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We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The
weak link is provided by a laser barrier in(possibly asymmetricdouble-well trap or by Raman coupling
between two condensates in different hyperfine levels. The boson Josephson juUBdtbrynamics is
described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic
functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the
phase difference across the junction and for the population imbalance that are not accessible with supercon-
ductor Josephson junctioiiSJJ’'s. These include oscillations with either or both of the following properties:

(i) the time-averaged value of the phase is equairtd 7-phase oscillations (ii) the average population
imbalance is nonzero, in states with macroscopic quantum self-trappingn®hginusoidalgeneralization of

the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of
experimental datécorresponding to different trap geometries and the total number of condensate¢ atbons

a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between
two weakly coupled reservoirs otHe-B and the internal Josephson effect Jrle-A are also discussed.
[S1050-294{@8)05912-5

PACS numbg(s): 03.75.Fi, 74.50tr, 05.30.Jp, 32.80.Pj

[. INTRODUCTION However, the superfluid nature of BEC's can be fully
tested only through the observation of superflows. Current
Bose-Einstein condensation, predicted more than 70 yeaexperimental efforts are being focused on the creation of a
ago[1], was detected in 1995 in a weakly interacting gas ofJosephson junction between two condensate Hakd 5. In
alkali-metal atoms held in magnetic traf®. Following the this context, the Josephson junction problem has been stud-
first observations, there have been important experimentaéd theoretically in the limit of noninteracting atorfs6] for
developments. A superposition of condensate atoms in difsmall-amplitude Josephson oscillation$7,18, including
ferent hyperfine level$3,4] has been created; nondestruc- finite-temperaturgdamping effects[18]. Decoherence ef-
tive, in situ, detection probes have tracked the dynamicaffects and quantum corrections to the semiclassical mean-field
evolution of a single condensdtg]. Further, the evolution of dynamics[19,20 have also been studied. Self-trapping dy-
the relative phase of two condensates has been measuredmics in the limit of a small number of condensate atoms
through interferometry techniqué8]. More recently, experi- has been consideredl9] in the “quantum” and in the
ments that tune the scattering length by several orders dfsemiclassical” (mean-field approximation. We have else-
magnitude[ 7] have opened the definite possibility of creat- where[21] pointed out that even though the boson Josephson
ing in the laboratory an ideal condensate of noninteractingunction (BJJ is a neutral-atom system, it can still display
atoms. the (nonsinusoidal generalization)dipical dc, ac, and Sha-
The precise manipulation of this form of matter is of con- piro effects occurring in charged Cooper-pair superconduct-
siderable theoretical interest: Besides the study of fundamering junctions. Moreover, dynamical regimes such as macro-
tal aspects of superfluidity from “first principles,” it is pos- scopic quantum self-trapping (for arbitrarily large
sible to address “foundational” problems of quantum condensatgsand w-phase oscillationgwhere the average
mechanicg8]. In fact, the order parameter can be identifiedvalue of the phase across the junction is equatrjohave
with the one-body macroscopic condensate wave functiorbeen predicted. In the present paper we present a comprehen-
This obeys a nonlinear Schdimger equation, known in the sive analysis of the effects described [@1], including a
literature as the Gross-Pitaevskii equati@®PE) [9]. The discussion of the BJJ equations and their analytic solution,
GPE has been successfully applied to study kinetic propetimits of the approximations underlying the BJJ model, and a
ties of the condensate, such as collective mode frequencies eé@mparison with other superconducting and superfluid Jo-
trapped Bose-Einstein condensatB&C’s) [10] and the re-  sephson junctions.
laxation times of monopolar oscillatiof41]. The chaotic The description of the GPE dynamics for a Bose conden-
behavior in dynamical quantum observabj&$,12 and the sate in a double-well trap reduces, under certain conditions,
metastability of quantized vortices have been predifi@l  to a nonlinear, two-mode equation for the time-dependent
The existence of spatial quantum coherence was demommplitudes i, o(t) =Ny (t)e' 249, where N;ft) and
strated by the observation of interference fringes in two overé, j(t) are the number of atoms and the phases of the con-
lapping condensatd44]. densate in traps 1 and 2, respectively. These amplitudes are
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coupled by a tunneling matrix element between the two
traps, with the spatial dependence of the GPE wave function 1 2
integrated out into constant parameters. The resulting BJJ
tunneling equations resemble tfmonlinear generalizations
of) superconductor Josephson juncti@®lJ equations, with
the variables being the relative phase and the fractional
population imbalance.

However, there are important physical differences be- .
tween the isolated double-well BJJ and the SJJ with an ex-

otential Energy

ternal circuit. The SJJ is generally discussed in terms of ag 1 0
rigid pendulum analogy in the resistively and capacitively E;
shunted junction modgRCSJ, while the BJJ in a double-

well trap can only be completely understood in terms of a

nonrigid pendulum analogy, with a length dependent on the
angular momentum. In the SJJ the Cooper-pair population
imbalance is zerdconsidering two equal-volume supercon- Distance
ducting graing due to the presence of the external circuit . o
. . . : FIG. 1. Asymmetric double-well trap for two Bose-Einstein

[22] gnd t.he dyngmlcal variable is the voltagey a_crpss @  condensates withN, , and Egz, the number of particles and the
quasiparticle resistive shunt. In the BJJ, the nonrigid penduse,,_noint energies in traps 1 and 2, respectively.
lum dynamics are associated with superfluid density oscilla-
tions of an isolated system. An isolatédithout external \yith go=4mh2a/m, m the atomic mass, and the swave
circuit) superconducting junction allows coherent Cooper-scattering length of the atoni80]. In the following we will
pair oscillations, but only in the small-amplitudplasma  consider a double-well trap produced, for example, by a far-
limit [22-24. . ) ) off-resonance laser barrier that cuts a single trapped conden-

A closer analog of the BJJ is provided by the internalgate into twa(possibly asymmetricparts[14]. However, the
Josephson effect ifHe-A, where the(rigid) pendulum 0s-  resyits could also apply to the oscillations of the condensate
cillations describe the rate of change of up-spin and downpopulation difference between two hyperfine levils].
spin pair populations, induced by an external variable mag- since we are interested in the dynamical oscillations of

weakly coupled reservoirs ofHe-B [28] could be related to  yariational wave function as

the analogous oscillations occurring in the BJJ.
The experimental detection of predicted effects in the BJJ W(r,t)= i (t)DP1(r)+ () DPo(r), (2.2
could be achieved through temporal modulations of phase- ,
contrast fringeg§14], interferometric technique], or other ~ With 4 {t)=N; £ %29 and a constant total number of
probes of atomic populatiori@9], using millisecond tempo-  atomsN; +N,= 41|+ 4¢|*=N. The amplitudes for gen-
ral oscillations of the(spatially integratedsignal N;—N,.  eral occupation®; x(t) and phase#; ,(t) obey the nonlin-
The direct detection of the currents instead of densities, pelear two-mode dynamical equatiofts8—-21,31,32
haps by Doppler interferometry, would be worth exploring.
The plan of 'the paper is as fo!lows. In Sec. Il we qbtain ih&—%=(E2+U1N1)dfl—lC¢2, (2.39
the BJJ tunneling equations, which are compared with the gt
Josephson equation for other superconductor and superfluid "
systems in Sec. lll. In Sec. IV we solve the BJJ equations . 2 .o
discussing the various dynamical regimes. In Appendix A we % 20 = (B2t U2No) o= Ko, (2.3
outline the derivation of the two-mode BJJ from the GPE
and discuss the limit of the approximations. The BJJ equawhere damping and finite-temperature effects are ignored.
tions are solved analytically in terms of elliptical functions in Here E3 , are the zero-point energies in each wélh N ,
Appendix B. In Sec. V we discuss the asymmetric trap casegre proportional to the atomic self-interaction energies, and
clarifying the analogies with the ac and Shapiro effects. WeC describes the amplitude of the tunneling between conden-
summarize our results in Sec. VI. sates; see Fig. 1. The constant paramdi@yzs Ui, andC
can be written in terms ofb, ,(r) wave-function overlaps.
The @, (r), describing the condensate in each trap, can be
Il. THE BOSON JOSEPHSON JUNCTION: expressed in terms of stationary symmetric and antisymmet-
THE NONLINEAR TWO-MODE APPROXIMATION ric eigenstates of the GPGee Appendix A

The fractional population imbalance

The wave functionV (r) for an interacting BEC in a trap
potential Vi ,p(r,t) at T=0 satisfies the GPE Z(t)=[Ny(t) = No() J/Nt=(| 1|2 — |45 DINT  (2.4)

and relative phase
LY h P

o~ amy VO Vieep(n) B(O=0,(0)— 63V 25

+gol W (r,H)[21W(r,1), (2.)  obey
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z(t)=—\1—-Z4(t) sif ¢(1)], (2.6a
p(t)=AE+A (t)+Lt)co )], (2.6b
d’ - z m 5{¢( ]! .

where we have rescaled to a dimensionless tigi€/#—t
and

0 0 Ul_UZ
AE=(E-E9)/2K+ Nr, (2.73
4K
A=UN/2K, U=(U;+U,)/2. 2.7b

The dimensionless parametexsand AE determine the dy-
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Mechanical analogs have been useful in visualizing the

SJJ. Equatiort3.1) can be written as
b+ HIRCy+ w3sing= (1 o/ 1 ;) 03 (3.2

in unscaled units, witlw ;= VEcE,/%, the Josephson plasma
frequency. This can be regarded as the equation for a particle
of mass~wj2 and position¢ moving on a tilted, rigid
“washboard” potential— cosp— (lx/13) ¢, With friction co-
efficient ~1/RC;. Alternatively, Eq.(3.1) described33] a
rigid pendulum of tilt angleg; moment of inertia~ w]z;
angular momenturie ¢, the angular velocity; damping rate

(RC;)~1; and external torque-1.,,. The Josephson effects
in the SJJ follow immediately from physical considerations.

namic regimes of the BEC atomic tunneling. The total, con-

served energy is

2

Az
H= T+AEZ— J1—Z%cosp, (2.9

suggesting that the equations of moti@h6) can be written
in the Hamiltonian form

oH ._&H

-Z:__l - "
o 0z

(2.9

with z and ¢, the canonically conjugate variables. For well-
defined mean values in relative population and phase, fluc-

tuations must be small.

Ill. THE JOSEPHSON EFFECT IN OTHER SUPERFLUID
AND SUPERCONDUCTING SYSTEMS

A. The superconducting Josephson junction

We now consider the SJJ dynamic equatif2—24,33,
for comparison with the BJJ tunneling equatiq@st). The

SJJ has an external closed circuit that typically includes a
current drivel .,;; the measurable developed voltage across
the junctionV is proportional to the rate of change of the

phase

dv. Vv
lexi=Cogp +1sing+ =, (3.1a

(3.1b

where C,4(1;) is the junction capacitancéritical currenj

1. Plasma oscillations

Forl .= 0, the rigid pendulum can have small, harmonic
oscillations at an anglé around the vertical. Linearizing Eq.
(3.1) produces sinusoidal voltage/current plasma oscillations
of angular frequencyin unscaled units

o~w,=271,=\EE,/#, 3.3

independent of the initial conditiong(0) and¢>(b).

2. ac effect

In the pendulum analogy, the external drive balanced by
the damping enforces steady rotatory motion Ifgg/1 ;> 1.
The phase increases linearly with timg@(t)~2eVt#,
whereV=1.,R is the dc voltage developed, and the current
oscillation has angular frequency

27 2eV
w= waC:TaC: T’

(3.9

ihndependent of5(0) and ¢(0).

3. Shapiro resonance effect

If a small ac component is added to an applied dc voltage
AE—AE(1+ 6pcoswgt) (<€1), then at resonancewg
= w4, there is a dc tunneling current with a nonzero time
average(z(t) )~ So(Sin wadt+ ¢(0)]sinwgt)#0. This Shapiro
resonance repeats at higher harmonieg,=2m/7,
=nwgy, N=1,2,...,with characteristic Bessel function co-
efficientsJ,(ndy) [22,23.

Can the BJJ show the full range of SJJ effects? Not at first

andR s the effective resistance offered by the quasiparticlesight since the double-well BEC is a neutral-atom system.

junction and the circuit shunt resistor. Tk& — Z2 factors of

However, the ability to tailor traps and the condensate self-

Eqg. (2.6) are missing here since the external circuit sup-interaction compensates for electrical neutralg]. Asym-

presses charge imbalances, iZt)=0 [22]. The junction

metric positioning of the laser barrier could produce a zero-

charging energyEC~le; superconductor-grain charging point energy differencAE, analogous to an applied voltage,

energieE g (proportional to the inverse grain sizewhich
are the analogs of the interatom interactichsf the BJJ, are

since the effective potential experienced by the atoms on the
smaller-volume side will have a larger curvature. The inter-

relevant only in mesoscopic systems. Two such small isowell difference between thébulk) nonlinear atomic self-
lated graing34] can be considered a closer superconductingnteraction~UN-+z plays the role of a junction capacitance

analog of the BJJ. Even in that case Nssis still large, the
voltages that appear are¥~2A

ap:
implying that|z|~10"°.

the quasiparticle gap,

energy in the dynamics.
In the SJJE; andN, , are fixed[22,23. For the BJJ, the
laser-sheet intensity and hence the coupkhgan be varied.
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Initial statesN;(0)# N,(0), i.e., z(0)+#0, can be prepared, IV. THE SYMMETRIC TRAP CASE AE=0

and the laser barrier then lowered to permit tunneling. A. Stationary solutions

B. The internal Josephson effect in*He-A For a symmetric BJJ, i.eAE=0, the equations of motion

(2.6) are
A closer analog of the BJJ equatiof®s6) is provided by )
the longitudinal magnetic resonance3He-A [25], which is z(t)=—J1—Z%(t)sin ¢(1)], (4.139
generally understood as internal Josephson oscillations be-
tween two interpenetrating populations of superfluid up- ) z(t)
spin—down-spin pair§26]. The weak coupling is provided d(t)=Az(t)+ \/?Z(t) cog ()], (4.1b

by the dipole interaction between pairs of up and down spins.
The spin dynamics is governed b7]

2(t)=—sin $(1)], (3.5

with the conserved energy

Az(0)? 5
. Ho=H[2(0),#(0)]= ———v1—-2(0)” cosp(0).
d(t)=AE+AZ(1), (3.5b (4.2)

where z(t) is the fractional population imbalance between The ground-state solution of the symmetric BJJ, Eql),
up-spin—and down-spin Cooper paits(xgp) "t with x is a symmetric eigenfunction of the GPE with enefgy
and gp the susceptibility and the dipole coupling, respec-:_1 and
tively, andAEx(B/xgp) with B the external applied static

magnetic field. In[25] experiments have confirmed Egs. ¢s=2nm, (4.39
(3.5, showing the transition between the small-amplitude
and ringing oscillations of the pendulum equati¢8%). z;=0. (4.3b

- _ The next stationary state at higher eneky=1 is an anti-
C. Josephson oscillations between two weakly linked symmetric eigenfuncion with

reservoirs of *He-B

Quite recently the direct experimental observation of Jo- ps=(2n+1)m, (4.49
sephson oscillations between two weakly linked superfluid
systems has been reportg86,36. The weak link was pro- z;=0. (4.4b

vided by ~4000 small holes in the rigid partition separating

two 3He-B superfluid reservoirs, with the hole diameter be-For noninteracting atoms in a symmetric double-well poten-
ing comparable to the coherence length. A soft membran#al, the eigenstates of the Schlinger equation are always
created a pressure difference across the weak link, inducingymmetric or antisymmetric, wita,=0. However, because

Josephson mass current oscillations. These oscillations ob@& the nonlinear interatomic interaction, there is a class of
egenerate GPE eigenstates that break thammetry:

[(t)=lsin (1)], (3.6a

ds=(2n+1)m7, (459
b(t ——%AP 3.6b 1
$(t)=—5 AP, (3.6b 2=+ \1- =2 (4.5b

With 2m; the mass of @He Coqper pairp the liquid den- provided |A|>1. The energy for this state iEq,=2(A
sity, and AP the pressure difference across the weak) 1/A).

link being proportional to the elastic constant of the mem- Thesez-symmetry breaking states are an artifact of the
brane. Small- and large-amplitude oscillations have been oo iciassical limit in which the GPE has been derived. In a
served, as well as the driven running solutions of the phasgy;| quantum two-mode approximation the eigenstates are
—n<¢<c [36], corresponding to a self-maintained popu- 5yays symmetric in the population imbalance: As we will
lation across the weak link. , , discuss later, such states have a large lifetime that scales

By driving the soft membrane in resonance with the nat“'exponentially with the total number of atoms.
ral Josephson frequency, a metastable dynamical regime was
observed, with the time-averaged value of the phase differ-
ence across the junction equal ta These metastabler
oscillations have amplitudes and frequencies smaller than the For noninteracting atomsA(=0) Egs. (4.1) describe
“stable” Josephson oscillations, into which they decay with sinusoidal Rabi oscillations between the two traps with fre-
a lifetime that increases with decreasing temperaf@gi. quencywr=(2/h)K. These oscillations are equivalent to a
Analogous 7 oscillations with similar properties are de- single-atom dynamics, rather than a Josephson effect arising
scribed by the BJJsee Sec. Y. In a different contextsr  from the interacting superfluid condensate. The possibility of
junctions have been created with higRp-superconductors tuning the scattering length to values very close to 4&io
that reflect the symmetry of th&wave pairing stat¢37]. opens avenues for their experimental observation.

B. Rabi oscillations
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FIG. 2. Population imbalancg(t) as a function of dimensionless time® (in units of#), with conditionsA =10 and¢(0)=0 in a
symmetric trap. The initial population imbalanz€0) takes the value&) 0.1, (b) 0.5, (c) 0.59,(d) 0.6, and(e) 0.65.

C. Zero-phase modes The Josephson-like lengty= \%2/2mk, which governs

These modes describe the interwell atomic tunneling dyth® Spatial variation along the junction, should be much
namics with a zero time-average value of the phase acroé?sre""ter than~ /A to justify the neglect of spatial variations
the junction( ¢(t))=0 and(z)=0. To this dynamical class ©f Zand #, i.e., to obtain a flat plasmon spectrum. Hor

belong small- and large-amplitude condensate oscillations. — 0-1 NK, one findsk;~10 um. We will not, however,
consider such spatial variations here. The frequency of the

small-amplitude oscillations in the BJJ are of the order of
. . ) 10—100 Hz for typical trap parameters and should be com-

The small-amplitude, or plasnia analogy with the SJJ  pared with the plasma frequencies of the SJJ that are of the
oscillations follow at once from the pendulum analogy. Fromorder of gigahertz.

Eq. (4.2, the BJJ is like a nonrigid pendulum of length

1. Small-amplitude oscillations

2. Large amplitude oscillations

(x2+y?) 2= 1-22 (4.6) In Fig. 2 we display this regime of anharmonic oscilla-
tions, plottingz=(N;—N,)/Nt as a function of time, with
decreasing with angular momentummand with moment of the initial value of the phase differenag(0)=0 and A
inertia A 1. Linearizing Eq.(4.1), we obtain sinusoidal os- =10, and for increasing values of the inital population im-

cillations with inverse periodén unscaled units balancez(0). Specifically,z(0) takes on the values 0.1, 0.5,
0.59, 0.6, and 0.65 for Figs(@—2(e), respectively. Increas-
75 t=V2UN;K+ (2K)2 [27h, (4.7) ing z(0) for fixed A [or increasingA for fixed z(0)] adds

higher harmonics to the sinusoidal oscillations, correspond-
: - . ing to large-amplitude oscillations of th@onrigid pendu-
mdependent of the initial conditions(0) af‘d ¢(O). The Iu?n. Thisgi]s shO\?vn in Figs.(®) and Zc). 'rlghe pegrig)dpof such
comparison between Eqd¢4.7) and (3.3 indicates that ,qeijations increases witt{0) and then decreases, undergo-
2N (~Ny) is the a”_""3|%9_ of the Josephson coupling en-ng 3 critical slowing dowr{Fig. 2(d), dashed lingwith a
ergy E;, while U (~N:™" in 3-d traps is the analog of |ogarithmic divergence. The singularity in the period corre-
the capacitive energfc. Since the coupling energy, fixed sponds to the pendulum in a vertically upright position, i.e.,
by the laser profile, isC~A, the tunnel junction area, reaching the fixed point of Ed4.4b).

whereas the bulk interactiod Nt is independent oA, the

oscillation rate goes as, '~AY2 (The plasma frequency D. Running-phase modes: Macroscopic quantum self-trapping

for the SJJ,T;1~ VE.E; in contrast, is independent & In addition to anharmonic and critically slow oscillations,
sinceE;~A andE.~A"1) other striking effects occur in the BJJ. For instance, for a
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fixed value of the initial population imbalance, if the self- {($)=a. The modes arise once more from the nonrigidity
interaction parameteA exceeds a critical valué., the  (momentum-dependent lengtof the pendulum and are not
populations become macroscopically self-trapped With  observable with the SJJ. They include small-amplitude,
#0. There are different ways in which this state can bearge-amplitude, and macroscopic self-trapped oscillations.
achieved, and all of them correspond to the condifishich  The last has a nonzero average population imbalance, while
we shall term the macroscopic quantum self-trapping/z)=0 for the others. We summarize this behavior in the
(MQST) condition]| that temporal evolution ofz(t) in Fig. 3 for z(0)=0.6 and

A #(0)=1. A takes the values 0.1, 1.1, 1.111, 1.2, 1.25, and
Ho=H(z(0), $(0))= E2(0)2_\/?(0)2 cog $(0)]>1. 1.3 in Figs. 3a)—3(f), respectively.

(4.9 1. Small-amplitude oscillations

In a series of experiments in Wthﬁ(O) andz(O) are kept _FOI’ smallz_, EqS.(4.l) can_ be Iin_ear_ized around th_e fixed
constant butA is varied (by changing the geometry or the point (4_.4b) yielding hgrmomc oscillations foA <1, with a
total number of condensate atoms, for exampiee critical  Period(in unscaled units

for MQST i
parameter for MQST is 7. =(2K)2—2UN:K /27h. (4.10
N 1+ 1—2(0)? cog ¢(0)]

¢ (4.9 It is worth noticing that the ratio of the frequency of the

2(0)%/2 small-amplitude zero- andr-mode phase oscillations is
T lm=\V(1—A)/(1+A), <1 (similar to the *HeB =
oscillations of Sec. Il

Linearizing Egs.(4.1) in z only, the BJJ equatiofé.1b
reduces to the very simple form

On the other hand, changing the initial value of the popula
tion imbalancez(0) with a fixed trap geometry and total
number of condensate atorfiand initial value ¢(0)], A
remains constant and E.8) defines a critical population
imbalancez.. As we shall see in this and Sec. IVE, for - . 1

$(0)=0, if 2(0)>2z., MQST sets in, but for¢(0)=, ¢=—[Asin(¢)+3siN2¢)]+0(z%). (41D
z(0)<z. marks the region of MQST. More generally, if
| #(0)|<m/2, MQST occurs forz(0)>z., while for other
values of$(0), it occurs forz(0)<z;.

In this section we will discuss the type of MQST in which 1
the phase difference of the order parameter across the BJJ V(¢p)=—Acog¢)— 1 cog2¢4)+0(2?). (4.12
runs without bound; other types of MQST are discussed
later. The phenomenon can bg un_derstood through the pedﬁ Fig. 4 we see thaW(¢) has a small valley around
dulum analogy. If the population imbalances are Preparec. —\vhere the particle can oscillate. The depth of this valle
such that the initial angular kinetic energy of the pendulumdecreases aA—p>1 The valle ersi.sts in th?a full potential y
7°(0) exceeds the potential energy barrier height of the vers -\ taini ' Il th h'yhp der t ullp
tically displaced¢=7 “pendulum orientation,” a steady or V(¢), retaining all the higher-order terms in
self-sustained pendulum rotation will occur, with nonzero
angular momentungz) and a closed-loop trajectory around
the pendulum support. Fé#,<1 the population imbalance ~ For w-phase oscillations, the momentum-dependent
oscillates about a zero value. Fdp>1 the time-averaged length allows the pendulum’s bob to make inverted anhar-
angular momentum is nonzexa(t))#0, with oscillations ~Mmonic oscillations with(z)=0 around thetop of the verti-
around this nonzero valuéFig. 2). MQST is a nonlinear cal axis. For large amplitudg(t) oscillations,A can exceed
effect arising from the self-interactionr UN;z? of the at-  unity, as shown in Fig. ®).
oms. It is dependent on the trap parameters, total number of
atoms, and initial conditions and is self-maintained in a 3. Oscillations with macroscopic quantum self-trapping
closed conservative system without external drives. Al-  Here the nonrigidity allows the pendulum’s bob to make a
though the SJJ ac effect in the RCSJ model involves a rurgjosed(z)#0 rotation loop around the top of the vertical
ning phase, it is clearly physically different from MQST, as axjs. There are two kinds of such-phase modes with
it is a driven steady-state independent of initial conditions\QST: those where the time averag® < |z, #0 and those
Moreover, in the SJJ the Cooper pair population imbalance i§vhere<z)>|zs| +0, with z¢ being the stationarg-symmetry

zero because of the external circuit. MQST differs from breaking value of the GPE. These two kinds of MQST are
single-electron Coulomb blockade effect. It also differs fromgnown in the time evolution of(t) in Figs. 3d)-3(f). In

the self-trapping of polaror{82] that arise from single elec- Fig. 3d) the system is in the first type of trapped state. A
trons interacting with a polarizable lattice: arising, inStead'changeover occurs at the stationary sfate. 3e),dashed
from self-interaction of anacroscopically largenumber of line]. OnceA exceeds this valud .= 1/y1—z(0)? [cf. Eq.
coherent atoms. (4.5], the system goes into the second type mfphase
trapped statéFig. 3(f)].
E. @-phase modes In order to see these different kinds @unning- and
These modes describe the tunneling dynamics in whichr-phasg¢ MQST modes more transparently, one can use the
the time-averaged value of the phase across the junction nergyH=H, of Eq. (4.2) to write the system of equations

This suggests a mechanical analogy in which a particle of
spatial coordinateb moves in the potential

2. Large-amplitude oscillations
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FIG. 3. z(t) as a function of X't with initial conditionsz(0)=0.6 and¢(0)= 7 in a symmetric trapA takes the value&) 0.1, (b) 1.1,
(c) 1.111,(d) 1.2, (e) 1.25, and(f) 1.3.

(4.2) in terms of an equation of motion of a classical particle

whose coordinate iz moving in a potentialW(z) with total

energyW,,

where

2(1)2+W(2) =W,

(4.133

V(o)

-2

o/

FIG. 4. ¢ potential V(¢) (in arbitrary unit$ plotted against

¢l for A=0.2, 0.4, and 0.6.

2
W(z)=zz(1—AH0+—22>, Wo=W[z(0)]+2(0)2.

4
(4.13b

Figure 5 displays the potenti#/(z) againstz[Figs. 5a) and
5(c)] and the corresponding evolution ¢{t) [Figs. §b) and
5(d)] to display the various dynamical regimes. In Fig&)5
and 8b) ¢(0)=0 and A=10 and in Fig. ¥c) and 5d)
#»(0)=7 and A=2.5. The horizontal lines indicate the en-
ergy valueW,. For a fixed value oA and¢(0)=0, increas-
ing the value ofz(0) changesN(z) from a parabolic to a
double well. The motion of the particles lies within the clas-
sical turning points in which the total energy equals the po-
tential energy. Foz(0)=0.1, in Fig. Ra), the potential is
parabolic and thesmall-amplitud¢ oscillations are sinu-
soidal. Forz(0)=0.6 the trajectory ofz(t) becomes mark-
edly nonsinusoidal, given the double-well structurénifz).

For z(0)=0.6 the total energy is smaller than the potential
barrier, forcing the particle to become localized in one of the
two wells. The symmetry of the classical motion is broken.
This corresponds to a MQST state. Figui®)Xdisplays the
corresponding phase = arcco§(Az2/2—H)/1—Z%] ver-
susz For untrapped oscillations, thep(z) trajectory is a
closed curve, with a time-average value ¢ft) =0. In the
running-mode MQST regime-o<¢(t)<<oo for the corre-
sponding¢ evolution.
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FIG. 5. z potential W(z) (in arbitrary unit$ plotted against in FIG. 6. Inverse periodscaled in units of X) 1/ plotted

(a) and(c) and the corresponding; evolution shown inb) and(d). againsiz(0)/z, for (a) #(0)=0 and(b) $(0)= . In (a) the dashed
In (a) and(b) ¢(0)=0 and in(c) and(d) ¢(0)=. The values of line corresponds td = 10, for which the dip occurs at.= 0.6, and
z(0) are as shown. the solid line toA =100, for whichz.=0.2. The inset in(a) shows

the time-averaged population imbalan¢e) as a function of

Let us now focus our attention on Figgcband §d). For ~ Z(0)/zc. In (b) A=1.1 andz.=0.6.

A =25 and¢(0)=m, the z potential always has a double-
well structure and the system is self-trapped for all values
of z(0). For small values ofz(0), the phase¢(t) is un-  as a function ofz(0)/z.. MQST is signaled by the sharp
bounded and the system exhibits running-phase MQST(phase-transition-likerise of (z) from zero to a nonzero
However, above a certain value pf0)=2z,=2y1—1/A value. Forg(0)= = [Fig. 6(b)] something different happens.
(with (2) still nonzerg the phase$(t) becomes localized MQST occurs for values of the initial imbalanz¢0) less
around = and remains bounded for all larger values Ofthanzc. At z(0) =z, the time period diverges and for larger
z(0). InFigs. 5c) and §d) z(0)=0.7 and 0.98 mark the two yajyes ofz(0), MQST disappears.
different kinds of7-phase MQST since they are on either The dynamical behavior of the BJJ system can be sum-
side of the stationary state value pf=y1—1/A% This = marized quite conveniently in terms of a phase portrait of the
point will become more clear in the phase-plane portrait ofy,, dynamical variableg and ¢, as shown in Fig. 7. The

Fig. 7. trajectories are calculated for different valuesAofA . with
z(0) kept constant at 0.6. The light solid lines mark the
F. Discussion of results evolution for the evolution where the phage oscillates

A clear observational feature of the behavior of the sys-2round 0 andz)=0. The running mode MQST is shown by
tem is the time period of oscillations. To this end, we plot inthe trajectories with small dots foA/A.=1,1.5 with the
Fig. 6 the inverse period #/as a function of the ratio be- initial condition being¢(0)=0. Note that for a rigid pendu-
tween the initial population imbalanc#0) and the critical lum [without the 1—2? term in the Hamiltonian in Eq.
population imbalance,. Figure Ga) shows the case for (2.8)], one would obtain only the curves described thus far.
¢(0)=0 and A=10 (z,=0.6) (dashed ling and A However, for the BJJ, due to the momentum-dependent po-
=100 (z.=0.2) (solid line). The initial parts of the graph tential in Eq.(2.8), there is considerable richness as exhib-
for z(0)<z. mark sinusoidal small-amplitudglasma os- ited by the dark solid lines, dashed lines, and lines with large
cillations[Fig. 2@]. On increasing(0), theoscillations be-  dots. All these curves correspond ¢g0)= 7. Note, for in-
come highly anharmonic, with the inverse period that firststance, that ad/A . increases and approaches unity, the area
increases and then decreases, displaying a critical slowingnclosed by the trajectory shrinks and is pinched atA .
down. The logarithmic divergence of the time period atmarking the onset ofr-phase MQST witH z) <|zg| (dashed
z(0)=z. is marked by the hyperbolic secant evolution of line). Upon further increase, the area collapses to a point at
z(t) [Fig. 2d)]. In the inset we show the average val@  thez=z, stationaryzsymmetry breaking state. A further in-
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FIG. 7. Phase-plane portrait of the dynamical varialzlesd ¢
for A/A values as marked. For all trajectorie$D)=0.6. See the
text for an explanation of the markings of the various trajectories.

crease of A/A. induces a reflection of the trajectory
about the fixed point andr-phase MQST with(z) > |z
(lines with large dots Finally, the trajectories join
the running-mode MQST foA/A.=2.7 (lines with small
dots.

We now outline a possible procedure fa@ bridging ex-
perimental data with our theoretical model dbdl collapsing
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tuning the scattering length of atomig] have become cur-
rent. The calculation of the values & and K from the
experimental daté&for a given trap geometry and total num-
ber of condensate atomnss straightforward. The onset of
MQST is provided by Eq(4.9), which immediately gives the
value of A . from the(experimentally imposednitial condi-
tionsz(0) and¢(0). Moreover, in the small-amplitude limit
the inverse period of the oscillations, given by E4.7),
provides the value ok from the previously calculated .

Different experiments done by varying the trap geometry
and the number of condensate atoms give a set of parameters
A andK. The data collapse onto a single universal curve of
w/ KKCA27 versusk?(A) of Eq. (B7), as shown in Fig. 8.

The parameterd)N; and E® can be estimated to be
~100 nK and~10 nK, respectively, foN;=10" if we
take the trap frequencyw,,, to be ~100 Hz. A
=UN+/2K can be varied widely by changinyt, or the
barrier height~ K that depends exponentially on the laser-
sheet thickness. Typical frequencies are thenry 1/
~100 Hz. With collective mode excitation energids,
~E® and quasiparticle gapg 4~ VU N;E®, for UNqz
<Agp,con intrawell excitations are not induced. At nonzero
temperatures, BEC depletion and thermal fluctuations will
renormalize the parameters in EG.7) and will damp[18]
the coherent oscillations. The effects of damping on the os-
cillation behavior requires a separate treatment and will be

data from different experiments onto a single universaconsidered elsewhere.
curve. We note, at the very outset, that other procedures

could be experimentally more accessible, particularly since so

different methods of tailoring trag8] and the possibility of

4
=)
<
%21
T
0 T T T
0.0 0.5 1.0 1.5 2.0
[N

FIG. 8. Universal curve for data collapse with XCA27 (in
units of 1) versusk?(A) as in Eq.(B7).
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FIG. 9. Scaled inverse periarg}./ 7 plotted againsi\ for a fixed
asymmetric trap paramete&xE=1, z(0)=0.1, ¢(0)=0,7 initial
values, and M. as defined in Eq4.7). The vertical scale on the
left (right) corresponds tap(0)=0 (w). The insets show time-
averagedz) againstA, for (&) ¢(0)=0 and(b) ¢(0)= .
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V. THE ASYMMETRIC TRAP CASE AE#0 —AEZ0)])/(1+AE?), as in the inset. This corresponds to an

A. Exact solutions and temporal behavior averaged pendulum rotatiga)~ — AE<0, opposite in sign
to the initialz(0)> 0, but slowing to zero as the critical value

Let us now consider the case where the traps are asyms approached. Foh> A (AE), in the MQST regime, the

metric, i.e.,AE#0, as in Fig. 1, with the Hamiltonian averaged rotatiodz)>0 is in the initial direction ofz(0)
A2 >0, with (z) approaching the initiat(0) value for largeA,
H= T+AEZ_ J1—Z%cosp. (5.1) asintheAE=0 case of Fig. 8.

- . . B. Shapiro effect analogs
For Az(0)<AE, the nonrigid pendulum is driven to rotate

in a direction determined bAE (corresponding to the ac L€t us now consider the BJJ analog of the Shapiro reso-
Josephson-like effect With AE=0 and A>A, [of Eq.  hance effect observed in the §238]. In addition to a time-
(4.9], we had found that the pendulum also executes rotalldépendent trap asymmetdyE, we impose a sinusoidal
tory motion, in a direction determined t&(0). For Az(0)  Vvariation so that we can write the asymmetry termAds
>AE+#0, we expect this type of motion to persigorre- +AE;coswgt. This could be done by varying the laser barrier
sponding to MQST due to nonlinearityln between there POSItion at fixed intensity. A similar Shapiro-like resonance
should be a competition between the two effects and a trareffect could be seen, with an oscillation of the laser beam

sition at some shifted critical valuk= A ;(AE). This physi-  Intensity, at fixed midposition, sk— K(1+ 5o,cosugt). The
cal picture for AE#0 is confirmed by obtaining(t) in analog of the Shapiro effect arises when the period from the

terms of Weierstrassian elliptic functions that change theifime-independent asymmetry 1/AE matches that from the
behavior at a singular valu = A .(AE). qscﬂlatory |ncrement~_1/w0. This matching condition is in-
We show in Fig. 9 that the MQST phenomefiaverse- t!mately connectgd with .the_ phepomenon of Bloch o_sscnlg—
period dip and average nonzero imbalanpersist in the tions and dynamic localization in crystals and. trapping in
AE#0 case and display a dependence\oandAE. Figure two-level atoms[38]. The dc value of the drift current
9 shows the scaled inverse periag./7 versus the scaled (Z(t)), as a function oAE, will show up as resonant spikes.
nonlinearity ratioA/A (AE), wherer,. is as in Eq.(4.7),  (For the SJJ, with current drives, the Shapiro effect shows up
with z(0)=0.1, AE=1.0, and$(0)=0,7. The dip to zero at as steps in thé-V characteristicy. Of course, the dc drift
the onset of MQST is clearly seen. The inset shows the timecannot persist indefinitely because the phase difference be-
averaged(z) for ¢(0)=0,r, vanishing atA=A.(AE). tween the condensates on the two parts of the BJJ will cease
Whereas fon E=0 andA <A (AE=0) the average popu- t0 be a well-defined quantity once the population in one well
lation imbalance was zero, f&E+0 we haveg(z)#0 inthe ~ drops belowNy;y, . .
corresponding sub-critical regiom\ <A (AE). This is Figure 10 showsy.«(z(t)) obtained from time averaging
analogous to a voltage across a capacitor inducing a chargke numerical solution, with a small ac drive ah&#0. It is
difference and the external static magnetic field in the case gilotted as a function oAE/w, for increasing values of the
3He-A. Note that there is a combined influence\gfAE and  nonlinearity ratio A. The initial conditions arez(0)~0
#(0), so(z) can be larger(in magnitud¢ than z(0). In  =0.045 and¢(0)= /2, for which A .~1000 (in the ab-
particular, for A—0, (z)——AE[\J1—2%(0)cosp(0) sence ofAE and ac driving. WhenA is zero, sharp peaks in
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I 4c Occur at the usual Shapiro condition valueBxnwg,n The nonlinear interaction in the GPE destroys such a super-
=1,2,.... AsA increases, however, two things happen.position. In effect, if the condensate density in the tunneling
First, multiple peaks also occur &E/w, values different region is smallas it is the case for weak linkthe nonlinear
from integers. Close to the MQST regim& ¢ A.), there is interaction in that region is negligible and the superposition
a proliferation of peaks as the system moves from a regimansatz is preserved.

of constant curren{z)#0 (A small to one of constant (i) We factorize the temporal and the spatial dependence
population imbalancéz)#0 (A large. Second, the magni- of the GPE wave function describing the condensate in each
tude of the peaks or dc currents decreases. Finally, we not€aP. Later in this section we will discuss the limit of validity
that for AE larger than the Bogoliubov quasiparticle gag, ~ ©f this approximation.

and high enough temperatures, a dissipative quasiparticle The spatial dependence &f, J(r) can be constructed by

branch might be observable. the exact symmetrieb, (r) and antisymmetricb_(r) sta-
tionary eigenstates of the GREee Sec. IV
VI. SUMMARY - D, +D_

We have investigated the Josephson dynamics in two Pu(r)= 2 ' (A23)
weakly linked Bose-Einstein condensates forming a boson
Josephson junction. In the resulting nonlinear two-mode (OIS
model, we have described the temporal oscillations of the ®a(r)= o (AZb)
population imbalance of the condensates in terms of elliptic
functions. Our predictions include nonsinusoidal generalizaensuring that
tions of Josephson dc, ac, and Shapiro effects. We also pre-
dict macroscopic quantum self-trapping, which is a self- _
maintained population imbalance across the junction due to P1(r)®,(r)dr=0, (A3)

atomic self-interaction, andr oscillations, in which the _ o -

phase difference across the junction oscillates araun#e  Where we impose the normalization condition

clarify the connection and the differences between these phe-

nomena and chers occurring in r_elated sy_stems such as the f |<D12(r)|2dr:1. (A4)
superconducting Josephson junctions, the internal Josephson '

. 3 _ . .
effect in *He-A, and Josephson oscillations between tWORepIacing Eqs(A1) and (A2) in the GPE(2.1), and using

weakly linked reservoirs ofHe-B. Through a set of func- . . :
tional relations, we also predict the collapse of experimental.he orthogonality conditior(A3), we obtain the BJJ equa-

data (corresponding to different trap geometries and total lons
number of condensate atojmnto a single universal curve. oy
These effects constitute experimentally testable signatures of if e (E2+ UiN) i — Kby (Aba)

guantum phase coherence and the superfluid character of

weakly interacting Bose-Einstein condensates.

J
i1 (EQ+ U N, o Ky, (ASD)
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APPENDIX A: MICROSCOPIC DERIVATION

OF THE BOSON JOSEPHSON EQUATION _ 4
FROM THE GROSS-PITAEVSKII EQUATION U—gof |q)| dr, (ABD)
The values of the constant parameters in the BJJ equa- 52
tions (2.3, K, Ey, and U, depend on the geometrgand ;C:_f —(VD,VD,)+ PV ®,|dr.  (A6C)
effective dimensionalityof the system and the total number 2m

of condensate atoms. We now outline their dependence iWe now return to our variational ansata¥(rt)

terms of spatial GPE wave functions, elucidating the ap-
proximations underlying the BJJ equations. = §1()P41(r) + () @,(r). The parameters) andAE are

We look for the solution of thetime-dependentGPE proportional to the wave-function overlaps, dde depen-
(2.1) with the variational ansatz dent, but are independent pft), so the chemical potential
' difference is considered linear m This approximation cap-

W(r,t)= ()P 1(r)+ () D o(r). (A1) tures the dominant dependence of the tunneling equations
coming from the scale factois, ,« N 5, but ignores shape
There are two approximations underlying this ansatz. changes in the wave functions fdt;(t) # N,(t). We can

(i) We describe the temporal evolution of the Gross-estimate such corrections to the chemical potential difference
Pitaevskii wave function as thsuperpositionof two wave  Au=u;— u, within the Thomas-Fermi approximatiqua; ,
functions (roughly) describing the condensate in each trap.~N25~ (N/2)#%(1+2)?®. Then relative corrections to the
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linear form Au=(4/5)z are estimated byE=[Au(z)
—427/5]/Au(z), where Au(z)=(1+2)?"—(1-2)?5 We
find that€ is negligible over the range where MQST effects
are expectedé~0.1% forz=0.1 andé~3% for z=0.4.
Thus Eq.(2.6), with AE andA treated as constants, is indeed

a reliable nonlinear equation describing the BJJ dynamics for

a large range of(t) values. Similar conclusions have been
reached in[18]. As a further test, the GPR2.1) has been
solved numerically(in a spatial gridl in the double-well ge-
ometry[39], fully confirming the conclusions just outlined.

APPENDIX B: EXACT SOLUTIONS IN TERMS
OF JACOBIAN ELLIPTIC FUNCTIONS

The total energy of the system is given by

2
H(z(t),o(t))= ATZ +AEz—+1— zzco&;sz H(z(0),$(0))

Ho, (B1)
whereH, is the initial (and conservedenergy. Combining
Egs.(2.69 and(2.8), we have

2

Az 2
T"‘AEZ_HO

22+ =1-27°

(B2)
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_[Cenl(CAMK)(t—to),k] for O<k<1
Z0=1 Cdn(CA)(t—to)1k] for k>1:
(B6a)
kZ_E(ﬂ)z_l _,_M (B6b)
“2V4A)) 2] JAZH1—2HA
to=2[ A C?+ a’F(arcco$z(0)/C],k)] "1, (B60)

whereF (¢,k) = [$d¢(1—k?sirP¢) Y2 s the incomplete el-
liptic integral of the first kind.

The Jacobian elliptic functions ca(k) and dn@,k) are
periodic in the argument with period &K (k) and ZK(k),
respectively, wher& (k)=F(#/2k) is the complete elliptic
integral of the first kind. The character of the solution
changes when the elliptic modules- 1. From Eq.(B6b) this
mathematical condition or singular parameter dependence of
the elliptic functions corresponds to the physical condition
Ho=1 and A=A, of Eq. (4.9, for the onset of MQST:
k?(Ao)=1. Whenk?<1, cn(u,k)~ cosu+ksinu(u— 3sin2u)
is almost sinusoidal. Whek? increases, the departure from
simple sinusoidal forms becomes drastic. Fkf<1,
cn(u,k) ~sechui— (1—k?)/4(tanhu sechu) (sinhucoshu—u)
becomes nonperiodic. Whéi> 1, the behavior is again pe-
riodic (but about a nonzero averggedn(u,1k)~1
— (sirfu)/2k?.

The nonlinear Gross-Pitaevskii tunneling equations for the The time period of the oscillation ai(t) is given[43] by

macroscopic amplitudeg; (t) and ,(t) are formally iden-
tical to equations governing a physically very different prob-

lem: a single electron in a polarizable medium, forming a

polaron[32]. Solutions have been fourj82,40—42 for the
discrete nonlinear Schdinger equation describing the mo-
tion of the polaron between two sites of a dimer. Similarly,
we use Eq(B2) to obtain the exact solution fa(t) in terms

of quadratures

At dz

2

2(0)

2 2’

_Lm \/<A

2ZAE 2H,

A A

22+

2
) (1-2%) -
(B3)

We consider theAE=0 and AE#0 cases separately. For
symmetric double wellA E=0, the denominator of EqB3)
can be factorized, so

At _ fZ(O) dz (B4)
2 Jay J(aP+2D(CP-25)’
where
2 ’? 2
CZ=P[<H0A—1)+7, o= [P~ (HoA - 1)],
(B5a)
L2(A)=2JA%+1—2H(A. (B5b)

The solution to Eq(B4) is written in terms of the cn and dn
Jacobian elliptic functiongwith k the elliptic modulug43])
as

4kK(k)

CA for O<k<1 (B7a)
2K (1/k)

CA for k>1. (B7b)

In the linear limit,7— «/+/1+ A, in agreement with the ex-
pression forr, in Eq. (4.7). Ask—1 or A— A, the period
becomes infinite, as in a critical slowing down, diverging
logarithmically, K (k) —In(4/\1—k?). The evolution of the
imbalance is given, in this special case, by the nonoscillatory

hyperbolic secant@=2+A.—1/A,)
Z(t)=Ccn(CAy)(t—tp),1]=CseclCA (t—ty)
for k=1. (B8)

We now turn to the casAE# 0. The general form of the
integral of Eq.(B3) is split into two parts

At_Ato+le dz &9
2 2 20\f(z')’

whereAty/2 is the integral frone, to z(0), andz,; is a root
of the quartic

2ZAE  2H,?

A A

22+

2 2
f(z>=(x) (1-2)-

Taylor expandingf(z) aroundz, with the change of vari-
able y=y(2)=[f'(z,)/4](z—z,) 1+ "(z,)/24 for which
y(z;) ==, the integral in Eq(B9) is cast in a standard form
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(B10)

A(t—tg) _foc dy’

2 )y JayP-gy—g;’
which can be inverted as a Weierstrassian elliptic functio
y=9(A(t—10)/2;92,93). Thus

f'(z,)/4
9 (A(t=10)/2,0,0s) — f"(21)/24

In Eq. (B10) the constants in the cubic equatiby)=4y?
—goy—0; are determined from the coefficienas of f(z)
=31 ,a,,47 as

z2(t)=z;+ (B11)

g,=—a,—4a,a;+3a3,

03= —a,a,+2aja,a3—as+aj—aja,, (B12)
where
AE 2 [HoA+1—AE?]
a=——, ay=—— — ,
1 A 2752t
2H,AE 4(1-H))
ang, a4=T. (B13)

The solution(B11) is equivalent to that found in polaronic
[44] and other contextf45,46, where AE#0 corresponds
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to a difference or disorder in on-site electronic or excitonic
energies.

For AE=0 we found that the elliptic modulu?® gov-
erned the behavior of the Jacobian elliptic function solutions.

"For AE#0, the discriminan=g3— 2792 of the cubich(y)

(with rootsy, , 3) governs the behavior of the Weierstrassian
elliptic functions[43]. For §+ 0, the solutions are oscillatory
about a nonzero averag@)# 0. For =0, (z)=0 and the
time period diverges, correspondingAc= A (AE), the on-
set of MQST.

The time period of the oscillation can be written in terms
of complete elliptic integrals of the first kind(k) as in the
AE=0 case of Eq(B7). However, the argument and pref-
actors are different, with

K(k)/(y1—y3) for 6>0

=1 K(kp)/\3y3—1g, for §<0

for 6=0, g3=<0.

(B14)

[ee]

For 6>0, k2=(y,—Yy3)/(y1—Ys), Where the rootsy; of
h(y) are all real, y;=—\/g,/3coq[6+2m(i—1))/3}, and
6=arccos(27g3/g3). For 6=—|68/<0, ko=1/2—3y,/
4(3y§—gz), where y, is the only real root,y,=[(03
+\ = 8127)3+ (g3— \ — 8/27)3]/2. Thus the inverse oscil-

lation period 1#, for §#0, is obtained as above in terms of
A andAE, with 1/7=0 at A=A (AE).
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