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Comparison of recoil-induced resonances and the collective atomic recoil laser
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The theories of recoil-induced resonan¢B$R) [J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg,
Phys. Rev. Ad6, 1426(1992] and the collective atomic recoil las€€ARL) [R. Bonifacio and L. De Salvo,
Nucl. Instrum. Methods Phys. Res. 241, 360 (1994 ] are compared. Both theories can be used to derive
expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are
simultaneously driven by a pump field. It is shown that the underlying formalisms of the RIR and CARL are
equivalent. Differences between the RIR and CARL arise because the theories are typically applied for dif-
ferent ranges of the parameters appearing in the theory. The RIR limit is one in which the time derivative of
the probe field amplituded E, /dt, depends locally orE,(t) and the gain depends linearly on the atomic
density, while the CARL limit is one in whicdE, /dt= [5f(t,t")E,(t")dt’, wheref is a kernel, and the gain
has a nonlinear dependence on the atomic density. Validity conditions for the RIR or CARL limits are
established in terms of the various parameters characterizing the atom-field interaction. The probe gain for a
probe-pump detuning equal to zero is analyzed in some detail, in order to understand how gain arises in a
system which, at first glance, appears to have a symmetry that would preclude the possibility for gain.
Moreover, it is shown that these calculations, carried out in perturbation theory, have a range of applicability
beyond the recoil problem. Experimental possibilities for observing CARL are discussed.
[S1050-294{@9)05601-3

PACS numbg(s): 42.50.Vk, 32.80.Lg, 32.80.Pj, 42.50.Md

[. INTRODUCTION atomic resonance is much larger than any decay rates, Rabi
frequencies, or Doppler shifts in the problem. In this limit,
In recent years, there has been increased interest in spettie probe absorption spectrum consists of three features, cen-
tral features that can be attributed directly to the recoil atomsered nea=0,= A [14].
undergo on the absorption, emission, or scattering of radia- Of primary concern here is the structure centered @dear
tion. Among topics that have been discussed that fall into=0. In the absence of recoil, this line feature has a disper-
this category are recoil-induced resonan@@R) [1-9] and  sjonlike shape, is proportional tg?, and has a width of
the collective atomic recoil laseiCARL) [10-13. These qrger of the excited-state decay rfS). Its origin can be
processes appear to have much in common, although th§y,ceq 1o an interference effect involving processes in which
are described quite differently. It is the purpose of this articley,, photons are emitted into previously unoccupied vacuum
to compare the RIR and CARL and to demonstratf-z that th?node state$16]. As such, it is linked to spontaneous emis-
#Ege:éyéggzortwglfmsoé tt]?\/;g?:(ijscrﬁsI;e"zrgileq;"valfn;'t ision, rather than to a conservative exchange of energy be-
q y apparent I8 een the pump and probe fields. The fact that the two-level

twofold. First, the RIR have been discussed using a densitg : o
- LA o . stem is “closed” plays a critical role here. Had the system
matrix approach in the Schdinger picture, whereas CARL !yen "open.” the arr)np%itude of this component Wouldyvary

has been discussed using an operator approach in the Heis o 4 . : )
berg picture. Secondly, the RIR and CARL have generally?S X1 rather thany; and its width could be determined by
been examined for different ranges of the various paramete@®me effective ground-state decay régeg., inverse transit
characterizing the atom-field interactions. In order to facili-time) rather than the excited-state decay (dté].
tate the discussion, it is useful to review briefly the RIR and The RIR refer to a class of spectroscopic features in non-
CARL. linear spectroscopy that can be attributed to a recoil-induced
Since both the RIR and CARL relate to probe field ab-“opening” of an otherwise closed, two-level systdr. In
sorption or gain in the presence of a pump field, it is perhapghe presence of recoil, the atomic velocity is changed on the
best to recall the features of the probe absorption or gaimbsorption or emission of radiation. As a consequence the
spectrumpneglecting all effects associated with recallon-  sum of ground- and excited-state populations for specific ve-
sider an ensemble of two-level atoms interacting with both docity classes is no longer conserved. In the limit of large
pump and probe field. The probe absorption or gain is monidetuningA, the RIR can be interpreted as arising from Ra-
tored as a function of the probe-pump detunéhtpr various ~ man transitions between different center-of-mass stdtps
pump field strengths, characterized by the pump field Rabif the pump and probe fields have propagation vedterand
frequencyy; . It is assumed that all collisional effects can bek,, respectively, then probe absorption occurs on a Raman
neglected and that the two-level atomic systerclgsedin  transition between center-of-mass momentum st&psnd
the sense that the sum of ground- and excited-state populéP—7%q) and gain between stat¢B) and |P+7%q), where
tions is conserved fagachvelocity subclass of atoms. More- g=k;—k,. Depending on the detuning between the probe
over, it is assumed that the pump field detuniigfrom  and pump fields, one of these processes is favored.sFor
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<0, there is probe gain, faf>0, there is probe absorption, emphasis is placed on the distinction between “atom bunch-
and for §=0, the nonlinear probe absorption and gain van4ng” and “matter gratings.” Experimental implications of
ish. In general, the RIR have been formulated atationary ~ the results are also explored. Although the general theory is
process in which the field achieves a steady-state value &€veloped for arbitrary field strengths, the specific calcula-
each positiorR—gain occurs as the probe field propagatestions are carried out in a perturbation theory limit.

through the medium. Steady state is achieved by assuming

that there is some effective ground-state decay rate or, alter- Il. BASIC EQUATIONS

natively, by assuming that the Doppler width associated with

the Raman transitions}P,/M, whereM is an atomic mass The problem under consideration consists of a pump field
and P, is the width of the momentum distribution, is larger @nd a probe field interacting with an ensemble of two-level
than the recoil frequencyy,=%q%2M [6,8,18. The gainis ~ aoms. In some applications in CARL, it may be of interest
normally expressed aslE,/dZ=aE,, where E, is the [0 Use a guantized de_scrlptlon of .the ﬂeldsf to follow the
probe field’s amplitude and is a constant proportional to Puildup of the probe field from noise, but, in the present
the atomic density. The point to note here is that the derivadiscussion, the fields are taken to be classical. The pump
tive of E, dependdocally on E,. Transient theories of the field,
RIR have also been givd5,8,18; the field dependence in
these theories is also taken to be local.

CARL has been formulated asteansientproblem. It is
assumed that the pump and probe fields are modes of an _
optical cavity in which the atoms are located. As a result of +ET (R (e Rma0], @
the atom-field interaction, the probe field builds up in the
cavity as a function of time. In the limit of largd, one has polarizatiore;, slowly varying electric field amplitude
obtains an equaton of the form dE,/dt E;(R.t), propagation vectok;, and frequency;=Kk;c,
= BfLf(t,t")Ex(t')dt’, wherep is a constant proportional While the probe field,
to the atomic density anflis a kernel. In general, the time
derivative ofE, can depend on the past history of the field,
rather than locally on the field. This leads to very different
dynamics than those encountered in the RIR. One finds ,
threshold conditions for probe gain that depend nonlinearly +E5(R,t)e ke R0, ()
on the atomic density, as does the gain itself. CARL is a
cooperative effect in the sense that gain occurs only for somkas polarizatiore,, slowly varying electric field amplitude
minimum atomic density for most values of the detunihg E,(R,t), propagation vectdk,, and frequency),=k,c. As
It is possible to have gain fa¥=0, which is not possible for a result of the nonlinear interaction with the fields, the probe
the RIR. field can be amplified. If the pump field is initially much

In certain limits, the CARL equation fatE,/dt becomes more intense than the probe field, as is assumed, pump
local and the gain characteristics of CARL become identicablepletion during the early stages of probe amplification can
to those of the RIR. Thus the CARL equations contain thebe neglected. Since the calculation in this paper is limited to
RIR results as a limiting case. Bonifacio and Verk¢tld]  the early stages of probe amplification, | take the pump field
and Bonifacioet al. [12] have shown that the CARL equa- amplitude to be constank;(R,t)~E;.
tions reproduce the RIR results in the limit of large Doppler The dynamics of probe field amplification depends on the
width, Py /M> wy; however, the approach they follow dif- specific atom-field geometry. One can envision situations in
fers considerably from the one to be presented herein. On thehich the probe field amplitude is constant in time but varies
other hand, as normally formulated, the RIR theories carin space, or is constant in space but varies in time. The first
never reproduce the nonlocal field dependence encounterease is the one considered generally in the RIR, in which cw
in CARL. If a somewhat more general derivation of the RIR pump and probe fields interact with atoms in a cell or trap.
equations is undertaken, however, as is done in Sec. lll, on€he probe field amplitude increases in the directiok pbs
can obtain equations that are totally equivalent to the CARLt propagates through the medium, but is assumed to have
equations. Although the RIR and CARL formalisms areevolved to a stationary state. The second case is the one
equivalent, it is convenient to distinguish the RIR and CARLconsidered generally in CARL, in which the fields corre-
limits of these equations. The RIR limit is defined as one inspond to field modes of an optical cavity and the atoms are
which the time derivative of the probe field amplitude, located in the cavity. For a ring cavity, the probe field inten-
dE,/dt, depends locally ofE,(t) and the gain depends lin- sity is spatially isotropic, but increases in tifi2]. In cer-
early on the atomic density, while the CARL limit is defined tain limits (to be noted beloyy the spatial gain coefficient of
as one in whicldE, /dt depends nonlocally oB,(t) and the the RIR multiplied by the speed of light coincides with the
gain has a nonlinear dependence on the atomic density. temporal gain coefficient of CARL. In other limits, the dy-

In Sec. Il the basic equations are derived. The RIR andiamics of CARL amplification differs from the spatial
CARL limits of these equations are obtained in Sec. Ill. Thebuildup of the field in the RIR. To compare the RIR and
case of equal pump and probe frequencies is analyzed in SEEARL, it is convenient to adopt the cavity model and assume
IV using an effective five-level atom. When expressed in thishat the probe field amplitude is a function of time only,
form the calculation has a range of applicability beyond theE,(R,t) ~E,(t). All cavity losses are neglected, as is any
recoil problem. The results are discussed in Sec. V. Speciground-state decay.

1 .
Ei(Rt)= Efl[El(R,t)e“kl‘R—ﬂlt)

1 .
Ex(R1)= Efz[Ez(R,t)e'(kz'Rfﬂzo
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Although CARL is referred to as a collective effect since whereP,(R,t) is the component of the polarizatid?*(R,t)
conditions for CARL gain depend on the atomic density,varying ase'(2’R=2)  Combining Eq.(8b) with Eq. (4)
each atom in the sample, on average, interacts with the fieldgelds
in an identical manner. Thus it is sufficient to write the
Hamiltonian for a single atom interacting with the fields. The dxo(t) iNd?Q, _
dependence of the field gain on atomic density is included dt 2h e Peq(t:2), ©
automatically in the coupled Maxwell-Bloch equations. In
the dipole and rotating wave approximations, the Hamil-where
tonian for our system is

P2 w é ik, R-Q
H=oy * 2 ot 21 [xu(t)e kR0l An equation forpe(t;2) is obtained by solving the Schro
. dinger equation for the Hamiltoniai3).
+ (adjoin® ], (3) It is convenient to expand the wave function of the system
as
whereP is the atomic center-of-mass momentum,s the
transition frequency between the ground stk and ex- _ _ _
cited state|e) of the atom, o,=(|e)}{e|—|g){al), o, ¢(R’r’t)_i%e AR (D), (1)
=leXgl,
) where
/€ E (t
Xu(t)=—"—"2— (4)
2h A(R t)= 1 J dPA(P t)efia)jteiP.R/hefiEpI/h
P (2mh)? a ’

is the Rabi frequency of fielg, and.=(e|:|g) is a dipole (12)
moment matrix element. Terms related to spontaneous emis-
sion are not included in the HamiltonidB), for reasons to  , — — /2, w.=w/2, Ep=P2/2M, and y(r) is the

; e ; .
be discussed below. The Hamiltonian determines the timgiomic-state eigenfunction associated with statdote that
evolution of the atom, but the atomic evolution must behe momentum-state amplitudég(P,t) are defined in an
coupled to the field evolution via Maxwell's equations 10 jnteraction representation. The state amplitudg@,t) in

arrive at a closed set of equations. , _ the “normal” representation are related to those in the inter-
The time evolution of thécomplex probe field amplitude  5ction representation by

is linked to the polarization of the medium which, in turn, is

determined by the atom-field interaction. The medium’s po- aj(p,t):Aj(p,t)e*iwﬂe*iEpt/ﬁ, 13
larization can be expressed in terms of atomic density matrix
elements as and density matrix elements in momentum space are given
by
P(R,t): NI—/’Pge(Rst)"_/’/*peg(th)]a (5)
, (PP t)y=a(P,t)al, (P’ t
where N is the total number of atoms. As a result of the Py )=2;(P.H)3;, (.1
nonlinear atom-fielgl intera_ction, the density matrix element :Aj(Pyt)A?\'l(Pr,t)efiEpprt/fzefiw”rt, (14)
peg(R,t) can be written quite generallgee below as !
~ . ~ : wherew, ' =w;—w;,, Eppr=Ep—Ep,, and the bar indi-
— . ki-R—Qqt . Ko-R—Qot 1) J j' PP P P!
Peg Rit) = peg(t; 1)K R U4 (1;2)e! ke R7020 cates an ensemble average. When the wave funéfiay
_ _ _ (12) is substituted into Schdinger's equation with the
+ > Peg(t;1n)e! (kR *in(a R+l Hamiltonian(3), one finds that the state amplitudagP,t)
n#0-1 evolve as
(6)
e _ . * . _ .
where Ag(P,t)= |M§12 X (DexdiA it |wkﬂt

In the slowly varying amplitude and phase approximation, it . ) ) .
follows from Maxwell's equations and Eqé5) and (6) that Ae(Pt) =i le)(ﬂ(t)exr[—lA#t— oy t
the evolution of the probe field is given by K

. +ik, - PtUM]A(P—1fik, 1), (15b
dEx(t) — 19, P.(R.t)e i(ka-R—Qa) )
T - 6_062' 2( e ( a) where
iNO, - ©2) @) A=0,-o (16)
= €5 , y
€0 27 Ped is an atom-field detuning and
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w, =hk3/2M (170  Wwhere
w 13

k,—k,. (24

is a frequency associated with atomic recoil. In terms of Apu=8,=8u, ky=k, =k,
these state amplitudes, the density matrix elemggtR,t)

Sincek,,, can take on the valud®,* q==*(k;—kj;)] only,

=A¢(RDAG(R,t) can be written as it is clear that a solution to this equation can be written as
l ! * ! =
Peg(RD)= (M)J dPdP’A¢(P,t)Ag (P',t) AgP= 2 Sy(PtA,(P—nkq,0). (25)
n=—o
x g~ 1utgl(P-P)-RifigiEppitih, (18 combining Egs(18), (22), (25), and(21), one finds that the

Together, Egs(9), (6), (18), and(15) form a closed set of density matrix elemengeq(R 1) is given by

equations which can be solved numerically to obtain the time o (t)
evolution of the probe field. peg R = > XMA gitky R=Q,ai(n—n")g-R
To simplify the analysis of both the RIR and CARL, it is K12 n = V

assumed that
Xefi(nzfn’z)wqtf dPW(P)efi(nfn’)P-qt/M
|z~ |Aq[=[A[>k,ulx,l ve,  lol<[Al, (19

where y, is the excited-state decay rate amds the most X S(P+nfiq,t)S; (P+n'fig,t). (26)

robable atomic speed. If inequaliti€¢s9) hold, both the . .
IORIR and CARL carl)w be interp?eted in terms stimulated Equat|oq(26) proves that the gengral form fpgg(R,t) 1S
processes involving the pump and probe fields—spontaneo&%r?g% t?lven .by Eq.(§). Extractlng~the coefficient _Of
emission plays a negligible role. Both the pump and probé 2~ 2" provides us with the value gfe¢(t;2) needed in
fields are turned on and brought adiabatically to their “ini- E_qk- (F?Z-QTWO types of terms in the summation vary as
tial” values att=0 in a time long compared withz| 1, but €2’ R7%2Y, those withu=2 andn=n’ and those withu
small compared with all other evolution times in the prob-=1 andn’=n+ 1. Denoting then=n’" term asp.(t;a), the

lem. Thus, at=0, the values for the Rabi frequencies are p'=pn+1 as}}eg(t;b), and using the normalization condition

x1(0)=xs.  x2(0)=x2(0), @o
while the density matrix for the atoms is taken as 1=, dR|Ai(R,t)|2~f dR|A4(R,1)|?
i=1,2
Qij(P,P';O)=ai(P,O)aJ*(P’,0)=Ai(P,0)AJ*(P’,0) w
=(2mh)*V W(P)S(P—P") 58, (20) =n=2x dPW(P)|Sy(P+nfiq,t)|? (27)

whereV is the sample volume and/(P) is the initial mo- 4,4 finds

mentum distributior{19]. This initial density matrix corre-

sponds to a Wigner functiow/(R,P;0)=W(P)/V, which is () =D (t'a)+ Dt 28
the product of the momentum distribution times a uniform Pedt:2)=pegtia) + peg(tib), 28
spatial density(recall that this is a single particle dengity ith

The calculation can still be carried out using an amplitude

o]

picture. The initial conditior{21) is invoked once the density _ xa(t)
matrix elemenig;;(R,t) has been evaluated. Pegtia) = 1~ > f dPW(P)|S,(P+nfiq,t)|?
When inequalitieq19) hold, it is possible to solve Eq. n=-=
(15b) adiabatically for the upper state amplitude in terms of Ya(t)
the lower state amplitude. Explicitly, one finds ~ VA (299
A(Pt)= t)/Alexd —iA t—iwgt ot =
e( ) ;/.=21,2 [X//-( ) ] F[ ® k "p‘eg(t,b): X\l/eA 2 ei(2n+l)wqtf dP\N(P)eiP'qt/M
+ik, - Pt/M]A(P—%kK, 1), (22
X S, (P+nhq,t)Sh [P+ (n+1)Aq,t].
where w =wy, and terms of order|(A;—A;)/A,| and (29b)
|(wk1—wk2)/wk1| have been ignored. Substituting this ex-
pression back into Eq15a), one obtains The first term represents linear dispersion of the medium.
The second term, which is at the heart of the RIR and CARL,
. ) X (DX (1) ) i represents a scattering of the pump field off the atomic den-
Ag(P,1)= _'M ZlZTeXF{'Amt_"”kwt sity distribution created by both the pump and probe fields.

We now have all the ingredients necessary to derive the RIR
—ik,, - Pt/IM]Ay(P+7k,, 1), (23) and CARL equations.



PRA 59 COMPARISON OF RECOIL-INDUCED RESONANCES AN. . . 589

ll. CARL AND RIR necessary to distinguish between CARLSC and CARLQ.
S The theory of the RIR has been developed using a quantized
_In the large detu.nmg I'm't' bOt.h the RIR an_d CARL equa- description of the center-of-mass motion; consequently, the
tions are most easily derived using an effective Ham|lton|arh|R and CARLQ theories should produce identical results
for ground-state atoms. An effective Hamiltonian of the formand the RIR and CARLSC theories should produce the sarr;e

2 3 _ results whenwyt<1. It should be noted that, although the

Hetr= 537 + K[|X1|2+ Ix2(0)2]+ K[Xlx’z*(t)e'(q'm‘“) atomic motion in the optical potential is treated classically in
CARLSC, the gain in CARLSC results from recoil-induced

+x¥ xo(t)e @R+ (300  processes. This point is discussed in more detail in Sec. V.

In calculating expectation values of operators that are di-
leads to the evolution equatig@3) for the ground-state am- agonal in the internal states, one can neglect contributions
plitude Ay(P,t). The second term in the Hamiltonian is the from the excited state since the excited-state population is
spatially homogeneous light shift potential and is not of in-assumed to be negligibly small. The CARL equations are
terest here. The third term is the optical potential formed byderived using the Heisenberg equations of motion while the
the pump and probe fields which gives rise to RIR andRIR are derived using a density matrix approach. | now show
CARL. The atoms’ center-of-mass motion in this optical po-that these methods yield equivalent results, as they must.
tential can be treated classically for timegt<1. This is the
limit considered by Bonifacio and co-workels0] and will
be referred to as CARLSC, with the “SC” denoting the
semiclassical limit. Folwgt=1, a quantized description of To make connection with CARL, one defines a Heisen-
the motion is needed. A theory of CARL in which the atomic berg operator, “bunching parameterB(t) =e'4 RV Using
motion is fully quantized has been given recently by MooreEgs. (14), (25), (21), and (29b), one can write the average
and Meystrg 13]. It will be referred to as CARLQ, whenitis value of the bunching parameter [d9]

A. CARL

<B(t)>=<eiq'R<U>=f dPdP’ pgq(P,P";t)(P’ €' R|P) (313
1 - .
:WJ dRAPdP’ Ay(P,t)A% (P’ t)e'% Re!(P~P) Rilig=Epprtih (31b)
a
=J dPA4(P,t)Ag (P+ hq,t)e Erlprngt/h (310
= 2 fdPSH(P,t)S:,(P-i-ﬁq,t)pgg[P—nﬁq,P—(n’—1)ﬁq;0]e‘iEP,\P+ﬁQI“ﬁ (310
nn'=-ow
= > ei<2”+1>wqtf dPW(P)e'P Mg (P+n#q,t)St, [P+ (n+1)%q,t] (31e
n=—oo
AVe o
Y Peg(t;b), (319

where the brackets denote a quantum-mechanical averagedB  q [q-P(t)
Therefore, by combining Eq$9), (28), (29), and (31f), one T M-[P(t)B(t)JrB(t)P(t)] ZI(T—wq B(1),
finds
(333
dxa(t)  NA*Q,[ xo(t)  x.8'” dP__.%a * (1) a0t * q-idtpt
=— =l t)e'"B(t) — xa2(t)x7e 'IB(t)],
. e | & T a (B). (2 at A Lxaxz (DETB(H) — xa(tx7 ( )](33b)

whereN=N/V is the atomic density. This is one of the basic where the last equality in Eq333 follows from the com-
CARL equations in the limit of large\ [10]. The remaining mutation properties oP(t) andB(t)=¢€'9 RV  These equa-
CARL equations, obtained from the Heisenberg equations dfions do not form a closed set since the equation for
motion with the Hamiltoniar(30), are (dB(t)/dt) involves(P(t)B(t)) . One must generate a series
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of equations for these higher moments or use some approxi- q-P

mation techniquegsuch as assuming classical motion in the [B(O)(t)]TZEXD[ —i(VJF wq)t] B'(0)

effective potentiglto obtain a solution to the equations. The

linear dispersion parameter=ANd?Q,/2he,A results in a {q-P

shift of the probe field frequency. By setting :BT(O)EXP[ —l(——wq)t]. (350

x2(t)=x,(t)e'%" in Egs.(32) and(33), it is easy to see that
the detuningé enters only in the combinatioA+ «. Thus o
one can redefine the detuningjto include the dispersion Where the last equalities in Eq@5b) and(35¢) follow from

shift and replace Eq32) by the commutation properties oP and B(0)=e'dR©
=¢'9R_ Note thatP=P(0) andR=R(0) are normal Schiro
i dinger operators. Substituting Eq85b) and (35¢) into Eq.
dxa(t) Nd?Qpx € | X )
=—j 33b), one finds, to first order i ,
o ~ea (B(1)). (34  (33b 12|
To examine the small signal gain regime, one can solve hq [t
Egs.(33) in perturbation theory. To zeroth order in the fields, ~ PY(t)=—i = dt’
0
P(t)=P(0)=P, (359 )(1)(’2‘(t’)equ'P)/M+5—“’q]t/B(0)
X
_Xz(t,)xa{e—i[m.P)/M+5+wq]t’B‘r(0) !

BO(t)= epr’ i (qM;P —wyq t] B(0)

(q-P
=B(O)exp{|(v+wq

(36)

t]’ (35b) and, when this result is substituted in E§3a, one obtains

2wse % [t q-P t/
(1) -9 ’ F _ Y "
B (t) A fodt epo VR wq)(t t)”o dt

( X:LX;(t”)ei[(q'P)/M+5_wq]t”B(0)ei[(q'P)/M+5_wq]t,B(0) )
X

7
_Xz(t//)lelce—i[(q.P)/M+5+wq]t"BT(0)ei[(q-P)/M+ﬁ—wq]t'B(o) (3 a

, * (41 Al [(Q-PIM+ 8] (t" +t") ql wg(t’ —t") 2

20, jtdt’ei[(q"’)”\"_‘"q](t_‘/) ft Lol X e e )[B(0)]

A Jo 0 _Xz(tr/)XIel[(q~P)/M+6+wq](t’7t”)
(37b
|
where the commutation properties®§0) [or BT(0)] andP | will return to this equation after showing that an

and the relationshilB"(0)B(0)=1 have been used to go identical equation is reached using a density matrix ap-
from Eq. (3739 to Eq. (37b). The bunching parametd(t) proach.

~BO(t)+B®(t) can now be averaged with the initial den-

sity matrix (21). The average of Eq(35b) for B(O)(t) van- B. RIR

ishes as does the first term in E@7b for BU(t). On The RIR are usually calculated in the context of a density
averaging the remaining term in Eg7b) for B™)(t) with  matrix approach. From Eq314a, it follows that
the initial density matrix(21), interchanging the order of

integration, and carrying out the integration oterone ob-

tains <B(t)>:f pgg(P,P+%Q;t)dP, (39
_ which gives the alternative form for E¢34),
2xte 1 .
(B(t)~~ 2 — [ apwp) deall) N8
A - _ .
- T fpgg(P,P-l—ﬁq,t)dP. (40)
t _ . ’
><Jodt')(z('f')e'[(q'P)/NH‘s]mt sinfwq(t—t")]. To complete the RIR equations, one uses the Hamiltonian

(30), along with Egs.(11)—(14), to obtain density matrix
(38 equations
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Ipgg(P.P";)/3t=—iwpprpgqy(P,P’;t) C. RIR limit
N a(he it The RIR_Iimit can be obta_ined by assuming tb@(t’) is_
AL LA P+40.P't slowly varying compared with the other terms in the inte-
I A [pgg( q1 ’ ) . . .
grand of Eq.(44), solving the resulting equation foy,(t),
— peo( PP —hq:t)] and then checking for self-consistency.y§(t’) is slowly
Pggl™ ’ varying compared with the other terms in the integrand of
s Xl)(’zf(t)ei'?t Eq. (44), one can evaluatg,(t') att’ =t to arrive at

5 [pgg(P—Hq,P";t)
dx2/dt=g(t) x2(t), (46)
— P,P’'+7q;t)], (41
Pal %] where the(complex gain parameter is
wherewpp =Epp: /1. It is easily verified that equations for
the quantities d(B(t))/dt=fbgg(P,P+ﬁq;t)dP and

t
; t)=i Zj dPW(P f drel@P/M+dlrg; )
d(P(t))/dt=Pp,(P,P;t)dP, obtained using Eq(41), are 9(1)=1Quy (P) ] dr Mwq7)

identical to Eqs(33). Thus the generalized RIR density ma- (47)
trix equations aré¢otally equivalento the corresponding op-
erator CARL equations. It is assumed that the momentum distributd{P) can be

To evaluate(B(t)) in the perturbative limit using Eq. written as the product of a one-dimensional, symmetric dis-
(39), one setP’ =P+17q in Eq. (41) and replaces the density tribution Wy(P,) and a two-dimensional distribution
matrix elements in the right hand side of that equation byw (P,) for momentaP, transverse to thé| direction. For
their zeroth order values, the sake of definiteness, | take

Py (P,P';0)=(27h)V 'W(P)8(P—P'),  (42)

1 2
= —(Pq/Po)
to obtain[19] Wq(Pq) \/;poe R “8)
(1) . — i (1) .
(9”99(P’P+hq't)mt ""P\P”"mpgg(P’P“th't) although the calculations can be carried through for arbitrary
. X xa(He i distribution functions. Introducing dimensionless integration

A variables x=P,/P, and y=qur in Eq. (47), where u
=P,/M is the most probable atomic speed, one can rewrite
X [W(P+#%q)—W(P)]. (43)  the equation as

This equation is consistent with the RIR picture of Raman Qug[ wg| = , faut w

transitions between center-of-mass momentum states diffeg(t)=i —q( J)f dxe X J dyé("“"y’q“)sin(—qy).

ing by #iq. Integrating Eq(43) over P andt, and using Eq. Vr\au/ ) 0 qu

(39), one reproduces Eq38) for (B(t)). Since(B(t))~0 as (49)

wy~0, the probe gain in the RIR and CARL is a recoil- ) . i

induced effect. The value of the integral depends critically on the ratio
Having established that the RIR and CARL formalisms

lead to an equivalent set of equations, | now proceed to ob- (— 9Py _2Mu _qu (50)

tain the RIR and CARL limits of these equations, in the Mo, hoq o4

small signal gainperturbation theorylimit. Recall that the

RIR limit, as defined in this paper, is one in which the 1.r>1

dy,/dt depends locally ory,(t). The small signal gain re-
gime is limited to those times for whichy,(t)/x2(0)
<e L Itis convenient to combine Eq$34) and (39) into

If r>1, Eq.(49) reduces to

the single equation g(t)~i Q\/‘iq(%) J'w dxexzfqurdy(%y)ei(xy+®/qu)
T —o 0
d)(zldtziwaJ dPW(P) (513
t , , 2 % t
xJodtrXZ(t/)el[(Q'P)/M+5](I—I )Sir[(y)q(t_t’)], :%(%)d(J dxe_XZ qu dy
T - 0
(44)
X gl (xy+oylaw / dé (51b)
whereQ is the dimensionless CARL paramefé&] defined
as
qut .
o= N2 Q| x4 /2 45 =Qw§(%)d[ JO dye‘yZ"‘e'é\/’QU} / dé.

hAZeqw; (510
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One sees that, in general, the exponential buildup of the field

is not linear with time. However, i§ut>1, the expression
for g(t) reduces to

g=WQw3

M
/9| Wa(Pg=aM/a)

+J—Tj:dqu(Pox)P[ll(er5/qu)]]/dé,

(52
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qu

Qwgt<1, wgt|dt|<l; r=—<1. (560
q

There is always a time range over which the RIR limit is
valid, irrespective of the value @. SinceQ is proportional

to the atomic density, the RIR limit is valid for arbitrarily
long times as the density is reduced. In the RIR limit, the
gain is always proportional to the density.

D. CARL limit

The CARL limit is obtained by assuming that one can set

where P indicates a principal value, giving a small signalexgiq-P(t—t')/M]~1 in Eq. (44) for times in which the

gain[1]

dW,(5M/q)

dé 3

3 M
Re(g) = 7Quf

The gain depends linearly on the atomic density and the

pump field intensity. The gain is positive fé<0, negative
(absorptionfor 6>0, and vanishes at=0. This is a “single

small signal gain theory is applicable. This assumption is
valid for all cases in which the RIR limit isot valid. In
other words, the CARL limit holds whejs/qu|=<1 and

Q1’32r=%>1

particle” gain in that each atom contributes separately to the

gain and there is no threshold condition for gain that depends

on atomic density.
The maximum gain occurs fof~ —qu, for which |g|
~qu(wq/qu)2. For arbitrary values ofqut, it follows

from Eq. (51) that the maximum gain cannot exceed this

value. Thus, for arbitrary timet the RIR gain in the limit
thatr>1 is of orderqu(wq/qu)Z. For self-consistency of
the approach, it is necessary thgt<qu, since it has been
assumed thaty,(t’) is slowly varying with respect to
exp(qut’) in Eq. (44). As a consequence, the RIR limit when
r>1is

qu
r=—
@q

>QM  r>1. (54)

2.r<k1

The situation changes when<1. In that limit one can
replaceW(P) in Eq. (47) by 8(P) to obtain

g(t)=iQwéj;dt’ei5Tsimmqr). (55)

For both |dt|<1 and |wgt|<1, |g(t)|=Quit?/2, and
X2(1) = x2(0)exp{Quit’6), while, for &lwe=—1, the
gain is g(t)=Qugt/2+iQ(1—e 2“d)/4 and x,(t)
= x2(0)exdQuit/4+iQut/d—Q(1—e Z“d')/8]. If |8
* wg|t>1, the gain coefficient is of ordeQwqt. For self-
consistency, the requirement thei(t’) be slowly varying
with respect to the integrand in E¢5) translates into the
requirement thaf|g(t")|dt’ be small compared with unity.
If |8/wq|=<1, one arrives at the RIR limits

qu
r=—<I1,
Wq

Quqt<l, |6+ wq|t>1,

(56a

u
QUwyt<l, Slwg=—1, wo4t>1, f= o,
w
(56b)

p (57)
q
or when|é/wg|<1 and
u
Quqyt=1, |5iamh:>L Q<1, F=gr<€L
q
(583
u
QY%wyt=1, dlwy=-1, Q<1, r—i—«l,
q
(58h)
1/3 qu
QPwgt=1, Q>1, r=—<L (580

q

Setting exfiq-P(t—t")/M]~1 and x,(t)=x2(t)€'® in
Eq. (44), one obtains the CARL equation

~ ~ t ~
dXz/dt=—i5X2+iQw§J dt’x,(t")sin wq(t—t')],
0

(59
which is equivalent to the differential equation
d }2 . dz;(Z zd}Z . 2 ~
?Z_ F_a)qﬁ‘f‘uuq(qu_(S)Xz, (60)
subject to the initial conditionsy,(0)=x»(0), and

dx,(0)/dt=—i8x,(0), d?y,(0)/dt?=— 8%x,(0) [corre-
sponding to{B(0))=d(B(0))/dt=0]. The small signal be-
havior is determined from this equation, which has already
been analyzed by Bonifacio and co-workers for CARLSC
with neglect of thewf] term[10] and by Moore and Meystre
[13] including this term. Gain occurs if one of the roots of
the cubic indicial equation,

S +i 052+ wis—iwi(w,Q—8)=0, (61)

has a positive real value. The condition for gaif i8]
9(8lwg) — (8l wg)+[3+ (8l wy)?1¥2<27Q/2. (62

If Q<1, gain occurs in the ranged/w,+1|<\2Q

and the gain coefficient is approximately equal to
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V2Q— (8l wq+ 1)2wq/2. WhenQ=1, gain occurs fow/ [-1>
=0, which is impossible in the RIR limit. Moreover, in both

cases the gain depends nonlinearly on the atomic density anc

there is a threshold condition for all values @, # — 1. As \
such, CARL is a collective effect in the sense that gain does
not occur for atomic densities below a certain critical value. \ \

For 6/wq=—1, which is the resonance condition for Raman \ \
transitions between center-of-mass states having momentz X1 \ v Ao
P=0andP=+%q, there is gain irrespective of the value@f \ \
For Q>1 and |8/wg/<Q' the gain varies as X2 3, he \
Q3w cos(m/6)=(1/3/2)Q °w,, and the probe field under- \ \
goes exponential gain linear in time for (Q¥3w,) ~*. The [-2>
CARLSC theory can be used f@> 1, whereas the CARLQ o \ \ g
theory must be used f<12. P —f— Ly

IV. DEGENERATE PUMP AND PROBE FIELDS, 6=0 FIG. 1. In perturbation theory, the relevant momentum states

An interesting limiting case is one in whichW(P) can be represented as an equivalent five-level system, interacting
~ 8(P), and the pump and probe field frequencies are degeryvith two fields as shown. The initial momentum distribution is
erate,),~Q,=0Q;5=Q,— O, =0 (recall that the detuning taken to be a function and the detuning i§=0. State|0) corre-

8 has been redefined to include the shift arising from Iinears_p;;lr(‘dS to|g;P=0>,+32tate|1>. Ft)o_|+e;hP= ﬁilﬁhv sta;ecli— D L°f|e;i

dispersioh. When 8=0, the probe gain vanishes identically — "K2). and states=2) to [g;P=x#q). Although derived for the

in the RIR limitr> 1, but grows exponentially for CARLSC recoil problem, the conclusions reached in the text for this level

For CARLQ, it f0||0\,/vs from Eq.(62) that the probe gain iS. scheme are applicable to any problem where a similar level scheme
o . ) is encountered.

exponential provided that ' .

H=fi(o+w)(|1)(1]+[-1)(-1])
+hog(|2)(2]+[-2)(-2])
+h{x1e” (|10 +| - 1)(—2]) + (adjoind}

2
>—, 63
Q 303 (63
This qualitative difference between the RIR and CARL lim- .
its is reason enough to consider e 0 case in some detalil, +h{xo(t)e (| 1)(2]+|—1)(0]) + (adjoind)}.
but it is not the only reason. The existence of exponential
gain whend=0 is surprising at first glance. It would seem

that processes in which a pump photon is absorbed and Note that this level scheme could equally well describe an

probe photon emitted would be exactly canceled by pro- : : . . :
cesses in which a probe photon is absorbed and a pumatom in a Stark field, driven by circularly polarized pump

X . . UMhd probe fields. The enerdyw, would then correspond to
photon emitted, owing to the symmetry of the interaction o _ q - )
whenW(P)~ &(P). It is the purpose of this section to inves- the Stark shifts of then=+2 ground-state, Zeeman sublev

tigate the origin of exponential gain in CARL wheh=0. els.

Calculations are carried out in a perturbative limit, that is, to Since decay is neglected, the calculation is most conve-
. itin a pert ; X ' ““niently carried out using state amplitudes rather than density
lowest order in the pump field intensity. As is shown below,

. ; matrix elements. No ensemble average is needed here since
the results are also applicable to a wider range of problem%e start in an eigenstate of momentuR=0. It is conve-

cal?ug?igﬁrbsig%?n;h?rﬁm atl?c?r;es ?rzetk]::avi(ra ;:gtjensdﬂs]g[tee%ts\r/i:;;[ﬁiem to work in a field interaction representation in which
P=0. The relevant states arég;P=0), |e:P=fik,), he state amplitudes;(P,t)(j = —2,2) are written as
le;P=1k,), |g;P==%q), having energies B(w LT

+wy),i(o+w), and hw,, respectively(recall that wy ag(P,)=[(277)*IV] " ao(t) 8(P), (663
=wy, ~wy,). Itis convenient to relabel these states as

(65)

a;(P,t)=[(27h)%IV]¥%,(t)e ' S(P—1ik,),
|9:P=0)=0), |e;P=tky)=|1), (660
(64)
le;P=tikp)=|-1), |g;P==ha)=|*2). a_,(P,ty=[(27h)3IVI¥a_,(t)e " US(P—1ik,),
660
The energy levels associated with these states are shown in (669
Fig. 1. The pump field drives th®) to 1) and |—1) to _ 3\ 1LZ -
|—92> transitirt;ns pwhile the probtﬁoz‘ield d>rives |tHé>> to 2eo(PO)=[(2mR) V] 70, (1) (P40), (669
|-1) and|1) to |2) transitions. The Hamiltonian for the
system can be obtained by expanding the Hamiltof@mn
a momentum-state basis for the subsp&4. Using the - - -
relationship(P|e'* R|P") = §(P— P’ —#k), one finds pij(D=a;(t)aj (1), (673

with density matrix elements given by
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1 B dag(t)/dt=—ixfa,(t)—ix3 (Hha_,(t), (73
PJ,J'(RI)Z(Z ﬁ)3f dPdP’a;(P,t)a’; (P, t)e' PP R/, %(t) xiah -z (Ma(v). (733
e ~ ) ~ R ~
(67b day(t)/dt=—iwqa(t)—ix5 (t)ay(t), (73b
In Eq. (8a) for the probe field evolution, one needs the com- da_,(t)/dt= _iwq’afz(t)_i)(iafl(t)- (739

ponent of polarizatiof®, , varying ase'*2R~®Y_ From Egs.
(66) and (67), it follows that

It is a straightforward exercise to solve E@g3) in per-

turbation theory to third order in the fields, starting from

Po(R,t)= Mo 1p—1,d 1) Hrp1p1 A1) €2 R0,
(68)

where the.’s are dipole matrix elements. For the level
scheme corresponding to the staté4),

/%0—-1=/%21= /g =" (69
Thus the problem reduces to calculatipg; (t) andp; A1)

to order| x1|%x2.
Before undertaking this calculation, it is useful to obtain

an expression for the time evolution of the probe field's en-

ergy densityWV,= 0| E,|%/2. Using Eqs(8a), (4), ( 68), and
(69), one finds

AW, /dt=iNQ* - &E5 (1)(p_1 ot p12)/2+C.C.

(709
=—iNEQX5 (1) (p_ 10t p1o) +C.C.

(70b)
:Nﬁﬂ[bz,z_ (-P—l,—l+ b—z,—z)]-

(700

The last line follows from the density matrix equations of
motion for the Hamiltoniari65) and can be given an obvious
physical interpretation. Population of sta® implies gain
on the probe field, while population in states1) or | —2)

ao(0)=1. One finds

a?(t)=1, (749

EIRIORES (74b)
atym=22, (749

a2 (t)=—i fldt’%e“"q(”'), (740
a(t)=—i ﬁmdt’%e_i‘”q“_t/), (749
()= i ﬁwdt’w, (749
a0~ a0 + XZT“)E?)(U, (749
- 220300+ X500, (e

implies loss for the probe field. The time rate of change inwhere the superscripts denote the order of the fields.

energy density is simply the differencBp,,—(p_1 1
+b,2,,2)] multiplied by the product of energyi (), gained

or lost by the probe field in each elementary process and the

atomic density. In the adiabatic limit considered in this pa-
per, the excited-state population is negligible and one has

AW, 1dt~NEQ (o= p—2-2)- (77)

Consider, first, Eq.(71) for the probe field intensity,

which depends on

d(pao—p-o-2)/dt=d[[a2(1)|2—[a%)(t)|?]/dt. 75
75

By inspecting Eqs(74d) and(74e, one can understand the
manner in which[a{?(t)|> can grow more rapidly than

One might expect thai, ,=p_,_», owing to the symmetry [2%5(1)|%.  Suppose x,(t) acquires a positive, time-
of the level scheme, but we will see that this is not the casedependent phase as a result of the atom-field interaction. In

Assuming that the detuning of the fields from the

this case, the quantity@(t’)ei“’qt' appearing in the inte-

ground- to excited-state atomic resonance is sufficientlyyrand of Eq.(74d) varies more slowly than the quantity

large to adiabatically eliminate the excited states, one us
the Hamiltonian(65) to show that the excited-state ampli-
tudes are given by

X1(D~ X2(H)~

ay(t) ~ =3 ao(t) + —3ax(), (720
~ t)~ t)~
a0~ A0 0 0, 72

and that the state amplitudag(t),a. »(t) evolve as

eﬁz(t’)ei“’q" appearing in the integrand of E(r4e. As a

result, statg2) population builds up more rapidly than that

of state|—2), leading to probe gain. In other words, the

nonlinear phase modulation of the probe field effectively fa-
vors the|0) to |2) transition over theé0) to | —2) transition

if the phase is positive.

It follows from Eq. (59) with §=0 that y,(t)/x,(0)~1
+i(qute’)/6~e‘Q“’qt3’6 for wet<1. At early times, the
phase is positive, favoring probe gain. Whether or not the
field continues to grow depends on the value @f If
Q<1, one can solve Ed60) to first order inQ to obtain
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Xg(t)~[eiQ°’qt—iQe“Q‘“q"zsin(wqt)]Xz(O)- (76) effective potential of the form

For Q<1, the intensity of the probe field remains approxi- 5 5

mately constant. IRw4t<1, one recovers the RIR limit, in How=1{ — 24 v ()24 — * (1)el(@-R+dY)
which the time development of the field is approximately ef A[|X1| (O] A[X1X2( )

local, and there is neither absorption nor gain. On the other

hand, forQ=1, the field buildup occurs sufficiently rapidly +x* yo(t)e H(aRTa] |1)(1] (79)
to ensure that

Do —_ *t1)(p3) +753) . — .
(P22 P-2-2)=~2Rd X2 () (p=1 ot p12)] without quantization of the center-of-mass motion and to
yal 25 (1) [ considerclassical motion in this potential. However, since
= xal xe dt’ ' the effective potential is proportional #, any changes in
4Re i 2 t' xa(t") ; . > M0 p ST~ 2
A 0 the atomic density vanish in the classical limit. This is in

contrast to bunching in the free electron laser where the ef-
: , fective potential does not vanish in the classical limit.
XsiM wg(t—t )]] (77 Are there situations where matter gratings are produced
by fields without any contribution from recoil? The answer

remains positive for alt. In this case, there is exponential to this question is “yes,” provided one considers the matter
gain for the probe, linear in time and nonlinear in the atomicgratings associated with individual internal atomic states
density, for timequthls> 1. This is the CARL limit. rather than the total atomic density. For example, for an en-
In summary, the probe gain that occurs &+ 0 and large  Semble ofstationary closed, two-level atoms there is a spa-
A is clearly not a single particle effect. It is more closely tial modulation in thepopulation differencéetween the ex-
related to a “propagation” effect in which the phase modu-cited and ground states produced by the pump and probe

lation of the probe field produced by the nonlinear atom-fieldfields. Scattering of the pump field from this spatially modu-
interaction drives the probe gain. lated population difference leads to a dispersion-shaped

probe absorption profile centered at a probe-pump detuning
6=0 in the limit of large atom-field detuning. The ampli-
tude of the dispersion profile varies as the square of the
It has been shown that the density-matrix-RIR andpump field intensity and its width is equal to the excited-state
Heisenberg-operator-CARL formalisms lead to equivalendecay ratd15]. It is also possible to have gain profiles with
equations. The RIR and CARL limits refer simply to differ- a width corresponding to some effective ground-state decay
ent regions of parameter space of these equations. Forteme if one considers open systems in which spontaneous
given experimental situation, one must determine whetheemission also plays a role. For example, if the ground-state
one is in the RIR limit, the CARL limit, or neither limifas  consists of two hyperfine states and the fields drive transi-
is most often the caseThe experimental implications of the tions between only one of these hyperfine states and an ex-
RIR and CARL are discussed below, but first | would like to cited state, then, as a result of spontaneous emission, both
discuss the distinction between the terms “matter grating”hyperfine state sublevel populations can be spatially modu-
used in discussions of the RIR and “atomic bunching” usedlated (although thetotal atomic density—the sum of all
in discussions of CARL. ground- and excited-state populations—remains constant in
The term “matter grating” refers to spatially modulated the absence of recaillt is possible to monitor the atomic
atom distributions resulting from a nonlinear atom-field in- gratings in specific ground-state hyperfine levels by using
teraction. The term “atomic bunching” refers to a redistri- radiation that couples only the targeted ground-state sublevel
bution or focusing of atoms in an optical potential. For theto an excited state.
RIR and CARL,these terms are synonymous recoil ef- Finally, 1 would like to discuss some experimental impli-
fects are neglected, that is, if the center-of-mass motion isations of the RIR and CARL. To observe the spectral fea-
treated classically from the outset, ttigal atomic densitys  tures of the RIR and CARL, it is best to use cold atoms in a
conserved for each velocity subclass of atofneglecting collisionless environment. Moreover, to isolate the effects of
collisions. A homogeneous atomic density remains homogeinterest, one must use experiments which involve closed,
neous to all orders in the atom-field interaction. Recoil ef-two-level transitions or signals that depend only on total
fects allow for a modification of the total atomic density. atomic-state density. The RIR have already been observed in
Whether one calls this “atomic bunching” or “matter grat- several experiments involving laser-cooled at¢Bs9]. The
ing” production is a matter of personal prefereri&d. The  experiments in which evidence for CARL was claimed
key point is that the modification of the total atomic density[20,21] were all carried out under conditiorisollisions, ra-
results entirely from effects related to recoil on the absorpdiation trapping, large Doppler widthe/hich are outside the
tion, emission, or scattering of radiation. To lowest order inCARL limit. The results of these experiments can be ex-
the atom-field interaction, the matter grating or atomicplained by conventional theories in which recoil is neglected
bunching consists of a spatial modulation of the atomic denf22]. For Q>1, the CARL limit is reached forqu/w,
sity having period #/|k;—k,|. With increasing field =24qg/Mu<Q For densities of order 1® atoms/n, it
strength, higher order spatial harmonics are produced, corrés possible to achieve values 6§ of order 100—1000.
sponding to “higher order matter gratings” or “focusing” Thus it may be possible to observe CARL for atoms cooled
or “atomic bunching.” Of course it is possible to derive an to or somewhat above the sub-Doppler limit of laser cooling.

V. DISCUSSION
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The linear gain coefficient in this case is of ordef 181,  wherey;=x.e! ', Eq.(60) by
which must exceed any cavity loss.
Is it possible to observe the RIR in a thermal vapor using 43/ 2.

pump-probe spectroscopy? The linear absorption ragp is %:(F_m)d X2 —wS%HwS(qu— S—iT) x5,
= (Nd2Q, /i eo)(ve! A?), which implies that the ratio of the dt3 dt? dt
recoil-induced gairg [Eq. (53)] to the linear absorption rate (80)

is of order ¢i|x1|%/ ve)/E,, whereE,=mu?/2 is the kinetic

energy of the atoms. For sub-Doppler-cooled atoms, this raand the indicial equatiof61) by

tio can be greater than unity, but it is small at room tempera-

ture. Still it might be possible to use modulation techniques

to isolate the RIR contribution to the probe absorption. For

the RIR signal to be larger than the background, dispersion-

Iik\;a_contribution to the probe absorption that varies as\éVith('g‘g iff‘C'U?j(t)” gf dFeca%tthel C@]RL(I;,T\&;_S T_t”[tgi}/enrby

27| x1|*ye/(A%qu), one requires that the ratio EQ: for I't<1. For I't=1, the Imit 1S

(A% x1|®) (ha/Mu)(A/y,) be greater than unity. This can =Q%wq if Q>1 and|é/w|<Q"?; _a”_d.FSQllzwq if Q

be achieved at room temperature for sufficiently ladg,. <1 andé/wq=—1. Decay tends to diminish the gain param-
Perhaps the best way to observe CARL would be to us&ter whenQ>1, but can actuallyeducethe gain threshold

an atomic beam, transversely cooled below the recoil limitWhenQ<1. For example, it6=0, the threshold condition is

The bearr(or, alternatively, sub-Doppler-cooled atoms from reduced fromQ>2/(3/3) to Q>0 if I'#0.

a magneto-optical trapcan be passed through a cavity with

some transit timd ~ . It is not difficult to extend the theory

to allow for transit time effects through an effective decay

rateI" for ground-state atoms. For subrecoil-cooled atoms, It is a pleasure to acknowledge helpful discussions with

S— (I =i8)s’+ wis—iwi(w,Q—8—il)=0. (81)

ACKNOWLEDGMENTS

Eq. (59) is replaced by B. Dubetsky and J. L. Cohen, and their suggestions for im-
. proving the manuscript. This work was supported by the

dyvl/dt=(T—id)v. +i 2] dt’ v (t')si t—t7], U.S. Office of Army Research under Grant No. DAAG55-
Xl dt=(T=10)x2+1Qwq 0 Xa(th)sinlwg(t=t)] 97-0113 and the National Science Foundation under Grant

(79 Nos. PHY-9414020 and PHY-9800981.

[1] J. Guo, P. R. Berman, B. Dubetsky, and P. R. Berman, Phyq.12] Propagation effects have been included in the paper of Boni-

Rev. A 46, 1426(1992. facio et al, R. Bonifacio, G. R. M. Robb, and B. W. J. Mc-
[2] J. Guo and P. R. Berman, Phys. Rev4& 4128(1993; J. Neil, Phys. Rev. A56, 912 (1997).

Guo, ibid. 49, 3934(1994; 51, 2338(1995. [13] M. G. Moore and P. Meystre, Phys. Rev58, 3248(1998.
[3] P. R. Berman, B. Dubetsky, and J. Guo, Phys. Re§1A3947  [14] B. R. Mollow, Phys. Rev. A5, 2217 (1972; F. Y. Wu, S.

(1995. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev. Le88,
[4] B. Dubetsky and P. R. Berman, Phys. Rev.58 R2519 1077(1977.

(1995.

[15] The linewidth actually results from the convolution of a
Lorentzian having width equal to the excited-state decay rate
v and a Gaussian having widttu, whereq is the magnitude
of the difference of pump and probe field wave vectors aisl
the most probable atomic speed.

[5] J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, Phys.
Rev. Lett.72, 3017(1994).

[6] S. Guibal, C. TricheL. Guidoni, P. Verkerk, and G. Grynberg,
Opt. Commun131, 61(1996.

[7] D. R. Meacher, D. Boiron, H. Metcalf, C. Saloman, and G. "
Grynberg, Phys. Rev. /0, R1992(1994. [16] G. Grynberg and C. Cohen-Tannoudji, Opt. Comm@6).150

[8] M. Kozuma, Y. Imai, N. Nakagawa, and M. Ohtsu, Phys. Rev. (1993}
A 52, R3421(1995; M. Kozuma, N. Nakagawa, W. Jhe, and [17] G. Khitrova, P. R. Berman, and M. Sargent, J. Opt. Soc. Am.

M. Ohtsu, Phys. Rev. LetiZ6, 2428(1996. B 5,160(1988.
[9] M. G. Raizen, J. Koga, B. Sundaram, Y. Kishimoto, H. Ta- [18] B. Dubetsky and P. R. Berman, Phys. Rev4A 1294(1993.
kuma, and T. Tajimaunpublisheg [19] The finite quantization volume for the center-of-mass motion
[10] R. Bonifacio and L. De Salvo, Nucl. Instrum. Methods Phys. implies that one should replaa#0) by V/(2m%)° whenever
Res. A341, 360 (1994; R. Bonifacio, L. De Salvo, L. M. it appears. This prescription gives an initial density
Narducci, and E. J. D'Angelo, Phys. Rev.58, 1716(1994); pgg(P,P;0)=W(P).

R. Bonifacio and L. De Salvo, Opt. Commutil5 505(1995; [20] G. L. Lippi, G. P. Barozzi, S. Barbay, and J. R. Tredicce, Phys.

L. De Salvo, R. Cannerozzi, R. Bonifacio, E. J. D’Angelo, and Rev. Lett.76, 2452(1996.

L. M. Narducci, Phys. Rev. A2, 2342(1995; R. Bonifacio, [21] P. R. Hemmer, N. P. Bigelow, D. P. Katz, M. S. Shahriar, L.

L. De Salvo, L. M. Narducci, and E. J. D’Angel@unpub- De Salvo, and R. Bonifacio, Phys. Rev. Lét?, 1468(1996.

lished. [22] W. J. Brown, J. R. Gardner, D. J. Gauthier, and R. Vilaseca,
[11] R. Bonifacio and P. Verkerk, Opt. Commut4, 469 (1996. Phys. Rev. A55, R1601(1997.



