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Stability properties of the two-component Bose-Einstein condensate

Patrik Öhberg
Department of Physics, Royal Institute of Technology Lindstedtsva¨gen 24, S-10044 Stockholm, Sweden

~Received 14 May 1998; revised manuscript received 10 August 1998!

The two-component Bose-Einstein condensate is known to break its symmetry spontaneously. The stability
of the symmetric solution has been investigated by solving the ground-state density profiles for different
parameter regimes. We emphasize the importance of the trap geometry for the formation of the condensate.
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I. INTRODUCTION

After the realization of the atomic Bose-Einstein conde
sation @1–3# it was found that theuF52,m52& and uF
51,m521& substates of Rb can form overlapping conde
sates in a magneto-optical trap with the two species slig
offset relative to one another by gravity@4#. Recent progress
has been made in trapping two species with the same m
netic moment,uF52,m51& and uF51,m521&, and they
are therefore sharing the same trap center and not sepa
by gravity @5#.

In this paper we investigate the spontaneous breakin
the cylindrical symmetry which these two-component co
densates can undergo when trapped in identical externa
tentials. This effect, where the condensates go from a c
tered geometry to two separated condensates, has
investigated numerically in earlier works@6–11#, mainly
concentrating on elementary excitations@12–14#, since these
are very sensitive to the actual geometric configuration of
condensates. In this paper we calculate the condensate
sities and ground-state energies at zero temperature u
well-known Gross-Pitaevskii equations generalized to
two-component situation. The main results are calculati
for density distributions at different interaction strengths b
tween the two species. We find a nontrivial dependence
the trap geometry, where the aspect ratio (V r /Vz) plays a
crucial role when determining the stable configurations. I
generally accepted that the double condensate can separ
traps of modest aspect ratios as in the present labora
two-component traps, where the aspect ratio has b
V r /Vz51/A8. Our calculations show that this may not a
ways be the case for the large aspect ratio traps rece
utilized for single condensates using optical trapping@15#.

The organization of the present paper is as follows. S
tion II presents the coupled Gross-Pitaevskii equations
the double condensate. In Sec. III we justify the presenc
a symmetry breaking by doing a simple variational calcu
tion for the spherically symmetric trap. The results of t
numerical calculations are presented in Sec. IV. The m
results and conlusions are presented in Sec. V.

II. BASIC EQUATIONS

We consider a two-component Bose condensed gas in
external harmonic potentials
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Vi~r ,z!5 1
2 m~V r i

2 r 21Vzi

2 z2!, i 51,2, ~1!

with the trap frequenciesV, and assume a pair potential o
the atom-atom interaction of the formVi5v id(r2r 8) with

v i5
4p\2ai

m
, i 51,2,3, ~2!

wherea1 anda2 stand for the intraspecies scattering lengt
a3 is the scattering length between the two different atom
andm is the mass of the atoms which is taken to be the sa
for both species. The mean-field theory at zero tempera
provides a good description of a dilute Bose-Einstein c
densed gas. In particular, the dynamics of a two-compon
condensate can be described by the generalized Gr
Pitaevskii equations

i\
]

]t
C1~r !5F2

\2

2m
¹21V1~r ,z!1v1uC1~r !u2

1v3uC2~r !u2GC1~r !, ~3a!

i\
]

]t
C2~r !5F2

\2

2m
¹21V2~r ,z!1v2uC2~r !u2

1v3uC1~r !u2GC2~r !, ~3b!

whereC i are the macroscopic wave functions of the cond
sates and the normalization chosen such that

E dr uC i~r !u25Ni i 51,2. ~4!

Assuming a time dependence of the form

C i~r !5C i
g~r !e2 im i t/\, ~5!

with $C1
g ,C2

g% chosen real, we obtain the Gross-Pitaevs
ground-state equations from Eqs.~3a! and ~3b!:

m1C1
g~r !5F2

\2

2m
¹21V1~r ,z!1v1C1

g~r !2

1v3C2
g~r !2GC1

g~r !, ~6a!
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m2C2
g~r !5F2

\2

2m
¹21V2~r ,z!1v2C2

g~r !2

1v3C1
g~r !2GC2

g~r !. ~6b!

III. STABILITY OF THE GROUND-STATE SOLUTIONS

The two-component ground-state solutions of the Gro
Pitaevskii equations are surprisingly rich in their nature. I
known from earlier investigations@6,11# that the two-
component condensate can undergo a symmetry brea
from a symmetric situation where the two condensates
right on top of each other with the possibility of one of th
condensates forming a shell around the other one, to
asymmetric formation where the condensates are displa
with respect to each other. This symmetry breaking can h
pen if the particle number or the interaction strengthv3 is
sufficiently large. It is easy to show that a symmetry bre
ing may occur, by using a naive variational calculati
where we obtain the ground-state energyE from the energy
functional

E@C1
g ,C2

g#5E dr S (
i 51

2 H \2

2m
u¹C i

gu21Vi~r ,z!uC i
gu2

1
1

2
v i uC i

gu4J 1v3uC1
gu2uC2

gu2D ~7!

using the Gaussian trial functions

C i
g~r ,z!5ANip

23/4e2~1/2![ r 21~z2zi !
2] , i 51,2 ~8!

where we for simplicity have assumed isotropic symme
with the scaling factorA\/mV in the r andz directions. The
ground-state energy will then be a function of the displa
mentsz1 andz2 ,

E53N113N21N1z1
21N2z2

21
v1N1

21v2N2
2

2~2p!3/2

1
N1N2v3

~2p!3/2e2~1/2!~z12z2!2
. ~9!

Setting the derivatives]E/]zi equal to zero gives the equa
tions

z15
v3N2

2~2p!3/2~z12z2!e2~1/2!~z12z2!2
, ~10!

z25
v3N1

2~2p!3/2~z22z1!e2~1/2!~z12z2!2
. ~11!

Here we already see that one solution isz15z250. If we
further assumeN15N25N andv15v2 , the system is fully
symmetric (z152z2), and we can expressz1 and z2 with
the variablez05z12z2 . Equations~10! and~11! can then be
combined, giving the solution

z05A2 lnS v3N

~2p!3/2D . ~12!
s-
s

ng
it
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ed
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In order to obtain the global minimum of the energies, w
insert solution~12! into Eq. ~9! and compare the result with
the zero solutions. If the condition

v3N

~2p!3/2.1 ~13!

is fulfilled, the condensates are separated, otherwise the
on top of each other.

This crude variational calculation does not take into a
count the fact that the condensates can form shell structu
and consequently predicts the onset of symmetry break
too early as a function ofv3N. In Sec. IV we investigate the
extent of the stable symmetric situation, depending on diff
ent trap geometries. We also look at the stability of the sy
metric shapes once we are in the region where a asymm
situation is favored.

IV. NUMERICAL METHODS AND RESULTS

When solving the Gross-Pitaevskii equations in a cyl
drical symmetry, it is most favorable to discretize the so
tions and the derivatives. In cylindrical coordinates the co
densate densities or wave functions are expressed as ma
where rows and columns correspond to the radial and thz
coordinate. The time-independent Gross-Pitaevskii equa
~6! is then solved with the method of steepest descent, wh
has been successfully used in earlier works on the nonlin
Schrödinger equation@16,17#. This is simply solving the
time-dependent Gross-Pitaevskii equation with an imagin
time which turns the problem into solving a diffusion equ
tion. The true time-dependent problem is, of course, sol
in the same manner where the solution has to be split
real and imaginary parts, in contrast to the time-independ
case where one can assume the solution to be real.
important to note that the wave functions have to be norm
ized after each iteration due to the nonlinear terms. The
merical method used for solving the time-dependent Gro
Pitaevskii equation has often been a second-order imp
finite-differencing scheme~for a nice example using this ap
proach, see Ref.@18#!. The method used here is also
method of finite differencing, where the time step is split in
two parts@19#, giving an explicit second-order differencin
scheme. It is, in fact, also possible to use a single time s
but this scheme is only stable for short times, and require
least a factor of ten smaller time steps.

In the results presented here we have scaled ther and z
coordinates withA\/mV r , where the massm along with the
trap frequencies were chosen to be the same for both spe
All energies were correspondingly expressed in units
\V r /2, and the time in units of 2/V r . Throughout these cal
culations ~except for Fig. 5! we have usedN5N15N2
52100, with v150.045 andv250.02, which corresponds
for v1 in the case of rubidium atoms (a5109a0) to a trap
frequency ofV r52p310 Hz. The interaction strengthsv1
andv2 were chosen not to be the same in order to show
effects of the interactions more transparently. In the exp
ments with rubibium, the ratio ofv1 to v2 is approximately
1.062@20#.

When solving the Gross-Pitaevskii equation with t
steepest-descent method, it is not obvious that it will giv
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solution corresponding to the ground state, since the solu
might converge only to a local minimum. Such a local min
mum, achieved with a sufficiently large interaction streng
between the condensates, may be the shell forma
whereas the displaced formation may correspond to a s
with lower energy. This is shown in Figs. 1 and 2 for tw
different trap geometries withV r /Vz5A8 and V r /Vz
527; the latter is the aspect ratio of the atomic clouds
optical traps recently presented for single condensates
Fig. 1, the ground state, calculated using Eq.~7!, is the
symmetry-broken case with energyE/N57.618, as com-
pared with the energyE/N57.666 of the symmetric case. A

FIG. 1. Two possible stable formations of the condensates
cigar-shaped trap withV r /Vz5A8 andv350.05. At the top we see
the ground state withE57.618 (m155.068 andm254.258). The
two condensates are clearly separated. At the bottom is the sym
ric shell formation withE57.666 (m155.134 andm254.268). All
energies are scaled by\V r /2.

FIG. 2. The same situation as in Fig. 1 withV r /Vz527 and
v350.1. The energies here areE54.903 (m152.798 and m2

52.552) for the symmetry-broken case and for the symme
ground stateE54.900 (m152.791 andm252.533).
n

h
n,
te

n
In

this repulsion strength,v350.05, the condensates gain e
ergy by separating. In Fig. 2, on the other hand,
symmetry-broken configuration has the energyE/N54.903
as compared with the value 4.900 for the symmetric ca
which thus is the ground state. Here the repulsion is e
stronger,v350.1, and hence the large aspect ratio is found
allow a symmetric ground state even for a strong repulsi
The explanation seems to be that the cigar-shaped trap
lows one to push one condensate far enough away from
center to minimize the energy more efficiently than by d
placing the condensates asymmetrically. The energy dif
ence between the two stable solutions is small; their rela
stability, however, is good~see below!.

In the numerical calculations, the symmetric
symmetry-broken configurations have been found by mak
an ansatz of two Gaussians sitting on top of each othe
separated, respectively. For small interaction strengthsv3 ,
the difference between the two cases is indiscernible, and
found the condensate displacements to emerge gradu
when the repulsionv3 is increased. This emerging displac
ment is shown in Fig. 3 for three aspect ratiosV r /Vz51,
A8, and 27. We find that the separation appears for lo
interaction strengths the larger the aspect ratio is. Howe
the result of Fig. 2 shows that, for the high aspect ra
V r /Vz527, the symmetric solution has a lower energy. T
can be verified by using the symmetric ansatz as the star
point for the calculation.

In Fig. 4 we show the difference between the ground-st
energies for different trap geometries. Here we can see
for sufficiently large aspect ratios (V r /Vz.22) and a strong
interaction,v350.1, the ground state may be the symmet
formation. Forv350.05 the symmetry is broken for eve
lower aspect ratios (V r /Vz59). The results in Fig. 4 rely
on the fact that the different configurations are stable. If
interaction strengthv3 is decreased even further, the solutio
will always converge toward the symmetric configurati
~see Fig. 3!, indicating that the symmetry-broken solutio
has become unstable. The aspect ratio played a crucial ro
the results shown in Figs. 1 and 2, where the high-asp
ratio trap gave a symmetric ground state. A high aspect ra

a

et-

c

FIG. 3. The center of mass in thez direction, shown at three
different trap geometriesV r /Vz51, V r /Vz5A8, and V r /Vz

527. The more cigar shaped they are, the more separated the
densates become. The center of mass is calculated for
symmetry-broken configurations whenever the interaction stren
allows it. ForV r /Vz527 the symmetric configuration may be th
ground state, resulting in a center of mass atz50. The different
interaction strengthsv150.045 andv250.02 have no visible effect
on the distance between the condensates.
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however, is no guarantee of symmetric ground states.
illustrate this, in Fig. 5 we show the ground-state energy a
function of v1 for the symmetric and symmetry-broken co
figurations, where the aspect ratio (V r /Vz527) and
v2 (v250.02) are kept constant. Here we see that
0.002,v1,0.043 the symmetry is broken. The point whe
v15v2 deserves special attention. One possible symme
solution then consists of two identical condensates sitting
top of each other. The corresponding energy is then in
much higher,E/N55.235, than for the symmetric she
structures. This is clearly an unstable configuration, wh
can also be seen if the symmetric solution is perturbed s
ply by giving it a weak random kick, resulting in a conve
gence toward the symmetry-broken configuration.

Now one might ask how stable the shell formatio
shown in Figs. 1 and 2 are, if we are in a parameter reg
where the symmetry-broken situation is the ground state
order to obtain some feeling for the stability of these s
tems, we take the symmetric solutions from Figs. 1 and
and solve the time-dependent Gross-Pitaevskii equati
where we have inserted a linear potential which pulls the
condensates in different directions:

Vi
p~z,t !5

1

2
kiF12cosS p

tmax
t D Gz, i 51,2. ~14!

Hereki is chosen such that, at the timet5tmax, the effective
potentialsVi

eff(r ,z)5Vi(r ,z)1Vi
p(z,t) have their minima at

zi5Biki /2, whereBi is the scaling factor:

FIG. 4. The difference between the ground-state energies fo
symmetric and symmetry-broken formations,DE5(Esymmetric

2Esymmetry broken)/N, show that the symmetric case may possess
lowest energy even if the interaction strength is large, provided
the aspect ratio of the trap is high enough.

FIG. 5. By varying the interaction strengthv1 with v250.02,
v350.1,N52100, andV r /Vz527, it is possible to obtain a lowe
energy with the symmetry-broken configuration~solid line! for
0.002,v1,0.043.
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Bi5S V r i

Vzi

D 2

. ~15!

In Fig. 6 we show the time evolution of the condensates w
V r /Vz5A8, when the potential minima att5tmax520 are
at z568. Here the symmetric configuration is expected
be locally stable only. The condensates can already be
to start separating att58. Because of the rapid symmetr
breaking, we also see ‘‘sloshing’’ effects when the conde
sates start to oscillate in the new effective potentials. In F
7 we present the same calculation for the high-aspect-r
situation, withV r /Vz527 at a relatively strong interactio
strengthv350.1. The condensates remain in a shell form
tion, and show no tendency toward symmetry breaking. D
creasing the interaction strength tov350.03 drastically
changes the picture, as seen in Fig 8. The symmetry is
completely broken aroundt520, where the condensate
slide over in different directions to form the two separat
peaks. With this interaction, we have moved into the regi
where the interactionv3 is not strong enough to prevent th
symmetry breaking.

The time-dependent calculations serve as an illustratio
how stable the symmetric configurations are. The separa
of the minima of the effective potentials is a measure of
force acting on the condensates, pulling them apart. In o
to draw any conclusions from the point where the symme
is broken, the force pulling the condensates apart mus
applied adiabatically. In other words, sloshing effects due
a too abruptly applied force should be avoided.

he

e
at

FIG. 6. The condensates are pushed in oppositez directions
starting from the symmetrical situation. The symmetry is fully br
ken at t58. The trap geometry here isV r /Vz5A8 with v3

50.05. The density is plotted atr 50. The time is in units of 2/V r ,
and the spatial coordinates in units ofA\/mV r .

FIG. 7. The same situation as in Fig. 2 withV r /Vz527 and
v350.1. The more pronounced cigar shape makes the symm
situation more stable. The condensates remain centered, and
slightly change their shapes. Fort.20 the effective potentials from
Eq. ~14! are kept constant with their minima atz5630.
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V. CONCLUSIONS

The two-component Bose-Einstein condensate shows
prisingly complex behavior compared to the single cond
sate. The symmetry breaking discussed is a typical featur
the two-component condensate. In this paper we have in
tigated the different geometric configurations the cond
sates can take, as well as their stability. This has been d
by solving both the stationary and time-dependent Gro
Pitaevskii equations, which enabled us to investigate the
bility of the different formations when disturbed by an exte
nal time-dependent force. The main results show that the
geometry, or the aspect ratio, plays an important role w
determining the stable configurations. The calculations sh
that, with modest aspect ratios (V r /Vz;A8), the expected
symmetry breaking is favored at increasing interact

FIG. 8. Decreasing the interaction strength tov350.03 with
V r /Vz527 dramatically changes the stability of the symmetric f
mation as compared to Fig. 7.
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strengths or particle numbers. The symmetry breaking c
however, be suppressed if the external potentials
squeezed to form high aspect ratios. With the present par
eters (v350.1) we found an aspect ratio of 22 to be suf
cient to give the lowest ground state with the symmet
formation. The stability of the symmetric formation was al
seen in the time-dependent calculations, where the stro
cigar-shaped condensates showed no signs of symm
breaking~see Fig. 7!. In this case the repulsive interactio
between the two condensates produces a barrier betwee
different configurations, resulting in an improved stability

There is, however, more to this situation. The aspect ra
alone is no guarantee of stable symmetric formations. T
interaction strengthsv1 andv2 , for instance, also play cru
cial roles. By varyingv1 we showed that the high-aspec
ratio case may go from having a symmetric ground state
symmetry-broken ground state~see Fig. 5!.

In this paper we have tried to give a glimpse of the tru
rich and complex behavior of these systems. To cover
parameter regions for the two-component condensate c
pletely is a formidable task, which would require an inves
gation of the relation between the aspect ratio, the part
numbers, and the three scattering lengths.
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