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Stability properties of the two-component Bose-Einstein condensate
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The two-component Bose-Einstein condensate is known to break its symmetry spontaneously. The stability
of the symmetric solution has been investigated by solving the ground-state density profiles for different
parameter regimes. We emphasize the importance of the trap geometry for the formation of the condensate.
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l. INTRODUCTION vi(r,z)zém(ﬂfir%ﬂiizz), i=1,2, D

After the realization of the atomic Bose-Einstein conden-with the trap frequencie€, and assume a pair potential of
sation [1-3] it was found that theF=2m=2) and [F  the atom-atom interaction of the forky=uv;8(r —r') with
=1m=—1) substates of Rb can form overlapping conden-
sates in a magneto-optical trap with the two species slightly _47Tﬁzai .
offset relative to one another by gravi]. Recent progress Vit 1T 1,23, @
has been made in trapping two species with the same mag-
netic moment/F=2m=1) and|F=1m=—1), and they Wherea; anda, stand for the intraspecies scattering lengths,
are therefore sharing the same trap center and not separategis the scattering length between the two different atoms,
by gravity [5]. andmis the mass of the atoms which is taken to be the same

In this paper we investigate the spontaneous breaking dpr both species. The mean-field theory at zero temperature
the cylindrical symmetry which these two-component con-provides a good description of a dilute Bose-Einstein con-
densates can undergo when trapped in identical external pgensed gas. In particular, the dynamics of a two-component
tentials. This effect, where the condensates go from a cerfondensate can be described by the generalized Gross-
tered geometry to two separated condensates, has beBHaevskii equations
investigated numerically in earlier work$—11], mainly
concentrating on elementary excitatidqd®—14, since these iﬁi‘lfl(r)z
are very sensitive to the actual geometric configuration of the at
condensates. In this paper we calculate the condensate den-
sities and ground-state energies at zero temperature using +03|\P2(r)|2}\p1(r), (33
well-known Gross-Pitaevskii equations generalized to the
two-component situation. The main results are calculations
for density distributions at different interaction strengths be-
tween the two species. We find a nontrivial dependence on
the trap geometry, where the aspect ratip, ((),) plays a
crucial role when determining the stable configurations. It is 2
generally accepted that the double condensate can separate in aRE RSN }\Ifz(r), (30)
traps of modest aspect ratios as in the present laboratory
two-component traps, where the aspect ratio has beephereW; are the macrosc;opic wave functions of the conden-
Q,/9,=1/\/8. Our calculations show that this may not al- Sates and the normalization chosen such that
ways be the case for the large aspect ratio traps recently
utilized for single condensates using optical trapdib]. f dr|¥(r)|?=N; i=1,2. (4

The organization of the present paper is as follows. Sec-
tion 1l presents the coupled Gross-Pitaevskii equations for, . .
the double condensate. In Sec. Il we justify the presence O,%ssummg a time dependence of the form
a symmetry breaking by doing a simple variational calcula- (r) =9 —iuitlh
: . : Wi(r)=Ti(r)e m, 5)
tion for the spherically symmetric trap. The results of the
numerical calculat!ons are presented_in Sec. IV. The mairyiip {W9 WY chosen real, we obtain the Gross-Pitaevskii
results and conlusions are presented in Sec. V. ground-state equations from Eq8a) and (3b):

hZ
- ﬁV2+V1(r,z)+Ul|\Ifl(r)|2

2

. d fi 2 2
Iﬁﬁ‘l’z(l’)= _ﬁv +V2(ryz)+vz|\1,2(r)|

2
II. BASIC EQUATIONS paW(N)=| = S V2HVa(r,2) +u W)
We consider a two-component Bose condensed gas in the
external harmonic potentials +v3\lfg(r)2}\lf%(r), (6a)
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h2 ) ) In order to obtain the global minimum of the energies, we
w¥3(r)=|— mY +Vo(r,2) +v,¥Y(r) insert solution(12) into Eq.(9) and compare the result with
the zero solutions. If the condition
+v3\P%(r)2}\I'2(r). (6b) sz

Ill. STABILITY OF THE GROUND-STATE SOLUTIONS . . . .
is fulfilled, the condensates are separated, otherwise they sit

The two-component ground-state solutions of the Grossen top of each other.
Pitaevskii equations are surprisingly rich in their nature. Itis  This crude variational calculation does not take into ac-
known from earlier investigationg6,11] that the two- count the fact that the condensates can form shell structures,
component condensate can undergo a symmetry breakirapd consequently predicts the onset of symmetry breaking
from a symmetric situation where the two condensates sitoo early as a function af;N. In Sec. IV we investigate the
right on top of each other with the possibility of one of the extent of the stable symmetric situation, depending on differ-
condensates forming a shell around the other one, to aent trap geometries. We also look at the stability of the sym-
asymmetric formation where the condensates are displacedetric shapes once we are in the region where a asymmetric
with respect to each other. This symmetry breaking can hapsituation is favored.
pen if the particle number or the interaction strengthis

;ufficiently large. It is easy to shqw that'a'symmetry brgak— IV. NUMERICAL METHODS AND RESULTS

ing may occur, by using a naive variational calculation

where we obtain the ground-state eneEgjrom the energy When solving the Gross-Pitaevskii equations in a cylin-
functional drical symmetry, it is most favorable to discretize the solu-

) tions and the derivatives. In cylindrical coordinates the con-
—— g g densate densities or wave functions are expressed as matrices
B[V, W3]= | dr Z‘ _|V\I’ |2+ Vi(r.2)| W2 where rows and columns correspond to the radial andzthe
coordinate. The time-independent Gross-Pitaevskii equation

1 . ) ) (6) is then solved with the method of steepest descent, which
+ Evi|‘1’?| +ug[ P37 (1) has been successfully used in earlier works on the nonlinear
Schralinger equation[16,17. This is simply solving the
using the Gaussian trial functions time-dependent Gross-Pitaevskii equation with an imaginary
time which turns the problem into solving a diffusion equa-
Vi(r,z)= N7~ 34— (120 24 (z- 2>2] i=1,2 (g tion. The true time-dependent problem is, of course, solved

in the same manner where the solution has to be split into
where we for simplicity have assumed isotropic symmetryreal and imaginary parts, in contrast to the time-independent
with the scaling factor/z/mQ in ther andz directions. The case where one can assume the solution to be real. It is
ground-state energy will then be a function of the displaceimportant to note that the wave functions have to be normal-

mentsz; andz,, ized after each iteration due to the nonlinear terms. The nu-
merical method used for solving the time-dependent Gross-
v1N1+v2N§ Pitaevskii equation has often been a second-order implicit

E=3N;+3N,+ N,z + N222+W2_ finite-differencing scheméor a nice example using this ap-

proach, see Ref[18]). The method used here is also a
FAc b N1Novg o (112 method of finite differencing, where the time step is split into
(2 )3 two parts[19], giving an explicit second-order differencing
scheme. ltis, in fact, also possible to use a single time step,
Setting the derivative8E/Jz; equal to zero gives the equa- but this scheme is only stable for short times, and requires at

(#1722 9

tions least a factor of ten smaller time steps.
N In the results presented here we have scaled thed z
v . B .
372 (z,— Zz)e—(1/2)(zl—zz)2’ (10) coordinates vylth/ﬁ/mQ,, where the masm along with the _
“2(2m)%? trap frequencies were chosen to be the same for both species.

All energies were correspondingly expressed in units of
7 Q,/2, and the time in units of #Y, . Throughout these cal-
culations (except for Fig. 5 we have usedN=N;=N,
=2100, withv,;=0.045 andv,=0.02, which corresponds
Here we already see that one solutionzis=z,=0. If we  for v, in the case of rubidium atomsaE 109%,) to a trap
further assumé; =N,=N andv;=v,, the system is fully frequency ofQ, =27 10 Hz. The interaction strengths
symmetric ¢;=—2,), and we can expresg andz, with  andv, were chosen not to be the same in order to show the
the variablezy=z, —z,. Equationg10) and(11) can then be effects of the interactions more transparently. In the experi-
combined, giving the solution ments with rubibium, the ratio of ; to v, is approximately
1.062[20].

5 = /2In vsN (12) When solving the Gross-Pitaevskii equation with the
0 (2m)32) steepest-descent method, it is not obvious that it will give a

v3Ng

_ 2
z,= W(ZZ zy)e” M@z, (11
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FIG. 3. The center of mass in thedirection, shown at three
different trap geometrie€),/Q,=1, Q,/Q,=8, and Q,/Q,
=27. The more cigar shaped they are, the more separated the con-
densates become. The center of mass is calculated for the
symmetry-broken configurations whenever the interaction strength

-10 allows it. ForQ, /Q,=27 the symmetric configuration may be the
ground state, resulting in a center of masszat0. The different

FIG. 1. Two possible stable formations of the condensates in #teraction strengths,=0.045 andv,=0.02 have no visible effect
cigar-shaped trap witf, /Q),= \/8 andv;=0.05. At the top we see  on the distance between the condensates.
the ground state witlE=7.618 (u,=5.068 andu,=4.258). The
two condensates are clearly separated. At the bottom is the symmethis repulsion strengthy;=0.05, the condensates gain en-
ric shell formation withE=7.666 CLL1:5.134 anm2:4.268). All ergy by Separating_ In F|g 2, on the other hand' the
energies are scaled iy}, /2. symmetry-broken configuration has the eneEfy\N=4.903

as compared with the value 4.900 for the symmetric case,
solution corresponding to the ground state, since the solutiowhich thus is the ground state. Here the repulsion is even
might converge only to a local minimum. Such a local mini- strongerp3=0.1, and hence the large aspect ratio is found to
mum, achieved with a sufficiently large interaction strengthallow a symmetric ground state even for a strong repulsion.
between the condensates, may be the shell formatior,he explanation seems to be that the cigar-shaped trap al-
whereas the displaced formation may correspond to a statews one to push one condensate far enough away from the
with lower energy. This is shown in Figs. 1 and 2 for two center to minimize the energy more efficiently than by dis-
different trap geometries with),/Q,= J8 and Q,/1Q, placing the condensates asymmetrically. The energy differ-
=27 the latter is the aspect ratio of the atomic clouds inence between the two stable solutions is small; their relative
optical traps recently presented for single condensates. Itability, however, is googsee below
Fig. 1, the ground state, calculated using K@), is the In the numerical calculations, the symmetric or
symmetry-broken case with enerdy/N=7.618, as com- Symmetry-broken configurations have been found by making
pared with the energl/N= 7.666 of the symmetric case. At an ansatz of two Gaussians sitting on top of each other or
separated, respectively. For small interaction strengths
5 the difference between the two cases is indiscernible, and we
I‘PI.I found the condensate displacements to emerge gradually
60 when the repulsiom 5 is increased. This emerging displace-
ment is shown in Fig. 3 for three aspect rat@Qs/Q,=1,
V8, and 27. We find that the separation appears for lower
interaction strengths the larger the aspect ratio is. However,
the result of Fig. 2 shows that, for the high aspect ratio
Q,/1Q,=27, the symmetric solution has a lower energy. This
can be verified by using the symmetric ansatz as the starting
point for the calculation.

In Fig. 4 we show the difference between the ground-state
energies for different trap geometries. Here we can see that
for sufficiently large aspect ratiof), /(},>22) and a strong
interaction,v;=0.1, the ground state may be the symmetric
formation. Forv;=0.05 the symmetry is broken for even
lower aspect ratios(},/Q,=9). The results in Fig. 4 rely
on the fact that the different configurations are stable. If the
interaction strengtlr ; is decreased even further, the solution
will always converge toward the symmetric configuration

FIG. 2. The same situation as in Fig. 1 wifh, /Q,=27 and  (s€e Fig. 3, indicating that the symmetry-broken solution
v3=0.1. The energies here a=4.903 (u,=2.798 andu, has become unstable. The aspect ratio played a crucial role in
=2.552) for the symmetry-broken case and for the symmetridhe results shown in Figs. 1 and 2, where the high-aspect-
ground stateE=4.900 (u,=2.791 andu,=2.533). ratio trap gave a symmetric ground state. A high aspect ratio,
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v3=0.05 symmetric

0 10 Q./0 20 30 FIG. 6. The condensates are pushed in oppasitirections
retz starting from the symmetrical situation. The symmetry is fully bro-

FIG. 4. The difference between the ground-state energies for thken att=8. The trap geometry here i /Q,=\8 with v
symmetric and symmetry-broken formationsy E= (Eymmetic =0.05. The Qen3|ty is plotteq at:Q. The time is in units of 22,
— Esymmetry brokel N, Show that the symmetric case may possess thénd the spatial coordinates in units h/mQ,.
lowest energy even if the interaction strength is large, provided that
the aspect ratio of the trap is high enough. Q. \?2

i
however, is no guarantee of symmetric ground states. To B, (QZ> ' 9
illustrate this, in Fig. 5 we show the ground-state energy as a

function ofv, for the symmetric and symmetry-broken con- In Fig. 6 h he ti luti fh d ith
figurations, where the aspect ratioQ(/Q,=27) and 'NFig.-6wes ow the time evolution of the condensates wit

v, (v,=0.02) are kept constant. Here we see that fortlr/z= V8, when the potential minima at=t,,,~20 are
0.00% v,<0.043 the symmetry is broken. The point where @t z= =8. Here the symmetric configuration is expected to
v,=v, deserves special attention. One possible symmetrif€ locally stable only. The condensates can already be seen
solution then consists of two identical condensates sitting of? Start separating &t=8. Because of the rapid symmetry

top of each other. The corresponding energy is then in fadfr@king, we also see “sloshing” effects when the conden-
much higher, E/N=5.235, than for the symmetric shell sates start to oscillate in the new effective potentials. In Fig.

structures. This is clearly an unstable configuration, WhiCh7_ We_prese_nt the same calculation' for the high-aspec't-ratio
can also be seen if the symmetric solution is perturbed simsituation, withQ},/€1,=27 at a relatively strong interaction
ply by giving it a weak random kick, resulting in a conver- strengthvgzo.l. The condensates remain in a sheII_ forma-
gence toward the symmetry-broken configuration. tion, a_md show_ no tendency toward symmetry breal_<|ng. De-
Now one might ask how stable the shell formationsCr€asing the interaction strength ;=0.03 drastically
shown in Figs. 1 and 2 are, if we are in a parameter regioifNanges the picture, as seen in Fig 8. The symmetry is now
where the symmetry-broken situation is the ground state. §OmMPpletely broken around=20, where the condensates
order to obtain some feeling for the stability of these sys_sllde over in different directions to form the two separated
tems, we take the symmetric solutions from Figs. 1 and opeaks. With this interaction, we have moved into the regime
and solve the time-dependent Gross-Pitaevskii equation¥/here the interaction is not strong enough to prevent the
where we have inserted a linear potential which pulls the twFYMmetry breaking. _ _ _
condensates in different directions: The time-dependent calculations serve as an illustration of
0 1 ] of the minima of the effective potentials is a measure of the
Vi(z) =35k z, i=12. (14  force acting on the condensates, pulling them apart. In order
Herek; is chosen such that, at the tive t,,,,,, the effective  is broken, the force pulling the condensates apart must be
potentialsV?ﬁ(r,z)=Vi(r,z)+vip(z,t) have their minima at applied adiabatically. In other words, sloshing effects due to

how stable the symmetric configurations are. The separation
T
1- cos( t_t)
max to draw any conclusions from the point where the symmetry

z;=B;k;/2, whereB; is the scaling factor: a too abruptly applied force should be avoided.
49t 5 2
i3 » ¥, |
m T ; s 4
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FIG. 7. The same situation as in Fig. 2 with. /Q,=27 and
FIG. 5. By varying the interaction strength with v,=0.02, v3=0.1. The more pronounced cigar shape makes the symmetric
v3=0.1,N=2100, and2, /Q),= 27, it is possible to obtain a lower situation more stable. The condensates remain centered, and only
energy with the symmetry-broken configuratigsolid line) for slightly change their shapes. For 20 the effective potentials from
0.00<v,<0.043. Eq. (14) are kept constant with their minima at = 30.
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strengths or particle numbers. The symmetry breaking can,
however, be suppressed if the external potentials are
squeezed to form high aspect ratios. With the present param-
eters {3=0.1) we found an aspect ratio of 22 to be suffi-
cient to give the lowest ground state with the symmetric
formation. The stability of the symmetric formation was also
seen in the time-dependent calculations, where the strongly
cigar-shaped condensates showed no signs of symmetry
breaking(see Fig. 7. In this case the repulsive interaction
between the two condensates produces a barrier between the
different configurations, resulting in an improved stability.

FIG. 8. Decreasing the interaction strengthutg=0.03 with There is, however, more to this situation. The aspect ratio
Q,/Q,=27 dramatically changes the stability of the symmetric for- alone is no guarantee of stable symmetric formations. The
mation as compared to Fig. 7. interaction strengths, andv,, for instance, also play cru-

cial roles. By varyingv; we showed that the high-aspect-
ratio case may go from having a symmetric ground state to a

The two-component Bose-Einstein condensate shows supYmMMetry-broken ground stafsee Fig. 3.
prisingly complex behavior compared to the single conden- N this paper we have tried to give a glimpse of the truly
sate. The symmetry breaking discussed is a typical feature &fch and complex behavior of these systems. To cover all
the two-component condensate. In this paper we have invefarameter regions for the two-component condensate com-
tigated the different geometric configurations the condenP!€tely is a formidable task, which would require an investi-
sates can take, as well as their stability. This has been dor@tion of the relation between the aspect ratio, the particle
by solving both the stationary and time-dependent Gross?Umbers, and the three scattering lengths.
Pitaevskii equations, which enabled us to investigate the sta-
bility of the different formations when disturbed by an exter-
nal time-dependent force. The main results show that the trap The author wishes to thank Stig Stenholm for useful re-
geometry, or the aspect ratio, plays an important role whemarks and comments, and Eric Cornell for discussing recent
determining the stable configurations. The calculations showxperimental data. The Finnish Center for Scientific Com-
that, with modest aspect ratio§)(/Q,~ \/8), the expected puting (CSO is acknowledged for providing the computer
symmetry breaking is favored at increasing interactiontime.

V. CONCLUSIONS
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