
(see the discussion in Refi61,52), the zero-point energy
term naturally arises in the quantum-mechanical derivation.

Here the classical action is given as

t .
S | drtp, -1, (3.4
I1l. SEMICLASSICAL DESCRIPTION 0

The mapping procedure introduced above results irand the dynamics of the trajectorigsandp, is governed by
quantum-mechanical Hamiltonians with well-defined classithe classical Hamiltonian functiof®. Furthermore, we
cal analogs, thus rendering the semiclassical evaluation laave introduced coherent stateg,), which in the position
straightforward matter. Following a brief description of representation are given by Gaussian wave packets
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n/4
<x|xtpt>=(%) exp{
(3.9

Throughout this paper, we have chosen a width parameter
y=1. The complex functiorﬁ:xtpl describes the spreading of

the Gaussian wave packets during their propagation in a
anharmonic potentidi0]

Cp,= \/ de{ (

In what follows, it is advantageous to rewrite the Herman-
Kluk propagatorK(x’|x)=(x’'|K;|X) in the basis-free form

2 (X=X) 2P (X=X | -

1
2

My % N | Ipy

i—+——1|. (3.6
dpo  IXo 4 dPo Y Xo

d?z, _
<t~ [ S212)c, 6%z @7
Here the integration measure is given by
d?zy=d(Rezy)d(Imzy) = dx,dp,/2", (3.9
and we have used complex variables (zy, ... ,z,)=(x

+ip)/2 and coherent states

|Z>=eXF( _2. |Zj|2/2) ex;{ E ZjajT) |0)=|xp)e'P¥2
J ]

(3.9
to simplify the notation. The functioﬁ:zl is given by
C, = vdeldz/dzy) =Cy (3.10
andS, denotes the action
to i .
S,= fodr(z(z’;zT—zjo)—HC' ) (3.11)

This action coincidegbesides a boundary-value termvith
the action that appears in the coherent-state path integral, a
is therefore reminiscent of the origin of the Herman-Kluk
propagato53]. It should be noted that representati@?)

of the Herman-Kluk propagator is only valid for a width
parametery=1. To account for arbitrary values of, the
usual coherent statgg) need to be replaced by squeezed
states.
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&Zj (?Zj

>

]

1 [t
S,—S,+ EfodT (3.13

t? treat low-energy states correc{ly4]. Another possibility
iS to use a symmetrically-p-ordered Hamiltonian, i.e., the

Wigner function
n

Hﬁ}(x,p)zf dse's’(x—g/2|H|x+52).  (3.14

Both possibilities have been discussed within the Wentzel-
Kramers-Brillouin theory 54,55 as well as in the context of
semiclassical approximations to phase-space path integrals
[56]. In the computational studies reported below we have
employed the Wigner representati¢8.14) of the Hamil-
tonian, which seemed to yield slightly better results. For
simple analytically solvable problems such as the harmonic
oscillator, both choices are obviously equivalent.

B. Two-level system

In order to compare semiclassical approximations ob-
tained for various mappings introduced above, it is instruc-
tive to investigate the dynamics of a simple two-level system
with electronic matrix elements,,=E,, andh,,=V (nh,m
=1,2,n#m). Let us first consider the Schwinger represen-
tation (2.11) of the Hamiltonian

(3.19

Hs= >, Ejala,+V(ala,+ala;).
n=1,2

Using the symmetrically ordered Wigner functih14), the
classical Hamiltonian reads

H§'=n§12En(z:zn—%>+V<ziZZ+z§zl>

=an12 Ent(x2+p2—1)+V(p1ps+X1Xp).

(3.19

Dr%e transition amplitude in the Schwinger representation is

given as

Ki(1]2)=(¥|e” "M W,)=(1,,0,|]e s0,,1,).
(3.19

Employing the Herman-Kluk propagat(3.7), the semiclas-

It is noted that there exist several choices for the classicaical transition amplitude reads

HamiltonianH® which correspond to different operator or-

derings. One possibility, which is supported by the deriva-
tion of the Herman-Kluk propagator from the coherent-state

d2

d? Z0
. (1105|241, 221)

Kl [ =22

path integra[53], is to use the coherent-state matrix element

(or Q function)

HY(2)=(z|H|2). (3.12

(3.18

XCq, ,zzIeiSZ<Zloazzo| 01,1).

As is well known, the Van Vleck—Gutzwiller approximation
is exact if the Hamiltonian is quadratid]. This is the case

This choice corresponds to a normal ordering of the quanturfor the Schwinger representation as well as for its generali-
Hamiltonian with respect to creation and annihilation opera-zation toN-level systemg2.11).
tors. In this case it is appropriate to use a correction term in The Holstein-PrimakoffHP) representation of the two-

the action, i.e.,

level system Hamiltonian is given by
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Hyp=E;(1—a'a)+E,a’a+V(a' y1—-a'a+1-a'aa).

(3.19
The semiclassical approximation for the transition amplitude
reads OV

o
—iH et dZZO is
Ki(112)=(0le™ ™" 1)= | —=(0]z)C,e'%(zo|1). 0.5
(3.20
0 TR R

While the classical Hamiltoniar{3.16 pertaining to the 0 20 40

Schwinger representation is well defined, the choice of a
classical Hamiltonian in the Holstein-Primakoff representa- ;5 1 Rabi oscillations of a two-level system. The full line

tion is quite ambiguous. This is because the square-root ORapresents the correct quantum result, while the broken lines corre-

erator in Eq.(3.19 is only well defined in the physical sub- spong to results obtained by two variants of the semiclassical
space, but otherwise leads to an imaginary contribution tqyo|stein-Primakoff representation.

the Hamiltonian. The simplest choice for a classical repre-
sentation of the square-root operator is to use the classical

" At t
approximation for Wigner function of a function of an op- Hyp—Hip=Ea(1-a'a) + Eza’a+ V(|0)(1|+[1)(0]).

erator, i.e., (3.2
(f(ata))y="f((ata)y). (3.20) where|(_)> and|1)_are the ground and first excited states of
the oscillator. This transformation represents an identity in
This way we obtain the classical Hamiltonian the physical subspace. The Wigner function of the operator
H/p is then identical to Eq(3.25. We note in passing that
HGR=E (3 —2*2) +Ex(2* z— 1)+ V(2 +2)Vi— 2"z the interaction termVV(|0)(1|+|1)(0[) in H{;s corresponds
(3.22  to the mapping
and the corresponding equation of motion [ W)W 4| —[0)(0], (3.273
HEE
=i~ (3.23 W) (Wl —1)(1], (3:27b

Obviously, this Hamiltonian is only well defined i z< 2. W2 )(W2|—[0)(1], (3.279

In the computational evaluation we therefore have to restrict ]
the sampling of initial values to this region and exclude tra-Which was proposed by GarbaczewpB0] some time ago.
jectories which approack*z=2. The resulting sampling Let us illustrate these theoretical considerations by a rep-
scheme may be viewed as a practical implementation of thESentative computational example. Figure 1 ShOWZS the time-
restriction onto the physical subspace on the classical levefependent population probability,(t) = |K.(1]2)|* ob-
Another classical Hamiltonian can be obtained in the fol-tained for a two-level system with the parametéis—E;
lowing way. Representing the square-root operdi@’a)  =0.658 eV, and/=0.132 eV. Shown are the quantum re-
—/1—a'a through an expansion in terms of harmonic- Sult (full line) as well as the semiclassical results pertaining

oscillator eigenstates, the Wigner function of this operator id0 the two variants of the semiclassical Holstein-Primakoff
given by representationtd ;5 (dashed linpandH ;5 (dotted ling. As

discussed above, the semiclassical approximation to the two-

b < level system is exact in the Schwinger representation,

(f(aTa)w(z)=2e7274" > (—1)™J1-mLy(4/2?), whereas the corresponding Holstein-Primakoff representa-
m=0 (3.24 tion is not exact due to the higher powers of dynamical vari-

' ables. In fact, both versions of the Holstein-Primakoff repre-
whereL (x) denotes a Laguerre polynomial. Note that thes_entatio_n are found to yield rather poor results. While the
real part of Eq(3.24) is given by the term wittm=0, while  first variant at least reproduces t_he correct frequ_ency of the
the rest of the sumni>1) gives the imaginary part. Since Rabi oscillations, the second variant is incorrect in both fre-
the Hamiltonian has to be real valued, it appears to be serfluéncy and amplitude. As already mentioned, the reason for
sible to take only the real part into account, thus yielding thehis failure lies in the complicated structure of the Hamil-

classical Hamiltonian tonian which results in highly nonlinear equations of motion.
The same problem occurs when higher powers of the spin
HEP=E,(3—7z*2) +Ex(2* z—%)+4V(z*+z)e*2|Z|2. operatorsS;, S,, and S; are used to represent a general

(3.29 N-level system N>2). Although all these representations
are exact on the quantum-mechanical level, the Schwinger
It is noted that Eq(3.25 can also be obtained by a quantum- representation as well as its generalizatiohltlevel systems
mechanical transformation of the Hamilton operator accordfEq. (2.11)] are therefore clearly superior for a semiclassical
ing to evaluation.
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C. Nonadiabatic dynamics

=1 (24 x2
In the following we adopt the bosonic representation in- T(p) Vo) = 221-: @j(P7 ), (3309

troduced in Eqs(2.11) to describe nonadiabatic dynamics on

coupled potential-energy surfaces. To this end, we identify

the | 4,) with electronic states and the matrix elemehtg, Van(X)=Ep+ 2 &{"x;+(«{")%20;. (3.30h
of the Hamiltonian with operators of the nuclear dynamics. !

First numerical studies describing bound s{@4] and reac- . . .
Here x; and p; are the dimensionless position and momen-

tive [26,57 nonadiabatic dynamics appeared to be AUt m of the jth vibrational mode with the vibrational fre-

promising. Here we wish o focus on specific problems as, uency w; and the state-dependent linear coordinate shift
sociated with the semiclassical calculation of nonadiabatié Yo, P

(n) _ . " .
dynamics. Employing a multidimensional molecular model, %] ;- En denotes the vertical transition energy of the d

we furthermore present first results of a semiclassical debatic state|yn). The off-diagonal diabatic coupliny,
=V,, is assumed to be constant. Introducing, furthermore,

scription of nonadiabatic relaxation processes. , i i

As is well known, a vibronic problem can be described in Cartesian electronic variables
the adiabatic as well as diabatic electronic representations. T
The Hamiltonian matrix elements in the adiabatic represen- Xn:(an“Lan)/‘/E' (3313

tation read 58]
P,=i(al—an)/V2, (3.31h
hnm: (T(p)+Wn(x))5n,m_Anm(Xap)v (3.28
the molecular Hamiltonian in the diabatic bosonic represen-
where W, denotes the adiabatic Born-Oppenheimertation finally reads
potential-energy surfaces,is the kinetic energy, and rep-

resents the non-Born-Oppenheimer operator. In the diabatic H=ho(X,p)+ 1> (X, Xm+PyPm)Van(X), (3.323
representation we obtain n,m
ham=(T(P) +Vo(X)) 8pm+ Vam(X), (3.29 ho(X,p) =T(P)+Vo(X)— %>, Von(X),  (3.328
n

Wher.eV“m reprgsent the glements of the diapatic pOter]tiak/vhere the nonlinearity of the spin-boson problem becomes
matrix, andVy is a state-independent potential term. Theevidentin Eq(3.323. The mapping Hamiltoniaf8.32) with

adiaba_tic representation is ur)ique_, and is o_ften advantageowatrix elementg3.30 represents the basis for the computa-
for an interpretation of nonadiabatic relaxation processes. Oﬁonal studies reported below

the other hand, transitions betweeabatic electronic states To facilitate the discussion of computational results, let us

are important for an interpretation of spectroscopic ¢ag introduce several time-dependent quantities that reflect the

Th's. IS l_)ecause n 'ghe vicinity of_a surface crossing the_ elechonadiabatic dynamics under consideration. The semiclassi-
tronic dipole transition operator is only smooth in the diaba

tic representation. For further information on general con-Ca! wave function for the nonadiabatic systé&B2) can be
. . written as
cepts of non-Born-Oppenheimer dynamics, see, for example,
Refs.[58,59.
As is clear from the derivation above, the mapping can be X|¥(t))= > D (X)), (3.33a
employed to any electronic representation under consider- n

ation. Quantum mechanically, adiabatic and diabatic repre-

sentations are related through a unitary transformation, and dXqdPg [ dXodpg s
thus contain equivalent information. This is no longer true, Pn(X.)= 2N ) 2mM WoCx x, €' X XePr) Xn(1),
however, once a classical approximation is made: Depending (3.33b

on whether the approximation is employed in the diabatic or

in the adiabatic representation, the resulting classical Hamil-

tonian contains identical first-order nonadiabatic couplings xn()=(1Xn P IT (O[XmPmy)- (3.330

but different second-order nonadiabatic couplihg8]. The m=n

reason for this ambiguity of the classical description is re- _

lated to the general problem of classically vanishing commuti€re Cx x and Sy, denote the Herman-Kluk determinant

tators of quantum-mechanically noncommuting operator$3.6) and the classical actiof8.4), respectively, incorporat-

[61]. As already discussed above, characteristics of classicétg both the electroni¢X,,,P,} and nucleafx;,p;} DoF.

dynamics may therefore critically depend on the representaFhe weight functionw, accounts for the overlap of the mul-

tion chosen. In particular, this choice may determine if thetidimensional Gaussian at tinie=0 with the initial vibronic

system shows regular or chaotic behavior, thus rendering theave function andk|X,;P;) denotes the projection of the

interpretation of(unique quantum dynamics in terms of electronic coherent stat,P,;) on the correspondingth

(ambiguous classical dynamics a problef2]. harmonic-oscillator eigenfunction. Furthermore we wish to
For the numerical studies discussed below, we consider mtroduce the autocorrelation function of the system,

model of the spin-boson tyge], that is, an electronic two-

state system with the diabatic matrix elements J(1)=(¥(1)|¥(0)), (3.39
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describing the overlap of the time-dependent wave function TABLE I|. Molecular parameters of the model Hamiltonian
with its initial state. As is well known, the Fourier transform (3.30 including vibrational frequencies, coordinate shifts, ver-
of J(t) yields the electronic absorption spectrum. Moreover tical electronic gap&,—E,, and diabatic coupling¥,,. For mod-
the time evolution of the autocorrelation function can be€ls | and Il we have<®=— W=, and for model Ill,x® =«
used as a measure of the phase-space exploration of the s§&d «M=0. All quantities are given in eV.

tem[63].

An important quantity in the discussion of nonadiabatic ® K E:-E Vi
dynamics is thetotal time-dependent electronic population podel | 0.066 0.066 0.658 0.132
probability defined by Model Ii 0.066 0.099 0.0 0.066

Model 1lI 0.07 0.09 0.91 0.06
Po()= (¥ (1)[Py| W (1)), (3.35 018 022
0.26 0.34

where P,=|¢,){#,| is the projection operator on the elec-
tronic state ¢,). Within the mapping formalisni2.11) there
are several ways to define an electronic projection operator. ] o ) )
Employing the bosonic representation of the state vé@iqr ~ Silicon Graphics Origin 200, the computations typically re-

(2.11B], we obtain quired from one houtfor Fig. 1) up to one dayfor Fig. 4
CPU time. The molecular parameters of the model systems
P,=101, ...,2, ...,0{0q, ..., 1, ...,Q\], under consideration are collected in Table I.
(3.36 To study the main features of the semiclassical evaluation

of the mapping formalism, let us first consider the simple

thus resulting in a projection of thgh electronic DoF on the case of a weakly coupled spin-boson problem with a single
first excited harmonic-oscillator state, while all other elec-vibrational mode, henceforth referred to as model I. The
tronic DoF’s are projected on the harmonic-oscillator groundquantum and classical dynamics of one-mode spin-boson
state. Alternatively, one may directly employ E@.113,  systems have been investigated by a number of workers em-
thus yielding ploying a mixed quantum-classical description, i.e., without

P the inclusion of semiclassical phag@®,62. The virtues and
Pa=2(X i+ Py—1). (3.3 shortcomings of a true semiclassical description are illus-

) ) ] - trated in Fig. 2, which compares exact quantum reg@lis
Calculating the electronic population probabilitp,,(t)

through definition(3.37) again corresponds to a projection of
the nth electronic DoF on the first excited harmonic- 1.0
oscillator state, while the trace is taken over all other elec-
tronic DoF. Since quantum mechanically the dynamics of the
electronic oscillators is restricted to single excitations, both
electronic projectors are equivalent in a quantum-mechanical
evaluation. In a semiclassical evaluation, however, this is
only approximately true. In practice, nevertheless, both elec- 1.1
tronic projectors were found to lead to similar results. In the 10
calculations reported below, definitiqB8.36 has been em-
ployed.

The computational methods employed can be summarized
as follows. To calculate the semiclassical wave function, we
have evaluated the phase-space integral in(B®3 via a o~
standard Monte Carlo scheme. Hereby the initial conditions
for both electronic and nuclear DoF are obtained through the
sampling of the initial Gaussian overlap functions
(XnoPnol0) and (xjopjol0), respectively,|0) being the
ground state of the harmonic oscillator. In order to improve
the statistics of the Monte Carlo scheme, we have excluded e
strongly chaotic trajectories from the sampling. Following
Kay [64], we have employed the modulus of the Herman-
Kluk determinant(3.6) as a criterion of regularity of the
dynamics and rejected all trajectories with|>e. To keep t1fs]
the number of rejected trajgctorles at less than 10%, we have FIG. 2. Semiclassical description of the nonadiabatic dynamics
used the values= 100 for F'QS- 2 and 5=50000 f‘?f Figs. exhibited by a one-mode spin-boson modelodel ). Shown are
3 and 6, ande=2000 for Figs. 4 and 7, respectively. TO exact quantuntfull lines) and semiclassicalbroken line$ results
ensure convergence within this simple sampling schente, 1Gor (3 the modulus of the autocorrelation functidiit), (b) the
trajectories needed to be sampled. The equations of motioform P, + P, of the semiclassical wave function, and the electronic
for the N electronic andVl nuclear DoF as well as for the population probabilitiesc) P, and(d) P,. The dotted lines corre-
corresponding 2{+M)X2(N+ M) stability matrix were spond to normalized semiclassical data, which are in excellent
solved using a standard Runge-Kutta-Merson scheme. Onagreement with the quantum reference data.

)l

05 |

norm
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FIG. 3. The performance of the semiclassical mapping formula- FIG. 4. Electronic relaxation dynamics exhibited by a three-
tion for a highly chaotic systerfmodel 1l). The semiclassical de- mode spin-boson modéiodel I1l). The semiclassical resultdot-
scription (dotted line3 is able to match the exact quantum results ted lines qualitatively reproduce the exact quantum resyits|

(full lines) up to the timet~100 fs. The labeling is the same as in lines) for the decay of the autocorrelation function and the excited-
Fig. 2. state population. The labeling is the same as in Fig. 2.

lines) to semiclassical resultbroken lineg as obtained from  approach clearly reproduces the nonadiabatic quantum dy-
Eq.(3.33. In all cases considered, we have assumed that th@amics of the system. For simplicity, in the following we
system is initially in the electronic statg,) and in the vi-  will restrict the discussion to normalized quantities.
brational ground state of the unshifted harmonic oscillators. Model | corresponds to a molecular system whose under-
Shown are(a) the modulus of the autocorrelation function lying classical dynamics is mostly regular. Although there
J(t) defined in Eq(3.34), the population probabilitie&) P, exist a small fraction of chaotic trajectories, studies of vari-
and (d) P, of the diabatic electronic statég,) and|,),  ous classical Poincasections reveal that phase space is pre-
respectively, andb) the normP;+ P, of the semiclassical dominately ordere@65]. To illustrate the performance of the
wave function. The quantum results exhibit a high-frequencymapping approach in the chaotic regime, we have adopted a
Rabi oscillation due to the electronic coupling which is su-model termed model II, in which the trajectories fill the com-
perimposed by a low-frequency beating due to the vibraplete energetically accessible phase spgg®. Figure 3
tional motion. It is noted that electronic population probabili- shows that the irregular classical dynamics is reflected in a
ties P(t) directly reflect the nonadiabatic dynamics of the complex structure of the time-dependent quantities. Further-
system, i.e., in the absence of electronic coupling we havenore, the semiclassical results are seen to deviate from the
P.(t)=0, P,y (t)=1. guantum data after several recurrences. Since the number of
Since the norm of the semiclassical wave function is onlytrajectories required to converge the phase-space integral in
approximately conserved, the semiclassical results are digq. (3.33 increases exponentially in time, it is clear that in
played as rough datédashed lingsand normalized data practice the semiclassical description of irregular dynamics
[e.g., PN=P,/(P,+P,), dotted line$ The thus-obtained is restricted to short times. Recently, several sophisticated
normalized results for the autocorrelation function and elecstrategies have been proposed to overcome this problem
tronic population probabilities are seen to match the quanturf66—68. Here we just wish to conclude that—apart from
reference data quantitatively. Employing a similar model, itgeneric problems associated with irregular dynamics—the
was shown in Ref[24] that the semiclassical wave function semiclassical mapping approach is able to account for nona-
(3.33 maps the exact quantum-mechanical result in almostliabatic quantum dynamics in the chaotic regime.
every detail. It is interesting to note that the deviation of the To demonstrate the capability of the approach, let us fi-
norm shown in Fig. @) is not a numerical problem, but nally consider a multidimensional model problem. As dis-
rather confirms the common wisdom that a two-level systentussed in detail in Ref59], a molecular system comprising
as well as its bosonic representation is a prime example of awo coupled electronic states afat leas} three vibrational
guantum system, and therefore difficult to describe within anodes may give rise to irreversible relaxation behavior of
semiclassical theory. Nevertheless, besides the well-knowthe electronic and vibrational dynamics. Here we adopt a
problem of norm conservation, the semiclassical mappinghree-mode model that was discussed by Wolfseder and
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Domcke in the context of photoinduced electron-transfeHere the integration is over the complex plane,
processe$69]. Figure 4 demonstrates that the autocorrela-
tion function and the excited-state population probability ex- d?u=d(Reu)d(Im w). (4.9
hibit irregular structures and decay on different time scales,
respectively. For larger timegot shown in Fig. 4 both ~ Sometimes it is useful to parametrize the complex parameter
quantities fluctuate around their long-time limits, thus clearlyx by polar and azimuthal anglesand ¢ (0<éf<m,0<¢
showing the irreversible relaxation behavior of a strongly-<2) [75]
coupled few-mode systef®9]. This vibronic relaxation dy-
namics is reflected in complex classical motion with mixed _ s ?
regular and irregular phase-space structli®}, thus ren- p=erta 2/ 4.9
dering the semiclassical description a challenging problem.
Figure 4 reveals that the semiclassical mapping approachhe semiclassical approximation for the transition amplitude
gualitatively accounts for the decay of the autocorrelation
function and the electronic population. For timesi0 fs, ) 2\2 d?us d?u;
the rapid increase of the norm indicates that the simple(¥’le”""y)=|— j f (' | )
Monte Carlo sampli i ici m (1 |el®)) (1 il

pling employed is no longer sufficient to
converge the phase-space integral in 8333. X gl €1 W i ) (4.6)

IV. SPIN COHERENT STATES is given through the stationary-phase evaluation of the path

The mapping approach relates a quantum system with di#%taec?srg;ior the coherent state propagator, which formally

crete DoF to a system with continuous DoF which is ame-

nable to a semiclassical treatment. Another possibility to ob- . P '

tain a continuous description of discrete DoF is based on the (uile™ M )= f Du €'Se, 4.7
coherent states of the particular system under investigation Mi

[33,34. This approach is well known for spin systems i
[36,71], but can also be applied f8-level systems. A gen- With the action
eral semiclassical formulation based on a stationary-phase

approximation of the coherent-state path integral is given in [t
Ref.[35]. Here we pursue a different route to a semiclassical Su= fo T
spin-coherent-states description, and exploit the connection

between spin-coherent states and Schwinger’s representatig‘qthough action(4.8) is nonquadratic inx andu*, the semi-
of the corresponding spin systefi2—74. Employing the  (|assjcal approximation to the path integtal?) yields (up
Herman-Kluk  propagator(3.3) for a nonadiabatically {4 5 normalization factrthe exact quantum-mechanical re-
coupled two-state system, we derive a new semiclassical; aAs discussed by several workd7,76, this result,

initial-value - representation for the corresponding spin-gomewhat surprising on first sight, relies on the linearity of
coherent-state propagator and apply the formulation to Vallheisenberg’s equation of motion for the spin operators.

i pp* —pp”

. 4.8
2 1r P o

— (| H[p)

ous models of nonadiabatic dynamics. In the light of this fact, generalized coherent-state theory
_ appears as a promising alternative for a semiclassical treat-
A. Notation ment of discrete quantum systems. In its present form, how-

Let us start with a brief review of spin-coherent-state€Ver, the theory is not suited for a computational evaluation.
theory. For simplicity we focus on a two-levédr spin ) First the regularization procedure used to eliminate the infi-
system, and leave the discussion of the more gemétavel ~ hite normalization factof37] hampers a numerical imple-
system to a separate artidlé5]. The coherent states for a mentation. To facilitate the calculation of multidimensional

two-level system with basis stathg,;) and|,) can be writ- problems, furthermore, the boundary-value problem associ-
ten as[37,71] ated with the semiclassical approximation for the spin-

coherent-state path integral needs to be rewritten in terms of
w 1 an initial-value problem. With this end in mind, an initial-
lu)= |ihy)+ | 2), (4.1))  value representation for the semiclassical spin-coherent-state
[ 2 [ 2
14| ul 1+|pl propagator is derived below.

whereu is a complex parameter. As with the coherent states

of the harmonic oscillator, these states are nonorthogonal, B. Semiclassical propagator
Within the theoretical framework of time-dependent
N 1+u*p' Hartree-Fock theory, Suzuki proposed an initial-value repre-
(ulwr)= \/1+|M|2\/1+|/,L’|2’ 42 sentation for a spin-coherent-states propaggg8t. Adopt-
ing a two-level system with quantum Hamiltonigi, this
and overcomplete, propagator reads

2 d?u su Zf d?pg iS
1:_f_ _ 4.3 KSU=N,— |u)eSe(uel, (4.9
w) el “3 C e
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whereN; is a time-dependent factor guaranteeing the preser- In order to derive a semiclassically exact initial-value rep-

vation of the norm of the semiclassical propagator. The dyfesentation for the spin-coherent-states propagator, we again

namics of the classical trajectories is determined by the equaonsider an electronic two-level systé®132 coupled toM

tion of motion nuclear DoF. Introducing complex notations for an electronic
DoF Z=(Z4,Z,) and a nuclear Dokz=(z,, . ..,zy), the

|2)2(9<,u|7'{|,u> classical bosonic HamiltoniafEqg. (3.32] reads

p=—i(1+|n (4.10

*

2
For a two-level systenor, more generally, for spin systems H=ho(2)+ >, Z*ZVam(2), (4.1
with a Hamiltonian that depends linearly on the spin opera- nm=1
tors S;, S,, andS;) Suzuki's propagator gives the exact
guantum-mechanical result and the normalization fabtpr
=1. A comparison of Eq(4.9) with Eq. (3.7) reveals that
Suzuki’s propagator for spin-coherent states resembles the
propagator of Herman and KIukEg. (3.7)] employing . IH ) IH
harmonic-oscillator coherent states. Missing the determinant Zi=—i—, zj=—i—. (4.12
factor Cz Suzuki’'s expression resembles Heller’s “frozen IZ;
Gaussian approximation[77], and is thus expected to only

yield approximate results in the case of a general nonlineafhe Herman-Kluk propagatdiEq. (3.7)] pertaining to sys-
Hamiltonian. tem (4.11), can be written as

and the equations of motion are given by

o d?z, [ d?z, [ d?Z, o .
('K gy =(ni.n;le 'Ht|n1:n2>:f WMJ - f o |Zt><”1an2|th’zzt>CZtZIeISZ'Z<Zlo'Z2o|nl:n2><Zo|:
(4.13

where |¢) and|¢') denote the initial and final electronic 6= —2V1Sin( ). (4.150
states under consideration. Note that because of the mapping
relation (2.11h, the quantum numbers in E@.13 fulfill
the identityn; +ny=1=n;+n,. Due to the change of variables in E@.14), two of these

In order to express propagat64.13 in terms of spin- equations of motion can readily be solved: The electronic
coherent states, we introduce the following parametrizationpopulationl =|Z,|2+|Z,|? is a constant of motion, and Eq.
of the complex electronic variabl¢g2]: (4.15b can formally be integrated to give

[ b
th= \/I—tsm(i

cog ¢)

gl (b2 (4.14a t
= f 048 Sin(6)

0 )
Z, =l tcos( é) e (02, (4.14b
Note that the nuclear DoEas well as the determinant factor

Using Eq.(4.12, we obtain the equations of motion for the Cz, do not depend og,. Because the equations of motion
new electronic variables: for ¢,6 and the nuclear DoF are independentygf more-
) over, the electronic variables have a simple dependence on
=0, (4.153  the initial phasey, (i.e.,th,Zzt~e"“”0’2), thus allowing us
to carry out the integration ovey, in the semiclassical
=V 11+ Vopt 2V12C(.)${ ) (4.15h propagator. Expressing the electronic DoF in E§13 in
sin( o) terms of the new variable@h.14), and employing the com-
_ plex notation introduced in Eq(4.5, the Herman-Kluk
d=V,— V11— 2V ,cot( #)cos ¢), (4.159 propagator can be written in the following form:

= 12 [d%z 2 d?uq , o
k= Cage [ SR2 Tl o i1 ot b g2l el (3l (417
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where the action is given by 1.0
| ! i * %
S/,L,Z_ deT E(ZTZT_ZTZT)_hO(Z) = o7l
L -
+ J— — J—
ldeT 2(/-‘“7/-”7' Iu’TIL'LT) he|(Z,,LL) ’ (a)
0.4 | ‘ ‘
(4.18 P
and £
g
Vot Vgt o Vg + Vyput* T )
he= 22T Vs M *21,“ 12M 4.19 . | ‘
1+p*u 0 40 80 120

t[fs]
denotes the part of the Hamiltonian which involves elec-
tronic variables. The derivation of E¢4.17 shows explic- FIG. 5. (&) Modulus of the autocorrelation functiod(t) for
itly that only three electronic variableg(, ¢, , ) are time model | as_obtamed by an e_xact quantu_m calcula(rfgh line) and
dependent and thus need to be propagéed sampled at by a semlclasswal_ evaluation em_Ponlng the sp!n-c_oherent-state
t=0), while the implementation of Eq3.18 requires the Propagator(dotted ling and Suzuki's propagatofthin line). (b)
propagation of four variablesx( , Py, X,, andP,). Norm of t_he semlclas_smal wave function pertaining to the two
t t t t semiclassical formulations.
Up to now the Herman-Kluk propagat@.7) has merely
been rewritten without any further approximations. A com-yyo-level system, and is found to yield much better results
parison reveals, however, that the form of the propagatofor general nonadiabatic problems.
(4.17 is already very similar to Suzuki's expressioh9).
The most essential difference between the two formulations
is the sampling over the initial value of the electronic popu-
lation | in the Schwinger representation which is absent in In what follows, we again adopt the model problems in-
Suzuki's propagator. Replacing the sampling by a fixedtroduced in Sec. 11l C, and investigate the computational per-
value | =1 (which corresponds to the quantum-mechanicafformance and accuracy of the spin-coherent-state propagator

C. Nonadiabatic dynamics

value of the electronic populatiprwe obtain (4.20 and Suzuki’'s propagatd#.9). For brevity, and since
the quality of the approximation is quite similar for the time-
2 d?z, Pug _ dependent quantities studied above, we focus on the discus-
Ktscz—f v f 55120| 1) Cz,2, €02 ol (o], sion of the autocorrelation function.
o (14 w0l ' Let us first consider model I, which represents a relatively

(4.20 weakly coupled one-mode spin-boson problem that exhibits
. . . predominantly regular classical dynamics. Figure 5 compares
Whefe th_e actiors, , is given by Eq.(4.18), with | =1. Ap- exact quantum(full line) and semiclassicalbroken line$
proximating the Herman-Kluk determinant factGy, by results, thus demonstrating that for this relatively simple ex-
the normalization factoN,, the spin-coherent-state propaga- ample both the spin-coherent-state propag&t@0 and Su-
tor (4.20 reduces to Suzuki’s expression.9). zuki's propagator(4.9) are in excellent agreement with the
The semiclassical spin-coherent-state initial-value reprequantum reference. The main difference between the two
sentationg4.17) and(4.20 are a central result of this paper. semiclassical approximations is found in the norm of the
The derivation outlined above elucidates the close connecemiclassical wave function shown in Figbbs While the
tion of Schwinger's representation and spin-coherent-statgeterminant factor of the spin-coherent-state propagator pre-
theory. Furthermore, various levels of approximation to theserves the norm fairly well, the norm of Suzuki's propagator
semiclassical spin-coherent-state propagator have been dig-seen to decrease rapidly.
cussed:(i) the semiclassically exact propagatdr17), (i) Comparing Figs. 5 and 2, it is interesting to note that the
the spin-coherent-state propagatdr20 obtained from EQ. more approximate spin-coherent-state propagétd20 in
(4.17 by approximating the sampling over the electronicfact yields slightly better results than the propagatb?),
population| by its quantum valueé =1, and(iii) Suzuki’'s including the sampling of the electronic populatibnThis
propagator(4.9) obtained from Eq(4.20 by replacing the curiosity is related to the fact that trajectories with 1 are
determinanC; , by the normalization factoN;. While for  typically more regular than trajectories with higher values of
a simple two-level system all three descriptions are exact,. As a consequence, no trajectories were rejected in the sam-
their performances differ considerably in the general case afling of the phase-space integral in £4.20, whereas in the
a nonlinear Hamiltoniar(see below. Finally it should be numerical implementation of the initial-value representation
stressed that—similarly to the Holstein-Primakoff represen{4.17) strongly chaotic trajectories needed to be exclu@éd
tation (3.20—the spin-coherent-state propagatdr20 re- the discussion in Sec. III)CA closer analysis reveals that
quires the sampling of only twéwo instead of four elec- these rejected trajectories typically have large values of the
tronic variables [78]. Unlike the Holstein-Primakoff electronic population, and therefore do not occur in the
representation, however, the latter propagator is exact for semiclassical spin-coherent-state propagator.
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1.0 V. CONCLUSIONS

The mapping approach to the semiclassical description of
nonadiabatic quantum dynamics consists (Df an exact
guantum-mechanical transformation of discrete quantum

g o5¢ DoF onto continuous DoF, an@i) a standard semiclassical
treatment of the resulting dynamical problem. Since apart
from the basic semiclassical Van Vleck—Gutzwiller approxi-
mation, no further assumptions or approximations are in-

0 volved, the approach appears to be appealing both from a

0 40 80 120 conceptional and a computational point of view.
tifs] We have discussed various possibilities to obtain a map-

FIG. 6. Quantum and semiclassical spin-coherent-state resul@ing from discrete to continuous DoF, in particular the
for the autocorrelation function of model II. Holstein-Primakoff transformation, Schwinger’s transforma-
tion, and the spin-coherent-state representation. Although all
o o . these representations are exact on a quantum-mechanical

The situation is quite different for mpdel Il which repre- level, thepaccuracy of their semiclassical gvaluation has been
senfcs_a strongly. coupled one_-mode .spln-bosonl prob!em thahown to differ considerably. In particular, it has been shown
exhibits predominantly cha_otlc classical dynamics. Figure nat the generalization of Schwinger's theory proposed in
demonstrates that both spin-coherent-state propagators piRef. [24] appears to be the only transformation that provides
duce much poorer results than the semiclassical propagatgf, exact description of a generstevel system within a
based on Schwinger’s representation shown in Fig. 3. Obvistandard semiclassical evaluation. On the other hand, it has
ously, the sampling of the electronic population is importantheen found that highly nonlinear terms in the mapping
to account for the underlying chaotic dynamics of the sysHamiltonian (arising, e.g., in the Holstein-Primakoff trans-
tem. formation hamper a successful semiclassical evaluation.

As a last example, Fig. 7 shows the autocorrelation func- Apart from the choice of the quantum-mechanical map-
tion for model Il which represents a strongly coupled three-ping, there are several possibilities to establish a classical
mode system that exhibits ultrafast electronic relaxation dyHamiltonian function from the quantum Hamiltonian. For
namics. This quite challenging problem clearly illustrates theexample, the semiclassical approximation depends on the
quality of the three semiclassical approximations under conchoice of the representatiofe.g., diabatic[Eq. (3.29] or
sideration. While the results obtained by semiclassically exadiabatic[Eq. (3.28]), as well as on the operator ordering
act propagator is in very good agreement with the quantun€.g., normal orderingEg. (3.12] or symmetric ordering
results (see Fig. 4 and the spin-coherent-state propagator Ed-(3.14]) of the Hamiltonian. While this represents a gen-
yields a qualitative agreement, the results obtained by Suzifral and well-known question, the semiclassical evaluation
ki's propagator are totally unreliable. of the mapping formullatlor_1 mvplves the addltllonal p_ro_blem

In conclusion, it has been shown that the spin-coherentt-hat guantum-mechanical identity transformations within the

state propagatai.20 represents a valuable formulation for physical subspace may lead to different classical expressions.

the semiclassical description of nonadiabatic dynamics. Iﬁr his ;ssu_e hlal_s| be$tn Q|scusseg |1n the czo;text of thl(la cho:cce of
the case of predominantly chaotic classical dynamics, th e classical HamiltoniafEgs.(2.19 or (2.16] as well as o

performance of this propagator has been found to be inferio‘?leCtron'.c. prOJectoréEqs.(3.36) or (3'3.7)]'

compared to the semiclassical propagain? based on Exploiting the relation between spin-coherent states and

Schwinger’s representation. Since its numerical implementas‘chWlngers representathn_f_or a two-state system, we have
dJerived a semiclassical initial-value representation of the

tion is advantageous, the spin-coherent-state propagator ne ; .
ertheless represents a promising approach to the semiclas§ _rrespor_ldmg spm—coherent—;tate propagator. Seve_ral levels
cal description of large molecular systems with many DoF. Of approximation have p_een dlscpssemthe semiclassically
exact propagatof4.17), (ii) the spin-coherent-state propaga-
tor (4.20 obtained from Eq.4.17) by approximating the
1.0 sampling over the electronic populatidnby its quantum
valuel =1, and(iii) Suzuki's propagatof4.9) obtained from
Eqg. (4.20 by replacing the determinaf, , by the normal-
ization factorN,. Although the spin-coherent-state propaga-
05 tor (4.20 represents an approximation, the appealing nu-
merical features of this propagator makes it a promising
candidate for the semiclassical description of large molecular
systems with many DoF.
IR A Several continuations of this work appear promising. In
0 LT eds] N the context of quantum signatures of irregular classical mo-
0 20 40 60 AR . ; > )
tits] t|_on, it Woyld t_)e mterestmg to explore which classical map-
ping Hamiltonian results in the correct quantum-mechanical
FIG. 7. Quantum and semiclassical spin-coherent-state resuli§Vvel statistic. First studies employing classical Poincae
for the autocorrelation function of model IIl. tions have show that the order of phase space may signifi-

el
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cantly depend on the particular bosonization chof&h. semiclassically exact propagator such as the spin-coherent-
Furthermore, the semiclassical spin-coherent-state formulatate propagatoi.20 appear to be a promising way to the
tion can be extended in several ways, for example, to acsemiclassical description of complex systems.

count for the dynamics di-level systems. Finally, in order
to push the limits of the semiclassical approach to the de-
scription of truly multidimensional dynamics, one needs to
employ improved strategies to converge the phase-space in- We thank Uwe Miler and Frank Grossmann for stimu-
tegrations underlying the semiclassical initial-value represenlating and helpful discussions and Petemigi for critically
tation. Examples include quasirandom sampling within thereading the manuscript. M.T. furthermore thanks Wolfgang
Sobol algorithn{79] and several integral conditioning meth- Domcke for his continuous encouragement. This work was
ods [66—68. Furthermore, suitable approximations to thesupported by the Deutsche Forschungsgemeinschaft.
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