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Coherent oscillations between two weakly coupled Bose-Einstein condensates:
Josephson effects,p oscillations, and macroscopic quantum self-trapping
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We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The
weak link is provided by a laser barrier in a~possibly asymmetric! double-well trap or by Raman coupling
between two condensates in different hyperfine levels. The boson Josephson junction~BJJ! dynamics is
described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic
functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the
phase difference across the junction and for the population imbalance that are not accessible with supercon-
ductor Josephson junctions~SJJ’s!. These include oscillations with either or both of the following properties:
~i! the time-averaged value of the phase is equal top (p-phase oscillations!; ~ii ! the average population
imbalance is nonzero, in states with macroscopic quantum self-trapping. The~nonsinusoidal! generalization of
the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of
experimental data~corresponding to different trap geometries and the total number of condensate atoms! onto
a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between
two weakly coupled reservoirs of3He-B and the internal Josephson effect in3He-A are also discussed.
@S1050-2947~98!05912-5#

PACS number~s!: 03.75.Fi, 74.50.1r, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

Bose-Einstein condensation, predicted more than 70 y
ago@1#, was detected in 1995 in a weakly interacting gas
alkali-metal atoms held in magnetic traps@2#. Following the
first observations, there have been important experime
developments. A superposition of condensate atoms in
ferent hyperfine levels@3,4# has been created; nondestru
tive, in situ, detection probes have tracked the dynami
evolution of a single condensate@5#. Further, the evolution of
the relative phase of two condensates has been meas
through interferometry techniques@6#. More recently, experi-
ments that tune the scattering length by several order
magnitude@7# have opened the definite possibility of crea
ing in the laboratory an ideal condensate of noninterac
atoms.

The precise manipulation of this form of matter is of co
siderable theoretical interest: Besides the study of fundam
tal aspects of superfluidity from ‘‘first principles,’’ it is pos
sible to address ‘‘foundational’’ problems of quantu
mechanics@8#. In fact, the order parameter can be identifi
with the one-body macroscopic condensate wave funct
This obeys a nonlinear Schro¨dinger equation, known in the
literature as the Gross-Pitaevskii equation~GPE! @9#. The
GPE has been successfully applied to study kinetic pro
ties of the condensate, such as collective mode frequenci
trapped Bose-Einstein condensates~BEC’s! @10# and the re-
laxation times of monopolar oscillations@11#. The chaotic
behavior in dynamical quantum observables@11,12# and the
metastability of quantized vortices have been predicted@13#.

The existence of spatial quantum coherence was dem
strated by the observation of interference fringes in two ov
lapping condensates@14#.
PRA 591050-2947/99/59~1!/620~14!/$15.00
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However, the superfluid nature of BEC’s can be fu
tested only through the observation of superflows. Curr
experimental efforts are being focused on the creation o
Josephson junction between two condensate bulks@14,15#. In
this context, the Josephson junction problem has been s
ied theoretically in the limit of noninteracting atoms@16# for
small-amplitude Josephson oscillations@17,18#, including
finite-temperature~damping! effects @18#. Decoherence ef-
fects and quantum corrections to the semiclassical mean-
dynamics@19,20# have also been studied. Self-trapping d
namics in the limit of a small number of condensate ato
has been considered@19# in the ‘‘quantum’’ and in the
‘‘semiclassical’’ ~mean-field! approximation. We have else
where@21# pointed out that even though the boson Joseph
junction ~BJJ! is a neutral-atom system, it can still displa
the ~nonsinusoidal generalization of! typical dc, ac, and Sha
piro effects occurring in charged Cooper-pair supercondu
ing junctions. Moreover, dynamical regimes such as mac
scopic quantum self-trapping ~for arbitrarily large
condensates! and p-phase oscillations~where the average
value of the phase across the junction is equal top) have
been predicted. In the present paper we present a compre
sive analysis of the effects described in@21#, including a
discussion of the BJJ equations and their analytic solut
limits of the approximations underlying the BJJ model, an
comparison with other superconducting and superfluid
sephson junctions.

The description of the GPE dynamics for a Bose cond
sate in a double-well trap reduces, under certain conditio
to a nonlinear, two-mode equation for the time-depend
amplitudes c1,2(t)5AN1,2(t)e

iu1,2(t), where N1,2(t) and
u1,2(t) are the number of atoms and the phases of the c
densate in traps 1 and 2, respectively. These amplitudes
620 ©1999 The American Physical Society
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PRA 59 621COHERENT OSCILLATIONS BETWEEN TWO WEAKLY . . .
coupled by a tunneling matrix element between the t
traps, with the spatial dependence of the GPE wave func
integrated out into constant parameters. The resulting
tunneling equations resemble the~nonlinear generalization
of! superconductor Josephson junction~SJJ! equations, with
the variables being the relative phase and the fractio
population imbalance.

However, there are important physical differences
tween the isolated double-well BJJ and the SJJ with an
ternal circuit. The SJJ is generally discussed in terms o
rigid pendulum analogy in the resistively and capacitive
shunted junction model~RCSJ!, while the BJJ in a double
well trap can only be completely understood in terms o
nonrigid pendulum analogy, with a length dependent on
angular momentum. In the SJJ the Cooper-pair popula
imbalance is zero~considering two equal-volume superco
ducting grains! due to the presence of the external circ
@22# and the dynamical variable is the voltage;ḟ across a
quasiparticle resistive shunt. In the BJJ, the nonrigid pen
lum dynamics are associated with superfluid density osc
tions of an isolated system. An isolated~without external
circuit! superconducting junction allows coherent Coop
pair oscillations, but only in the small-amplitude~plasma!
limit @22–24#.

A closer analog of the BJJ is provided by the intern
Josephson effect in3He-A, where the~rigid! pendulum os-
cillations describe the rate of change of up-spin and do
spin pair populations, induced by an external variable m
netic field @25–27#. The ‘‘p oscillations’’ between two
weakly coupled reservoirs of3He-B @28# could be related to
the analogous oscillations occurring in the BJJ.

The experimental detection of predicted effects in the B
could be achieved through temporal modulations of pha
contrast fringes@14#, interferometric techniques@6#, or other
probes of atomic populations@29#, using millisecond tempo-
ral oscillations of the~spatially integrated! signal N12N2 .
The direct detection of the currents instead of densities,
haps by Doppler interferometry, would be worth explorin

The plan of the paper is as follows. In Sec. II we obta
the BJJ tunneling equations, which are compared with
Josephson equation for other superconductor and super
systems in Sec. III. In Sec. IV we solve the BJJ equatio
discussing the various dynamical regimes. In Appendix A
outline the derivation of the two-mode BJJ from the GP
and discuss the limit of the approximations. The BJJ eq
tions are solved analytically in terms of elliptical functions
Appendix B. In Sec. V we discuss the asymmetric trap ca
clarifying the analogies with the ac and Shapiro effects.
summarize our results in Sec. VI.

II. THE BOSON JOSEPHSON JUNCTION:
THE NONLINEAR TWO-MODE APPROXIMATION

The wave functionC(r ) for an interacting BEC in a trap
potentialVtrap(r ,t) at T50 satisfies the GPE

i\
]C~r ,t !

]t
52

\2

2m
¹2C~r ,t !1@Vtrap~r !

1g0uC~r ,t !u2#C~r ,t !, ~2.1!
o
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with g054p\2a/m, m the atomic mass, anda the s-wave
scattering length of the atoms@30#. In the following we will
consider a double-well trap produced, for example, by a
off-resonance laser barrier that cuts a single trapped con
sate into two~possibly asymmetric! parts@14#. However, the
results could also apply to the oscillations of the condens
population difference between two hyperfine levels@15#.

Since we are interested in the dynamical oscillations
the two weakly linked BECs, we write a~time-dependent!
variational wave function as

C~r ,t !5c1~ t !F1~r !1c2~ t !F2~r !, ~2.2!

with c1,2(t)5AN1,2e
iu1,2(t) and a constant total number o

atomsN11N25uc1u21uc2u2[NT . The amplitudes for gen-
eral occupationsN1,2(t) and phasesu1,2(t) obey the nonlin-
ear two-mode dynamical equations@18–21,31,32#

i\
]c1

]t
5~E1

01U1N1!c12Kc2 , ~2.3a!

i\
]c2

]t
5~E2

01U2N2!c22Kc1 , ~2.3b!

where damping and finite-temperature effects are igno
Here E1,2

0 are the zero-point energies in each well,U1,2N1,2

are proportional to the atomic self-interaction energies, a
K describes the amplitude of the tunneling between cond
sates; see Fig. 1. The constant parametersE1,2

0 , U1,2, andK
can be written in terms ofF1,2(r ) wave-function overlaps.
The F1,2(r ), describing the condensate in each trap, can
expressed in terms of stationary symmetric and antisymm
ric eigenstates of the GPE~see Appendix A!.

The fractional population imbalance

z~ t ![@N1~ t !2N2~ t !#/NT[~ uc1u22uc2u2!/NT ~2.4!

and relative phase

f~ t ![u2~ t !2u1~ t ! ~2.5!

obey

FIG. 1. Asymmetric double-well trap for two Bose-Einste
condensates withN1,2 and E1,2

0 , the number of particles and th
zero-point energies in traps 1 and 2, respectively.
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ż~ t !52A12z2~ t ! sin@f~ t !#, ~2.6a!

ḟ~ t !5DE1Lz~ t !1
z~ t !

A12z2~ t !
cos@f~ t !#, ~2.6b!

where we have rescaled to a dimensionless timet2K/\→t
and

DE[~E1
02E2

0!/2K1
U12U2

4K NT , ~2.7a!

L[UNT/2K, U[~U11U2!/2 . ~2.7b!

The dimensionless parametersL andDE determine the dy-
namic regimes of the BEC atomic tunneling. The total, co
served energy is

H5
Lz2

2
1DEz2A12z2cosf, ~2.8!

suggesting that the equations of motion~2.6! can be written
in the Hamiltonian form

ż52
]H

]f
, ḟ5

]H

]z
, ~2.9!

with z andf, the canonically conjugate variables. For we
defined mean values in relative population and phase, fl
tuations must be small.

III. THE JOSEPHSON EFFECT IN OTHER SUPERFLUID
AND SUPERCONDUCTING SYSTEMS

A. The superconducting Josephson junction

.
We now consider the SJJ dynamic equations@22–24,33#,

for comparison with the BJJ tunneling equations~2.6!. The
SJJ has an external closed circuit that typically include
current driveI ext ; the measurable developed voltage acr
the junctionV is proportional to the rate of change of th
phase

I ext5CJ

dV

dt
1I Jsinf1

V

R
, ~3.1a!

ḟ5
2eV

\
, ~3.1b!

where CJ(I J) is the junction capacitance~critical current!
andR is the effective resistance offered by the quasipart
junction and the circuit shunt resistor. TheA12z2 factors of
Eq. ~2.6! are missing here since the external circuit su
presses charge imbalances, i.e.,z(t)[0 @22#. The junction
charging energyEC;CJ

21 ; superconductor-grain chargin
energiesECG ~proportional to the inverse grain sizes!, which
are the analogs of the interatom interactionsU of the BJJ, are
relevant only in mesoscopic systems. Two such small
lated grains@34# can be considered a closer superconduct
analog of the BJJ. Even in that case, asNT is still large, the
voltages that appear are 2eV;2Dqp , the quasiparticle gap
implying that uzu;1029.
-

c-

a
s

e

-

-
g

Mechanical analogs have been useful in visualizing
SJJ. Equation~3.1! can be written as

f̈1ḟ/RCJ1vJ
2sinf5~ I ext /I J!vJ

2 ~3.2!

in unscaled units, withvJ5AECEJ/\, the Josephson plasm
frequency. This can be regarded as the equation for a par
of mass;vJ

22 and positionf moving on a tilted, rigid
‘‘washboard’’ potential2cosf2(Iext/IJ)f, with friction co-
efficient ;1/RCJ . Alternatively, Eq.~3.1! describes@33# a
rigid pendulum of tilt anglef; moment of inertia;vJ

22 ;

angular momentumV}ḟ, the angular velocity; damping rat
(RCJ)

21; and external torque;I ext . The Josephson effect
in the SJJ follow immediately from physical consideration

1. Plasma oscillations

For I ext50, the rigid pendulum can have small, harmon
oscillations at an anglef around the vertical. Linearizing Eq
~3.1! produces sinusoidal voltage/current plasma oscillati
of angular frequency~in unscaled units!

v'vp[2p/tp5AEcEJ/\, ~3.3!

independent of the initial conditionsf(0) andf(0̇).

2. ac effect

In the pendulum analogy, the external drive balanced
the damping enforces steady rotatory motion forI ext /I J.1.
The phase increases linearly with timef(t);2eVt/\,
whereV5I extR is the dc voltage developed, and the curre
oscillation has angular frequency

v5vac5
2p

tac
5

2eV

\
, ~3.4!

independent off(0) andḟ(0).

3. Shapiro resonance effect

If a small ac component is added to an applied dc volta
DE→DE(11d0cosv0t) (d0!1), then at resonancev0
5vac , there is a dc tunneling current with a nonzero tim
average^ż(t)&;d0^sin@vact1f(0)#sinv0t&Þ0. This Shapiro
resonance repeats at higher harmonicsvac52p/tac
5nv0 , n51,2, . . . ,with characteristic Bessel function co
efficientsJn(nd0) @22,23#.

Can the BJJ show the full range of SJJ effects? Not at
sight since the double-well BEC is a neutral-atom syste
However, the ability to tailor traps and the condensate s
interaction compensates for electrical neutrality@21#. Asym-
metric positioning of the laser barrier could produce a ze
point energy differenceDE, analogous to an applied voltag
since the effective potential experienced by the atoms on
smaller-volume side will have a larger curvature. The int
well difference between the~bulk! nonlinear atomic self-
interaction;UNTz plays the role of a junction capacitanc
energy in the dynamics.

In the SJJ,EJ andN1,2 are fixed@22,23#. For the BJJ, the
laser-sheet intensity and hence the couplingK can be varied.
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PRA 59 623COHERENT OSCILLATIONS BETWEEN TWO WEAKLY . . .
Initial statesN1(0)ÞN2(0), i.e., z(0)Þ0, can be prepared
and the laser barrier then lowered to permit tunneling.

B. The internal Josephson effect in3He-A

A closer analog of the BJJ equations~2.6! is provided by
the longitudinal magnetic resonance in3He-A @25#, which is
generally understood as internal Josephson oscillations
tween two interpenetrating populations of superfluid u
spin–down-spin pairs@26#. The weak coupling is provided
by the dipole interaction between pairs of up and down sp
The spin dynamics is governed by@27#

ż~ t !52sin@f~ t !#, ~3.5a!

ḟ~ t !5DE1Lz~ t !, ~3.5b!

where z(t) is the fractional population imbalance betwe
up-spin–and down-spin Cooper pairs,L}(xgD)21 with x
and gD the susceptibility and the dipole coupling, respe
tively, andDE}(B/xgD) with B the external applied stati
magnetic field. In@25# experiments have confirmed Eq
~3.5!, showing the transition between the small-amplitu
and ringing oscillations of the pendulum equations~3.5!.

C. Josephson oscillations between two weakly linked
reservoirs of 3He-B

Quite recently the direct experimental observation of
sephson oscillations between two weakly linked superfl
systems has been reported@35,36#. The weak link was pro-
vided by;4000 small holes in the rigid partition separatin
two 3He-B superfluid reservoirs, with the hole diameter b
ing comparable to the coherence length. A soft membr
created a pressure difference across the weak link, indu
Josephson mass current oscillations. These oscillations

I ~ t !5I csin@f~ t !#, ~3.6a!

ḟ~ t !52
2m3

\r
DP, ~3.6b!

with 2m3 the mass of a3He Cooper pair,r the liquid den-
sity, and DP the pressure difference across the we
link being proportional to the elastic constant of the me
brane. Small- and large-amplitude oscillations have been
served, as well as the driven running solutions of the ph
2`,f,` @36#, corresponding to a self-maintained pop
lation across the weak link.

By driving the soft membrane in resonance with the na
ral Josephson frequency, a metastable dynamical regime
observed, with the time-averaged value of the phase dif
ence across the junction equal top. These metastablep
oscillations have amplitudes and frequencies smaller than
‘‘stable’’ Josephson oscillations, into which they decay w
a lifetime that increases with decreasing temperature@28#.
Analogous p oscillations with similar properties are de
scribed by the BJJ~see Sec. IV!. In a different context,p
junctions have been created with high-Tc superconductors
that reflect the symmetry of thed-wave pairing state@37#.
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IV. THE SYMMETRIC TRAP CASE DE50

A. Stationary solutions

For a symmetric BJJ, i.e.,DE50, the equations of motion
~2.6! are

ż~ t !52A12z2~ t !sin@f~ t !#, ~4.1a!

ḟ~ t !5Lz~ t !1
z~ t !

A12z2~ t !
cos@f~ t !#, ~4.1b!

with the conserved energy

H05H@z~0!,f~0!#5
Lz~0!2

2
2A12z~0!2 cosf~0!.

~4.2!

The ground-state solution of the symmetric BJJ, Eq.~4.1!,
is a symmetric eigenfunction of the GPE with energyE1

521 and

fs52np, ~4.3a!

zs50. ~4.3b!

The next stationary state at higher energyE251 is an anti-
symmetric eigenfuncion with

fs5~2n11!p, ~4.4a!

zs50. ~4.4b!

For noninteracting atoms in a symmetric double-well pote
tial, the eigenstates of the Schro¨dinger equation are alway
symmetric or antisymmetric, withzs50. However, because
of the nonlinear interatomic interaction, there is a class
degenerate GPE eigenstates that break thez symmetry:

fs5~2n11!p, ~4.5a!

zs56A12
1

L2, ~4.5b!

provided uLu.1. The energy for this state isEsb5
1
2 (L

11/L).
Thesez-symmetry breaking states are an artifact of t

semiclassical limit in which the GPE has been derived. I
full quantum two-mode approximation the eigenstates
always symmetric in the population imbalance: As we w
discuss later, such states have a large lifetime that sc
exponentially with the total number of atoms.

B. Rabi oscillations

For noninteracting atoms (L50) Eqs. ~4.1! describe
sinusoidal Rabi oscillations between the two traps with f
quencyvR5(2/\)K. These oscillations are equivalent to
single-atom dynamics, rather than a Josephson effect ari
from the interacting superfluid condensate. The possibility
tuning the scattering length to values very close to zero@7#
opens avenues for their experimental observation.
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FIG. 2. Population imbalancez(t) as a function of dimensionless time 2Kt ~in units of \), with conditionsL510 andf(0)50 in a
symmetric trap. The initial population imbalancez(0) takes the values~a! 0.1, ~b! 0.5, ~c! 0.59, ~d! 0.6, and~e! 0.65.
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C. Zero-phase modes

These modes describe the interwell atomic tunneling
namics with a zero time-average value of the phase ac
the junction^f(t)&50 and^z&50. To this dynamical class
belong small- and large-amplitude condensate oscillation

1. Small-amplitude oscillations

The small-amplitude, or plasma~in analogy with the SJJ!,
oscillations follow at once from the pendulum analogy. Fro
Eq. ~4.1!, the BJJ is like a nonrigid pendulum of length

~x21y2!1/25A12z2, ~4.6!

decreasing with angular momentumz and with moment of
inertia L21. Linearizing Eq.~4.1!, we obtain sinusoidal os
cillations with inverse periods~in unscaled units!

t0
215A2UNTK1~2K!2 /2p\, ~4.7!

independent of the initial conditionsz(0) and f(0). The
comparison between Eqs.~4.7! and ~3.3! indicates that
2NTK (;NT) is the analog of the Josephson coupling e
ergy EJ , while U (;NT

23/5 in 3-d traps! is the analog of
the capacitive energyEC . Since the coupling energy, fixe
by the laser profile, isK;A, the tunnel junction area
whereas the bulk interactionUNT is independent ofA, the
oscillation rate goes ast0

21;A1/2. ~The plasma frequency
for the SJJ,tp

21;AEcEJ in contrast, is independent ofA,
sinceEJ;A andEc;A21.)
-
ss

.

-

The Josephson-like lengthlJ[A\2/2mK, which governs
the spatial variation along the junction, should be mu
greater than;AA to justify the neglect of spatial variation
of z and f, i.e., to obtain a flat plasmon spectrum. ForK
50.1 nK, one findslJ;10 mm. We will not, however,
consider such spatial variations here. The frequency of
small-amplitude oscillations in the BJJ are of the order
102100 Hz for typical trap parameters and should be co
pared with the plasma frequencies of the SJJ that are of
order of gigahertz.

2. Large amplitude oscillations

In Fig. 2 we display this regime of anharmonic oscill
tions, plottingz5(N12N2)/NT as a function of time, with
the initial value of the phase differencef(0)50 and L
510, and for increasing values of the inital population im
balancez(0). Specifically,z(0) takes on the values 0.1, 0.5
0.59, 0.6, and 0.65 for Figs. 2~a!–2~e!, respectively. Increas
ing z(0) for fixed L @or increasingL for fixed z(0)# adds
higher harmonics to the sinusoidal oscillations, correspo
ing to large-amplitude oscillations of the~nonrigid! pendu-
lum. This is shown in Figs. 2~b! and 2~c!. The period of such
oscillations increases withz(0) and then decreases, underg
ing a critical slowing down@Fig. 2~d!, dashed line# with a
logarithmic divergence. The singularity in the period corr
sponds to the pendulum in a vertically upright position, i.
reaching the fixed point of Eq.~4.4b!.

D. Running-phase modes: Macroscopic quantum self-trapping

In addition to anharmonic and critically slow oscillation
other striking effects occur in the BJJ. For instance, fo
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PRA 59 625COHERENT OSCILLATIONS BETWEEN TWO WEAKLY . . .
fixed value of the initial population imbalance, if the se
interaction parameterL exceeds a critical valueLc , the
populations become macroscopically self-trapped with^z&
Þ0. There are different ways in which this state can
achieved, and all of them correspond to the condition@which
we shall term the macroscopic quantum self-trapp
~MQST! condition# that

H0[H„z~0!,f~0!…5
L

2
z~0!22A12z~0!2 cos@f~0!#.1.

~4.8!

In a series of experiments in whichf(0) andz(0) are kept
constant butL is varied ~by changing the geometry or th
total number of condensate atoms, for example!, the critical
parameter for MQST is

Lc5
11A12z~0!2 cos@f~0!#

z~0!2/2
. ~4.9!

On the other hand, changing the initial value of the popu
tion imbalancez(0) with a fixed trap geometry and tota
number of condensate atoms@and initial valuef(0)], L
remains constant and Eq.~4.8! defines a critical population
imbalancezc . As we shall see in this and Sec. IV E, fo
f(0)50, if z(0).zc , MQST sets in, but forf(0)5p,
z(0),zc marks the region of MQST. More generally,
uf(0)u<p/2, MQST occurs forz(0).zc , while for other
values off(0), it occurs forz(0),zc .

In this section we will discuss the type of MQST in whic
the phase difference of the order parameter across the
runs without bound; other types of MQST are discuss
later. The phenomenon can be understood through the
dulum analogy. If the population imbalances are prepa
such that the initial angular kinetic energy of the pendul
z2(0) exceeds the potential energy barrier height of the v
tically displacedf5p ‘‘pendulum orientation,’’ a steady
self-sustained pendulum rotation will occur, with nonze
angular momentum̂z& and a closed-loop trajectory aroun
the pendulum support. ForH0,1 the population imbalance
oscillates about a zero value. ForH0.1 the time-averaged
angular momentum is nonzerôz(t)&Þ0, with oscillations
around this nonzero value~Fig. 2!. MQST is a nonlinear
effect arising from the self-interaction;UNTz2 of the at-
oms. It is dependent on the trap parameters, total numbe
atoms, and initial conditions and is self-maintained in
closed conservative system without external drives.
though the SJJ ac effect in the RCSJ model involves a
ning phase, it is clearly physically different from MQST,
it is a driven steady-state independent of initial conditio
Moreover, in the SJJ the Cooper pair population imbalanc
zero because of the external circuit. MQST differs fro
single-electron Coulomb blockade effect. It also differs fro
the self-trapping of polarons@32# that arise from single elec
trons interacting with a polarizable lattice: arising, inste
from self-interaction of amacroscopically largenumber of
coherent atoms.

E. p-phase modes

These modes describe the tunneling dynamics in wh
the time-averaged value of the phase across the junctio
e

g

-

JJ
d
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is
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^f&5p. The modes arise once more from the nonrigid
~momentum-dependent length! of the pendulum and are no
observable with the SJJ. They include small-amplitu
large-amplitude, and macroscopic self-trapped oscillatio
The last has a nonzero average population imbalance, w
^z&50 for the others. We summarize this behavior in t
temporal evolution ofz(t) in Fig. 3 for z(0)50.6 and
f(0)5p. L takes the values 0.1, 1.1, 1.111, 1.2, 1.25, a
1.3 in Figs. 3~a!–3~f!, respectively.

1. Small-amplitude oscillations

For smallz, Eqs.~4.1! can be linearized around the fixe
point ~4.4b! yielding harmonic oscillations forL,1, with a
period ~in unscaled units!

tp
215A~2K!222UNTK /2p\. ~4.10!

It is worth noticing that the ratio of the frequency of th
small-amplitude zero- andp-mode phase oscillations i
tL /tp5A(12L)/(11L), ,1 ~similar to the 3He-B p
oscillations of Sec. III!.

Linearizing Eqs.~4.1! in z only, the BJJ equation~4.1b!
reduces to the very simple form

f̈52@Lsin~f!1 1
2 sin~2f!#1O~z2!. ~4.11!

This suggests a mechanical analogy in which a particle
spatial coordinatef moves in the potential

V~f!52Lcos~f!2
1

4
cos~2f!1O~z2!. ~4.12!

In Fig. 4 we see thatV(f) has a small valley aroundf
5p where the particle can oscillate. The depth of this val
decreases asL→1. The valley persists in the full potentia
for V(f), retaining all the higher-order terms inz.

2. Large-amplitude oscillations

For p-phase oscillations, the momentum-depend
length allows the pendulum’s bob to make inverted anh
monic oscillations witĥ z&50 around the~top of the! verti-
cal axis. For large amplitudez(t) oscillations,L can exceed
unity, as shown in Fig. 3~b!.

3. Oscillations with macroscopic quantum self-trapping

Here the nonrigidity allows the pendulum’s bob to make
closed ^z&Þ0 rotation loop around the top of the vertic
axis. There are two kinds of suchp-phase modes with
MQST: those where the time average^z&,uzsuÞ0 and those
where^z&.uzsuÞ0, with zs being the stationaryz-symmetry
breaking value of the GPE. These two kinds of MQST a
shown in the time evolution ofz(t) in Figs. 3~d!–3~f!. In
Fig. 3~d! the system is in the first type of trapped state.
changeover occurs at the stationary state@Fig. 3~e!,dashed
line#. OnceL exceeds this valueLs51/A12z(0)2 @cf. Eq.
~4.5!#, the system goes into the second type ofp-phase
trapped state@Fig. 3~f!#.

In order to see these different kinds of~running- and
p-phase! MQST modes more transparently, one can use
energyH5H0 of Eq. ~4.2! to write the system of equation
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FIG. 3. z(t) as a function of 2Kt with initial conditionsz(0)50.6 andf(0)5p in a symmetric trap.L takes the values~a! 0.1, ~b! 1.1,
~c! 1.111,~d! 1.2, ~e! 1.25, and~f! 1.3.
le
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~4.1! in terms of an equation of motion of a classical partic
whose coordinate isz, moving in a potentialW(z) with total
energyW0 ,

ż~ t !21W~z!5W0 , ~4.13a!

where

FIG. 4. f potential V(f) ~in arbitrary units! plotted against
f/p for L50.2, 0.4, and 0.6.
W~z!5z2S 12LH01
L2

4
z2D , W05W@z~0!#1 ż~0!2.

~4.13b!

Figure 5 displays the potentialW(z) againstz @Figs. 5~a! and
5~c!# and the corresponding evolution off(t) @Figs. 5~b! and
5~d!# to display the various dynamical regimes. In Figs. 5~a!
and 5~b! f(0)50 and L510 and in Fig. 5~c! and 5~d!
f(0)5p and L52.5. The horizontal lines indicate the en
ergy valueW0 . For a fixed value ofL andf(0)50, increas-
ing the value ofz(0) changesW(z) from a parabolic to a
double well. The motion of the particles lies within the cla
sical turning points in which the total energy equals the p
tential energy. Forz(0)50.1, in Fig. 5~a!, the potential is
parabolic and the~small-amplitude! oscillations are sinu-
soidal. Forz(0)50.6 the trajectory ofz(t) becomes mark-
edly nonsinusoidal, given the double-well structure ofW(z).
For z(0)>0.6 the total energy is smaller than the potent
barrier, forcing the particle to become localized in one of t
two wells. The symmetry of the classical motion is broke
This corresponds to a MQST state. Figure 5~b! displays the
corresponding phasef5arccos@(Lz2/22H0)/A12z2# ver-
sus z. For untrapped oscillations, the (f,z) trajectory is a
closed curve, with a time-average value off(t)50. In the
running-mode MQST regime2`,f(t),` for the corre-
spondingf evolution.
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Let us now focus our attention on Figs. 5~c! and 5~d!. For
L52.5 andf(0)5p, the z potential always has a double
well structure and the system is self-trapped for all valu
of z(0). For small values ofz(0), the phasef(t) is un-
bounded and the system exhibits running-phase MQ
However, above a certain value ofz(0)52zs52A121/L2

~with ^z& still nonzero! the phasef(t) becomes localized
around p and remains bounded for all larger values
z(0). In Figs. 5~c! and 5~d! z(0)50.7 and 0.98 mark the two
different kinds ofp-phase MQST since they are on eith
side of the stationary state value ofzs5A121/L2. This
point will become more clear in the phase-plane portrait
Fig. 7.

F. Discussion of results

A clear observational feature of the behavior of the s
tem is the time period of oscillations. To this end, we plot
Fig. 6 the inverse period 1/t as a function of the ratio be
tween the initial population imbalancez(0) and the critical
population imbalancezc . Figure 6~a! shows the case fo
f(0)50 and L510 (zc50.6) ~dashed line! and L
5100 (zc50.2) ~solid line!. The initial parts of the graph
for z(0)!zc mark sinusoidal small-amplitude~plasma! os-
cillations @Fig. 2~a!#. On increasingz(0), theoscillations be-
come highly anharmonic, with the inverse period that fi
increases and then decreases, displaying a critical slow
down. The logarithmic divergence of the time period
z(0)5zc is marked by the hyperbolic secant evolution
z(t) @Fig. 2~d!#. In the inset we show the average value^z&

FIG. 5. z potentialW(z) ~in arbitrary units! plotted againstz in
~a! and~c! and the correspondingf evolution shown in~b! and~d!.
In ~a! and~b! f(0)50 and in~c! and~d! f(0)5p. The values of
z(0) are as shown.
s
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as a function ofz(0)/zc . MQST is signaled by the shar
~phase-transition-like! rise of ^z& from zero to a nonzero
value. Forf(0)5p @Fig. 6~b!# something different happens
MQST occurs for values of the initial imbalancez(0) less
thanzc . At z(0)5zc the time period diverges and for large
values ofz(0), MQST disappears.

The dynamical behavior of the BJJ system can be su
marized quite conveniently in terms of a phase portrait of
two dynamical variablesz and f, as shown in Fig. 7. The
trajectories are calculated for different values ofL/Lc with
z(0) kept constant at 0.6. The light solid lines mark t
evolution for the evolution where the phasef oscillates
around 0 and̂z&50. The running mode MQST is shown b
the trajectories with small dots forL/Lc51,1.5 with the
initial condition beingf(0)50. Note that for a rigid pendu-
lum @without the A12z2 term in the Hamiltonian in Eq.
~2.8!#, one would obtain only the curves described thus f
However, for the BJJ, due to the momentum-dependent
tential in Eq.~2.8!, there is considerable richness as exh
ited by the dark solid lines, dashed lines, and lines with la
dots. All these curves correspond tof(0)5p. Note, for in-
stance, that asL/Lc increases and approaches unity, the a
enclosed by the trajectory shrinks and is pinched atL5Lc
marking the onset ofp-phase MQST witĥ z& ,uzsu ~dashed
line!. Upon further increase, the area collapses to a poin
thez5zs stationaryz-symmetry breaking state. A further in

FIG. 6. Inverse period~scaled in units of 2K) 1/t plotted
againstz(0)/zc for ~a! f(0)50 and~b! f(0)5p. In ~a! the dashed
line corresponds toL510, for which the dip occurs atzc50.6, and
the solid line toL5100, for whichzc50.2. The inset in~a! shows
the time-averaged population imbalance^z& as a function of
z(0)/zc . In ~b! L51.1 andzc50.6.
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crease of L/Lc induces a reflection of the trajector
about the fixed point andp-phase MQST with^z& .uzsu
~lines with large dots!. Finally, the trajectories join
the running-mode MQST forL/Lc52.7 ~lines with small
dots!.

We now outline a possible procedure for~a! bridging ex-
perimental data with our theoretical model and~b! collapsing
data from different experiments onto a single univer
curve. We note, at the very outset, that other procedu
could be experimentally more accessible, particularly si
different methods of tailoring traps@3# and the possibility of

FIG. 7. Phase-plane portrait of the dynamical variablesz andf
for L/Lc values as marked. For all trajectories,z(0)50.6. See the
text for an explanation of the markings of the various trajectori

FIG. 8. Universal curve for data collapse withp/KCL2t ~in
units of \) versusk2(L) as in Eq.~B7!.
l
es
e

tuning the scattering length of atoms@7# have become cur-
rent. The calculation of the values ofL and K from the
experimental data~for a given trap geometry and total num
ber of condensate atoms! is straightforward. The onset o
MQST is provided by Eq.~4.9!, which immediately gives the
value ofLc from the~experimentally imposed! initial condi-
tionsz(0) andf(0). Moreover, in the small-amplitude limi
the inverse period of the oscillations, given by Eq.~4.7!,
provides the value ofK from the previously calculatedL.

Different experiments done by varying the trap geome
and the number of condensate atoms give a set of param
L andK. The data collapse onto a single universal curve
p/KCL2t versusk2(L) of Eq. ~B7!, as shown in Fig. 8.

The parametersUNT and E0 can be estimated to b
;100 nK and;10 nK, respectively, forNT5104 if we
take the trap frequencyv trap to be ;100 Hz. L
5UNT/2K can be varied widely by changingNT, or the
barrier height;K that depends exponentially on the lase
sheet thickness. Typical frequencies are then 1t0
;100 Hz. With collective mode excitation energiesDcoll

;E0 and quasiparticle gapsDqp;AUNTE0, for UNTz
,Dqp,coll intrawell excitations are not induced. At nonze
temperatures, BEC depletion and thermal fluctuations w
renormalize the parameters in Eq.~2.7! and will damp@18#
the coherent oscillations. The effects of damping on the
cillation behavior requires a separate treatment and will
considered elsewhere.

.

FIG. 9. Scaled inverse periodtac /t plotted againstL for a fixed
asymmetric trap parameterDE51, z(0)50.1, f(0)50,p initial
values, and 1/tac as defined in Eq.~4.7!. The vertical scale on the
left ~right! corresponds tof(0)50 (p). The insets show time-
averaged̂ z& againstL, for ~a! f(0)50 and~b! f(0)5p.
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FIG. 10. Analog of the Shapiro effect: dc currentI dc5^ż& versus the trap asymmetry parameter scaled in the applied frequencyDE/v0 .
Herez(0)50.045, f(0)5p/2, DE1 /v0\53.5, and dashed~thick solid! lines are forL50 (1000).
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V. THE ASYMMETRIC TRAP CASE DEÞ0

A. Exact solutions and temporal behavior

Let us now consider the case where the traps are as
metric, i.e.,DEÞ0, as in Fig. 1, with the Hamiltonian

H5
Lz2

2
1DEz2A12z2cosf. ~5.1!

For Lz(0)!DE, the nonrigid pendulum is driven to rotat
in a direction determined byDE ~corresponding to the a
Josephson-like effect!. With DE50 and L.Lc @of Eq.
~4.9!#, we had found that the pendulum also executes ro
tory motion, in a direction determined byz(0). For Lz(0)
@DEÞ0, we expect this type of motion to persist~corre-
sponding to MQST due to nonlinearity!. In between there
should be a competition between the two effects and a t
sition at some shifted critical valueL5Lc(DE). This physi-
cal picture for DEÞ0 is confirmed by obtainingz(t) in
terms of Weierstrassian elliptic functions that change th
behavior at a singular valueL5Lc(DE).

We show in Fig. 9 that the MQST phenomena~inverse-
period dip and average nonzero imbalance! persist in the
DEÞ0 case and display a dependence onL andDE. Figure
9 shows the scaled inverse periodtac /t versus the scaled
nonlinearity ratioL/Lc(DE), wheretac is as in Eq.~4.7!,
with z(0)50.1, DE51.0, andf(0)50,p. The dip to zero at
the onset of MQST is clearly seen. The inset shows the ti
averaged^z& for f(0)50,p, vanishing atL5Lc(DE).
Whereas forDE50 andL,Lc(DE50) the average popu
lation imbalance was zero, forDEÞ0 we havê z&Þ0 in the
corresponding sub-critical regionL,Lc(DE). This is
analogous to a voltage across a capacitor inducing a ch
difference and the external static magnetic field in the cas
3He-A. Note that there is a combined influence ofL,DE and
f(0), so ^z& can be larger~in magnitude! than z(0). In
particular, for L→0, ^z&→2DE@A12z2(0)cosf(0)
m-

a-

n-

ir

e-

ge
of

2DEz(0)#/(11DE2), as in the inset. This corresponds to
averaged pendulum rotation^z&;2DE,0, opposite in sign
to the initialz(0).0, but slowing to zero as the critical valu
is approached. ForL.Lc(DE), in the MQST regime, the
averaged rotation̂z&.0 is in the initial direction ofz(0)
.0, with ^z& approaching the initialz(0) value for largeL,
as in theDE50 case of Fig. 8.

B. Shapiro effect analogs

Let us now consider the BJJ analog of the Shapiro re
nance effect observed in the SJJ@23#. In addition to a time-
independent trap asymmetryDE, we impose a sinusoida
variation so that we can write the asymmetry term asDE
1DE1cosv0t. This could be done by varying the laser barri
position at fixed intensity. A similar Shapiro-like resonan
effect could be seen, with an oscillation of the laser be
intensity, at fixed midposition, soK→K(11d0cosv0t). The
analog of the Shapiro effect arises when the period from
time-independent asymmetry;1/DE matches that from the
oscillatory increment;1/v0 . This matching condition is in-
timately connected with the phenomenon of Bloch oscil
tions and dynamic localization in crystals and trapping
two-level atoms@38#. The dc value of the drift curren

^ ż(t)&, as a function ofDE, will show up as resonant spikes
~For the SJJ, with current drives, the Shapiro effect shows
as steps in theI -V characteristics.! Of course, the dc drift
cannot persist indefinitely because the phase difference
tween the condensates on the two parts of the BJJ will ce
to be a well-defined quantity once the population in one w
drops belowNmin .

Figure 10 showsI dc}^ż(t)& obtained from time averaging
the numerical solution, with a small ac drive andDEÞ0. It is
plotted as a function ofDE/v0 for increasing values of the
nonlinearity ratio L. The initial conditions arez(0);0
50.045 andf(0)5p/2, for which Lc;1000 ~in the ab-
sence ofDE and ac driving!. WhenL is zero, sharp peaks in
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I dc occur at the usual Shapiro condition valuesDE}nv0 ,n
51,2, . . . . As L increases, however, two things happe
First, multiple peaks also occur atDE/v0 values different
from integers. Close to the MQST regime (L;Lc), there is
a proliferation of peaks as the system moves from a reg
of constant current̂ ż&Þ0 (L small! to one of constant
population imbalancêz&Þ0 (L large!. Second, the magni
tude of the peaks or dc currents decreases. Finally, we
that forDE larger than the Bogoliubov quasiparticle gapDqp
and high enough temperatures, a dissipative quasipar
branch might be observable.

VI. SUMMARY

We have investigated the Josephson dynamics in
weakly linked Bose-Einstein condensates forming a bo
Josephson junction. In the resulting nonlinear two-mo
model, we have described the temporal oscillations of
population imbalance of the condensates in terms of elli
functions. Our predictions include nonsinusoidal generali
tions of Josephson dc, ac, and Shapiro effects. We also
dict macroscopic quantum self-trapping, which is a se
maintained population imbalance across the junction du
atomic self-interaction, andp oscillations, in which the
phase difference across the junction oscillates aroundp. We
clarify the connection and the differences between these
nomena and others occurring in related systems such a
superconducting Josephson junctions, the internal Josep
effect in 3He-A, and Josephson oscillations between t
weakly linked reservoirs of3He-B. Through a set of func-
tional relations, we also predict the collapse of experimen
data ~corresponding to different trap geometries and to
number of condensate atoms! onto a single universal curve
These effects constitute experimentally testable signature
quantum phase coherence and the superfluid characte
weakly interacting Bose-Einstein condensates.
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APPENDIX A: MICROSCOPIC DERIVATION
OF THE BOSON JOSEPHSON EQUATION

FROM THE GROSS-PITAEVSKII EQUATION

The values of the constant parameters in the BJJ e
tions ~2.3!, K, E0 , and U, depend on the geometry~and
effective dimensionality! of the system and the total numb
of condensate atoms. We now outline their dependenc
terms of spatial GPE wave functions, elucidating the
proximations underlying the BJJ equations.

We look for the solution of the~time-dependent! GPE
~2.1! with the variational ansatz

C~r ,t !5c1~ t !F1~r !1c2~ t !F2~r !. ~A1!

There are two approximations underlying this ansatz.
~i! We describe the temporal evolution of the Gros

Pitaevskii wave function as thesuperpositionof two wave
functions ~roughly! describing the condensate in each tra
.
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The nonlinear interaction in the GPE destroys such a su
position. In effect, if the condensate density in the tunnel
region is small~as it is the case for weak links! the nonlinear
interaction in that region is negligible and the superposit
ansatz is preserved.

~ii ! We factorize the temporal and the spatial depende
of the GPE wave function describing the condensate in e
trap. Later in this section we will discuss the limit of validit
of this approximation.

The spatial dependence ofF1,2(r ) can be constructed by
the exact symmetricF1(r ) and antisymmetricF2(r ) sta-
tionary eigenstates of the GPE~see Sec. IV!:

F1~r !5
F11F2

2
, ~A2a!

F2~r !5
F12F2

2
, ~A2b!

ensuring that

E F1~r !F2~r !dr50, ~A3!

where we impose the normalization condition

E uF1,2~r !u2dr51. ~A4!

Replacing Eqs.~A1! and ~A2! in the GPE~2.1!, and using
the orthogonality condition~A3!, we obtain the BJJ equa
tions

i\
]c1

]t
5~E1

01U1N1!c12Kc2 ~A5a!

i\
]c2

]t
5~E2

01U2N2!c22Kc1 , ~A5b!

with constant parameters

E05E \2

2m
u¹Fu21uFu2Vext~r !dr, ~A6a!

U5g0E uFu4dr, ~A6b!

K.2E F \2

2m
~¹F1¹F2!1F1VextF2Gdr. ~A6c!

We now return to our variational ansatzC(r ,t)
5c1(t)F1(r )1c2(t)F2(r ). The parametersU andDE are
proportional to the wave-function overlaps, areNT depen-
dent, but are independent ofz(t), so the chemical potentia
difference is considered linear inz. This approximation cap-
tures the dominantz dependence of the tunneling equatio
coming from the scale factorsc1,2}AN1,2, but ignores shape
changes in the wave functions forN1(t)ÞN2(t). We can
estimate such corrections to the chemical potential differe
Dm[m12m2 within the Thomas-Fermi approximationm1,2

;N1,2
2/5;(NT/2)2/5(16z)2/5. Then relative corrections to th
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linear form Dm5(4/5)z are estimated byE[@Dm(z)
24z/5#/Dm(z), where Dm(z)5(11z)2/52(12z)2/5. We
find thatE is negligible over thez range where MQST effect
are expected:E;0.1% for z50.1 andE;3% for z50.4.
Thus Eq.~2.6!, with DE andL treated as constants, is indee
a reliable nonlinear equation describing the BJJ dynamics
a large range ofz(t) values. Similar conclusions have bee
reached in@18#. As a further test, the GPE~2.1! has been
solved numerically~in a spatial grid! in the double-well ge-
ometry @39#, fully confirming the conclusions just outlined

APPENDIX B: EXACT SOLUTIONS IN TERMS
OF JACOBIAN ELLIPTIC FUNCTIONS

The total energy of the system is given by

H„z~ t !,f~ t !…5
Lz2

2
1DEz2A12z2cosf5H„z~0!,f~0!…

[H0 , ~B1!

whereH0 is the initial ~and conserved! energy. Combining
Eqs.~2.6a! and ~2.8!, we have

ż21FLz2

2
1DEz2H0G2

512z2. ~B2!

The nonlinear Gross-Pitaevskii tunneling equations for
macroscopic amplitudesc1(t) andc2(t) are formally iden-
tical to equations governing a physically very different pro
lem: a single electron in a polarizable medium, forming
polaron@32#. Solutions have been found@32,40–42# for the
discrete nonlinear Schro¨dinger equation describing the mo
tion of the polaron between two sites of a dimer. Similar
we use Eq.~B2! to obtain the exact solution forz(t) in terms
of quadratures

Lt

2
5E

z~ t !

z~0! dz

AS 2

L
D 2

~12z2!2Fz21
2zDE

L
2

2H0

L
G2

.

~B3!

We consider theDE50 and DEÞ0 cases separately. Fo
symmetric double wellsDE50, the denominator of Eq.~B3!
can be factorized, so

Lt

2
5E

z~ t !

z~0! dz

A~a21z2!~C22z2!
, ~B4!

where

C25
2

L2F ~H0L21!1
z2

2 G , a25
2

L2
@z22~H0L21!#,

~B5a!

z2~L!52AL21122H0L. ~B5b!

The solution to Eq.~B4! is written in terms of the cn and d
Jacobian elliptic functions~with k the elliptic modulus@43#!
as
or

e

-

,

z~ t !5H C cn@~CL/k!~ t2t0!,k# for 0,k,1

C dn@~CL!~ t2t0!,1/k# for k.1;
~B6a!

k25
1

2S CL

z~L! D
2

5
1

2F11
~H0L21!

AL21122H0L
G , ~B6b!

t052@LAC21a2F„arccos@z~0!/C#,k…#21, ~B6c!

whereF(f,k)5*0
fdf(12k2sin2f)21/2 is the incomplete el-

liptic integral of the first kind.
The Jacobian elliptic functions cn(u,k) and dn(u,k) are

periodic in the argumentu with period 4K(k) and 2K(k),
respectively, whereK(k)[F(p/2,k) is the complete elliptic
integral of the first kind. The character of the solutio
changes when the elliptic modulusk51. From Eq.~B6b! this
mathematical condition or singular parameter dependenc
the elliptic functions corresponds to the physical conditi
H051 and L5Lc of Eq. ~4.9!, for the onset of MQST:
k2(Lc)51. Whenk2!1, cn(u,k)'cosu1k2sinu(u21

2sin2u)
is almost sinusoidal. Whenk2 increases, the departure from
simple sinusoidal forms becomes drastic. Fork2&1,
cn(u,k)'sechu2(12k2)/4(tanhusechu)(sinhucoshu2u)
becomes nonperiodic. Whenk2@1, the behavior is again pe
riodic ~but about a nonzero average!: dn(u,1/k)'1
2(sin2u)/2k2.

The time period of the oscillation ofz(t) is given@43# by

t5H 4kK~k!

CL
for 0,k,1

2K~1/k!

CL
for k.1.

~B7a!

~B7b!

In the linear limit,t→p/A11L, in agreement with the ex
pression fortp in Eq. ~4.7!. As k→1 or L→Lc , the period
becomes infinite, as in a critical slowing down, divergin
logarithmically,K(k)→ ln(4/A12k2). The evolution of the
imbalance is given, in this special case, by the nonoscillat
hyperbolic secant (C52ALc21/Lc)

z~ t !5C cn@~CLc!~ t2t0!,1#5C sechCLc~ t2t0!

for k51. ~B8!

We now turn to the caseDEÞ0. The general form of the
integral of Eq.~B3! is split into two parts

Lt

2
5

Lt0

2
1E

z~0!

z1 dz8

Af ~z8!
, ~B9!

whereLt0/2 is the integral fromz1 to z(0), andz1 is a root
of the quartic

f ~z!5S 2

L D 2

~12z2!2Fz21
2zDE

L
2

2H0

L G2

.

Taylor expandingf (z) aroundz, with the change of vari-
able y5y(z)5@ f 8(z1)/4#(z2z1)211 f 9(z1)/24 for which
y(z1)5`, the integral in Eq.~B9! is cast in a standard form
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L~ t2t0!

2
5E

y

` dy8

A4y832g2y82g3

, ~B10!

which can be inverted as a Weierstrassian elliptic funct
y5`„L(t2t0)/2;g2 ,g3…. Thus

z~ t !5z11
f 8~z1!/4

`~L~ t2t0!/2;g2 ,g3!2 f 9~z1!/24
. ~B11!

In Eq. ~B10! the constants in the cubic equationh(y)54y3

2g2y2g3 are determined from the coefficientsai of f (z)
5( l 50

4 al 14zl as

g252a424a1a313a2
2 ,

g352a2a412a1a2a32a2
31a3

22a1
2a4 , ~B12!

where

a152
DE

L
, a25

2

3L2
@H0L112DE2#,

a35
2H0DE

L2
, a45

4~12H0
2!

L2
. ~B13!

The solution~B11! is equivalent to that found in polaroni
@44# and other contexts@45,46#, whereDEÞ0 corresponds
.

A.

n,

A

n

to a difference or disorder in on-site electronic or exciton
energies.

For DE50 we found that the elliptic modulusk2 gov-
erned the behavior of the Jacobian elliptic function solutio
For DEÞ0, the discriminantd5g2

3227g3
2 of the cubich(y)

~with rootsy1,2,3) governs the behavior of the Weierstrassi
elliptic functions@43#. For dÞ0, the solutions are oscillatory
about a nonzero average,^z&Þ0. For d50, ^z&50 and the
time period diverges, corresponding toL5Lc(DE), the on-
set of MQST.

The time period of the oscillation can be written in term
of complete elliptic integrals of the first kindK(k) as in the
DE50 case of Eq.~B7!. However, the argument and pre
actors are different, with

t5H K~k1!/~y12y3! for d.0

K~k2!/A3y2
22 1

4 g2 for d,0

` for d50, g3<0.

~B14!

For d.0, k1
25(y22y3)/(y12y3), where the rootsyi of

h(y) are all real, yi52Ag2/3cos$@u12p(i21)#/3%, and

u5arccos(A27g3
2/g2

3). For d52udu,0, k251/223y2/
4(3y2

22g2), where y2 is the only real root,y25@(g3

1A2d/27)1/31(g32A2d/27)1/3#/2. Thus the inverse oscil
lation period 1/t, for dÞ0, is obtained as above in terms o
L andDE, with 1/t50 at L5Lc(DE).
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