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Comparison of recoil-induced resonances and the collective atomic recoil laser

P. R. Berman
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 23 July 1998!

The theories of recoil-induced resonances~RIR! @J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg,
Phys. Rev. A46, 1426~1992!# and the collective atomic recoil laser~CARL! @R. Bonifacio and L. De Salvo,
Nucl. Instrum. Methods Phys. Res. A341, 360 ~1994!# are compared. Both theories can be used to derive
expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are
simultaneously driven by a pump field. It is shown that the underlying formalisms of the RIR and CARL are
equivalent. Differences between the RIR and CARL arise because the theories are typically applied for dif-
ferent ranges of the parameters appearing in the theory. The RIR limit is one in which the time derivative of
the probe field amplitude,dE2 /dt, depends locally onE2(t) and the gain depends linearly on the atomic
density, while the CARL limit is one in whichdE2 /dt5*0

t f (t,t8)E2(t8)dt8, wheref is a kernel, and the gain
has a nonlinear dependence on the atomic density. Validity conditions for the RIR or CARL limits are
established in terms of the various parameters characterizing the atom-field interaction. The probe gain for a
probe-pump detuning equal to zero is analyzed in some detail, in order to understand how gain arises in a
system which, at first glance, appears to have a symmetry that would preclude the possibility for gain.
Moreover, it is shown that these calculations, carried out in perturbation theory, have a range of applicability
beyond the recoil problem. Experimental possibilities for observing CARL are discussed.
@S1050-2947~99!05601-2#

PACS number~s!: 42.50.Vk, 32.80.Lg, 32.80.Pj, 42.50.Md
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I. INTRODUCTION

In recent years, there has been increased interest in s
tral features that can be attributed directly to the recoil ato
undergo on the absorption, emission, or scattering of ra
tion. Among topics that have been discussed that fall i
this category are recoil-induced resonances~RIR! @1–9# and
the collective atomic recoil laser~CARL! @10–13#. These
processes appear to have much in common, although
are described quite differently. It is the purpose of this arti
to compare the RIR and CARL and to demonstrate that
underlyingformalismsof the RIR and CARL are equivalen
The reason that this equivalence is not readily apparen
twofold. First, the RIR have been discussed using a den
matrix approach in the Schro¨dinger picture, whereas CARL
has been discussed using an operator approach in the He
berg picture. Secondly, the RIR and CARL have genera
been examined for different ranges of the various parame
characterizing the atom-field interactions. In order to fac
tate the discussion, it is useful to review briefly the RIR a
CARL.

Since both the RIR and CARL relate to probe field a
sorption or gain in the presence of a pump field, it is perh
best to recall the features of the probe absorption or g
spectrum,neglecting all effects associated with recoil. Con-
sider an ensemble of two-level atoms interacting with bot
pump and probe field. The probe absorption or gain is mo
tored as a function of the probe-pump detuningd for various
pump field strengths, characterized by the pump field R
frequencyx1 . It is assumed that all collisional effects can
neglected and that the two-level atomic system isclosedin
the sense that the sum of ground- and excited-state pop
tions is conserved foreachvelocity subclass of atoms. More
over, it is assumed that the pump field detuningD from
PRA 591050-2947/99/59~1!/585~12!/$15.00
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atomic resonance is much larger than any decay rates,
frequencies, or Doppler shifts in the problem. In this lim
the probe absorption spectrum consists of three features,
tered neard50,6D @14#.

Of primary concern here is the structure centered nead
50. In the absence of recoil, this line feature has a disp
sionlike shape, is proportional tox1

4 , and has a width of
order of the excited-state decay rate@15#. Its origin can be
traced to an interference effect involving processes in wh
two photons are emitted into previously unoccupied vacu
mode states@16#. As such, it is linked to spontaneous emi
sion, rather than to a conservative exchange of energy
tween the pump and probe fields. The fact that the two-le
system is ‘‘closed’’ plays a critical role here. Had the syste
been ’’open,’’ the amplitude of this component would va
as x1

2 rather thanx1
4 and its width could be determined b

some effective ground-state decay rate~e.g., inverse transit
time! rather than the excited-state decay rate@17#.

The RIR refer to a class of spectroscopic features in n
linear spectroscopy that can be attributed to a recoil-indu
‘‘opening’’ of an otherwise closed, two-level system@1#. In
the presence of recoil, the atomic velocity is changed on
absorption or emission of radiation. As a consequence
sum of ground- and excited-state populations for specific
locity classes is no longer conserved. In the limit of lar
detuningD, the RIR can be interpreted as arising from R
man transitions between different center-of-mass states@1#.
If the pump and probe fields have propagation vectorsk1 and
k2 , respectively, then probe absorption occurs on a Ram
transition between center-of-mass momentum statesuP& and
uP2\q& and gain between statesuP& and uP1\q&, where
q5k12k2 . Depending on the detuningd between the probe
and pump fields, one of these processes is favored. Fd
585 ©1999 The American Physical Society
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586 PRA 59P. R. BERMAN
,0, there is probe gain, ford.0, there is probe absorption
and for d50, the nonlinear probe absorption and gain va
ish. In general, the RIR have been formulated as astationary
process in which the field achieves a steady-state valu
each positionR—gain occurs as the probe field propaga
through the medium. Steady state is achieved by assum
that there is some effective ground-state decay rate or, a
natively, by assuming that the Doppler width associated w
the Raman transitions,qP0 /M , whereM is an atomic mass
and P0 is the width of the momentum distribution, is larg
than the recoil frequency,vq5\q2/2M @6,8,18#. The gain is
normally expressed asdE2 /dZ5aE2 , where E2 is the
probe field’s amplitude anda is a constant proportional to
the atomic density. The point to note here is that the der
tive of E2 dependslocally on E2 . Transient theories of the
RIR have also been given@6,8,18#; the field dependence in
these theories is also taken to be local.

CARL has been formulated as atransientproblem. It is
assumed that the pump and probe fields are modes o
optical cavity in which the atoms are located. As a result
the atom-field interaction, the probe field builds up in t
cavity as a function of time. In the limit of largeD, one
obtains an equation of the form dE2 /dt
5b*0

t f (t,t8)E2(t8)dt8, whereb is a constant proportiona
to the atomic density andf is a kernel. In general, the tim
derivative ofE2 can depend on the past history of the fie
rather than locally on the field. This leads to very differe
dynamics than those encountered in the RIR. One fi
threshold conditions for probe gain that depend nonlinea
on the atomic density, as does the gain itself. CARL is
cooperative effect in the sense that gain occurs only for so
minimum atomic density for most values of the detuningd.
It is possible to have gain ford>0, which is not possible for
the RIR.

In certain limits, the CARL equation fordE2 /dt becomes
local and the gain characteristics of CARL become ident
to those of the RIR. Thus the CARL equations contain
RIR results as a limiting case. Bonifacio and Verkerk@11#
and Bonifacioet al. @12# have shown that the CARL equa
tions reproduce the RIR results in the limit of large Dopp
width, qP0 /M@vq ; however, the approach they follow dif
fers considerably from the one to be presented herein. On
other hand, as normally formulated, the RIR theories
never reproduce the nonlocal field dependence encount
in CARL. If a somewhat more general derivation of the R
equations is undertaken, however, as is done in Sec. III,
can obtain equations that are totally equivalent to the CA
equations. Although the RIR and CARL formalisms a
equivalent, it is convenient to distinguish the RIR and CAR
limits of these equations. The RIR limit is defined as one
which the time derivative of the probe field amplitud
dE2 /dt, depends locally onE2(t) and the gain depends lin
early on the atomic density, while the CARL limit is define
as one in whichdE2 /dt depends nonlocally onE2(t) and the
gain has a nonlinear dependence on the atomic density.

In Sec. II the basic equations are derived. The RIR a
CARL limits of these equations are obtained in Sec. III. T
case of equal pump and probe frequencies is analyzed in
IV using an effective five-level atom. When expressed in t
form the calculation has a range of applicability beyond
recoil problem. The results are discussed in Sec. V. Spe
-
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emphasis is placed on the distinction between ‘‘atom bun
ing’’ and ‘‘matter gratings.’’ Experimental implications o
the results are also explored. Although the general theor
developed for arbitrary field strengths, the specific calcu
tions are carried out in a perturbation theory limit.

II. BASIC EQUATIONS

The problem under consideration consists of a pump fi
and a probe field interacting with an ensemble of two-le
atoms. In some applications in CARL, it may be of intere
to use a quantized description of the fields to follow t
buildup of the probe field from noise, but, in the prese
discussion, the fields are taken to be classical. The pu
field,

E1~R,t !5
1

2
e1@E1~R,t !ei ~k1•R2V1t !

1E1* ~R,t !e2 i ~k1•R2V1t !#, ~1!

has polarizatione1 , slowly varying electric field amplitude
E1(R,t), propagation vectork1 , and frequencyV15k1c,
while the probe field,

E2~R,t !5
1

2
e2@E2~R,t !ei ~k2•R2V2t !

1E2* ~R,t !e2 i ~k2•R2V2t !#, ~2!

has polarizatione2 , slowly varying electric field amplitude
E2(R,t), propagation vectork2 , and frequencyV25k2c. As
a result of the nonlinear interaction with the fields, the pro
field can be amplified. If the pump field is initially muc
more intense than the probe field, as is assumed, p
depletion during the early stages of probe amplification c
be neglected. Since the calculation in this paper is limited
the early stages of probe amplification, I take the pump fi
amplitude to be constant,E1(R,t);E1 .

The dynamics of probe field amplification depends on
specific atom-field geometry. One can envision situations
which the probe field amplitude is constant in time but var
in space, or is constant in space but varies in time. The
case is the one considered generally in the RIR, in which
pump and probe fields interact with atoms in a cell or tra
The probe field amplitude increases in the direction ofk2 as
it propagates through the medium, but is assumed to h
evolved to a stationary state. The second case is the
considered generally in CARL, in which the fields corr
spond to field modes of an optical cavity and the atoms
located in the cavity. For a ring cavity, the probe field inte
sity is spatially isotropic, but increases in time@12#. In cer-
tain limits ~to be noted below!, the spatial gain coefficient o
the RIR multiplied by the speed of light coincides with th
temporal gain coefficient of CARL. In other limits, the dy
namics of CARL amplification differs from the spatia
buildup of the field in the RIR. To compare the RIR an
CARL, it is convenient to adopt the cavity model and assu
that the probe field amplitude is a function of time onl
E2(R,t);E2(t). All cavity losses are neglected, as is a
ground-state decay.
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Although CARL is referred to as a collective effect sin
conditions for CARL gain depend on the atomic densi
each atom in the sample, on average, interacts with the fi
in an identical manner. Thus it is sufficient to write th
Hamiltonian for a single atom interacting with the fields. T
dependence of the field gain on atomic density is includ
automatically in the coupled Maxwell-Bloch equations.
the dipole and rotating wave approximations, the Ham
tonian for our system is

H5
P2

2M
1

\v

2
sz1\ (

m51

2

@xm~ t !ei ~km•R2Vmt !s1

1~adjoint!#, ~3!

whereP is the atomic center-of-mass momentum,v is the
transition frequency between the ground stateug& and ex-
cited state ue& of the atom, sz5(ue&^eu2ug&^gu), s1

5ue&^gu,

xm~ t !52
p•emEm~ t !

2\
~4!

is the Rabi frequency of fieldm, andp[^eup̂ug& is a dipole
moment matrix element. Terms related to spontaneous e
sion are not included in the Hamiltonian~3!, for reasons to
be discussed below. The Hamiltonian determines the t
evolution of the atom, but the atomic evolution must
coupled to the field evolution via Maxwell’s equations
arrive at a closed set of equations.

The time evolution of the~complex! probe field amplitude
is linked to the polarization of the medium which, in turn,
determined by the atom-field interaction. The medium’s p
larization can be expressed in terms of atomic density ma
elements as

P~R,t !5N@prge~R,t !1p* reg~R,t !#, ~5!

where N is the total number of atoms. As a result of th
nonlinear atom-field interaction, the density matrix elem
reg(R,t) can be written quite generally~see below! as

reg~R,t !5 r̃eg~ t;1!ei ~k1•R2V1t !1 r̃eg~ t;2!ei ~k2•R2V2t !

1 (
nÞ0,21

r̃eg~ t;1,n!ei ~k1•R2V1t !1 in~q•R1dt !,

~6!

where

q5k12k2 , d5V22V1 . ~7!

In the slowly varying amplitude and phase approximation
follows from Maxwell’s equations and Eqs.~5! and ~6! that
the evolution of the probe field is given by

dE2~ t !

dt
5

iV2

e0
e2•P2~R,t !e2 i ~k2•R2V2t ! ~8a!

5
iNV2

e0
e2•p* r̃eg~ t;2!, ~8b!
,
ds

d

-

is-

e

-
ix

t

it

whereP2(R,t) is the component of the polarizationP(R,t)
varying asei (k2•R2V2t). Combining Eq.~8b! with Eq. ~4!
yields

dx2~ t !

dt
52

iNd2V2

2\e0
r̃eg~ t;2!, ~9!

where

d[up•e2u. ~10!

An equation forr̃eg(t;2) is obtained by solving the Schro¨-
dinger equation for the Hamiltonian~3!.

It is convenient to expand the wave function of the syst
as

c~R,r ,t !5 (
i 5g,e

Ai~R,t !c i~r !, ~11!

where

Aj~R,t !5
1

~2p\!3/2E dPAj~P,t !e2 iv j teiP–R/\e2 iEPt/\,

~12!

vg52v/2, ve5v/2, EP5P2/2M , and c i(r ) is the
atomic-state eigenfunction associated with statei. Note that
the momentum-state amplitudesAi(P,t) are defined in an
interaction representation. The state amplitudesaj (P,t) in
the ‘‘normal’’ representation are related to those in the int
action representation by

aj~P,t !5Aj~P,t !e2 iv j te2 iEPt/\, ~13!

and density matrix elements in momentum space are g
by

r j j 8~P,P8,t !5aj~P,t !aj 8
* ~P8,t !

5Aj~P,t !Aj 8
* ~P8,t !e2 iEPP8t/\e2 iv j j 8t, ~14!

wherev j j 85v j2v j 8 , EPP85EP2EP8 , and the bar indi-
cates an ensemble average. When the wave function~11!,
~12! is substituted into Schro¨dinger’s equation with the
Hamiltonian~3!, one finds that the state amplitudesAj (P,t)
evolve as

Ȧg~P,t !52 i (
m51,2

xm* ~ t !exp@ iDmt2 ivkm
t

2 ikm•Pt/M #Ae~P1\km ,t !, ~15a!

Ȧe~P,t !52 i (
m51,2

xm~ t !exp@2 iDmt2 ivkm
t

1 ikm•Pt/M #Ag~P2\km ,t !, ~15b!

where

Dm5Vm2v ~16!

is an atom-field detuning and
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vkm
5\km

2 /2M ~17!

is a frequency associated with atomic recoil. In terms
these state amplitudes, the density matrix elementreg(R,t)
5Ae(R,t)Ag* (R,t) can be written as

reg~R,t !5
1

~2p\!3E dPdP8Ae~P,t !Ag* ~P8,t !

3e2 ivtei ~P2P8!–R/\e2 iEPP8t/\. ~18!

Together, Eqs.~9!, ~6!, ~18!, and ~15! form a closed set of
equations which can be solved numerically to obtain the t
evolution of the probe field.

To simplify the analysis of both the RIR and CARL, it
assumed that

uD2u'uD1u[uDu@kmu,uxmu,ge , udu!uDu, ~19!

wherege is the excited-state decay rate andu is the most
probable atomic speed. If inequalities~19! hold, both the
RIR and CARL can be interpreted in terms ofstimulated
processes involving the pump and probe fields—spontane
emission plays a negligible role. Both the pump and pro
fields are turned on and brought adiabatically to their ‘‘in
tial’’ values att50 in a time long compared withuDu21, but
small compared with all other evolution times in the pro
lem. Thus, att50, the values for the Rabi frequencies ar

x1~0!5x1 , x2~0!5x2~0!, ~20!

while the density matrix for the atoms is taken as

% i j ~P,P8;0!5ai~P,0!aj* ~P8,0!5Ai~P,0!Aj* ~P8,0!

5~2p\!3V21W~P!d~P2P8!d i j d ig , ~21!

whereV is the sample volume andW(P) is the initial mo-
mentum distribution@19#. This initial density matrix corre-
sponds to a Wigner functionW(R,P;0)5W(P)/V, which is
the product of the momentum distribution times a unifo
spatial density~recall that this is a single particle density!.
The calculation can still be carried out using an amplitu
picture. The initial condition~21! is invoked once the densit
matrix element% i j (R,t) has been evaluated.

When inequalities~19! hold, it is possible to solve Eq
~15b! adiabatically for the upper state amplitude in terms
the lower state amplitude. Explicitly, one finds

Ae~P,t !5 (
m51,2

@xm~ t !/D#exp@2 iDmt2 ivkt

1 ikm•Pt/M #Ag~P2\km ,t !, ~22!

where vk[vk1
and terms of orderu(D12D2)/D1u and

u(vk1
2vk2

)/vk1
u have been ignored. Substituting this e

pression back into Eq.~15a!, one obtains

Ȧg~P,t !52 i (
m,n51,2

xm~ t !xn* ~ t !

D
exp@ iDnmt2 ivknm

t

2 iknm•Pt/M #Ag~P1\knm ,t !, ~23!
f

e

us
e

-

e

f

where

Dnm5Dn2Dm , knm5kn2km . ~24!

Sinceknm can take on the values@0,6q56(k12k2)# only,
it is clear that a solution to this equation can be written a

Ag~P,t !5 (
n52`

`

Sn~P,t !Ag~P2n\q,0!. ~25!

Combining Eqs.~18!, ~22!, ~25!, and~21!, one finds that the
density matrix elementreg(R,t) is given by

reg~R,t !5 (
m51,2

(
n,n852`

`
xm~ t !

VD
ei ~km•R2Vmt !ei ~n2n8!q•R

3e2 i ~n22n82 !vqtE dPW~P!e2 i ~n2n8!P–qt/M

3Sn~P1n\q,t !Sn* ~P1n8\q,t !. ~26!

Equation~26! proves that the general form forreg(R,t) is
correctly given by Eq.~6!. Extracting the coefficient of
ei (k2•R2V2t) provides us with the value ofr̃eg(t;2) needed in
Eq. ~9!. Two types of terms in the summation vary a
ei (k2•R2V2t), those withm52 andn5n8 and those withm
51 andn85n11. Denoting then5n8 term asr̃eg(t;a), the
n85n11 asr̃eg(t;b), and using the normalization conditio
@19#

15 (
i 51,2

E dRuAi~R,t !u2'E dRuAg~R,t !u2

5 (
n52`

` E dPW~P!uSn~P1n\q,t !u2 ~27!

one finds

r̃eg~ t;2!5 r̃eg~ t;a!1 r̃eg~ t;b!, ~28!

with

r̃eg~ t;a!5
x2~ t !

VD (
n52`

` E dPW~P!uSn~P1n\q,t !u2

'
x2~ t !

VD
, ~29a!

r̃eg~ t;b!5
x1eidt

VD (
n52`

`

ei ~2n11!vqtE dPW~P!eiP–qt/M

3Sn~P1n\q,t !Sn11* @P1~n11!\q,t#.

~29b!

The first term represents linear dispersion of the mediu
The second term, which is at the heart of the RIR and CAR
represents a scattering of the pump field off the atomic d
sity distribution created by both the pump and probe fiel
We now have all the ingredients necessary to derive the
and CARL equations.
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III. CARL AND RIR

In the large detuning limit, both the RIR and CARL equ
tions are most easily derived using an effective Hamilton
for ground-state atoms. An effective Hamiltonian of the fo

Heff5
P2

2M
1

\

D
@ ux1u21ux2~ t !u2#1

\

D
@x1x2* ~ t !ei ~q•R1dt !

1x1* x2~ t !e2 i ~q•R1dt !# ~30!

leads to the evolution equation~23! for the ground-state am
plitude Ag(P,t). The second term in the Hamiltonian is th
spatially homogeneous light shift potential and is not of
terest here. The third term is the optical potential formed
the pump and probe fields which gives rise to RIR a
CARL. The atoms’ center-of-mass motion in this optical p
tential can be treated classically for timesvqt!1. This is the
limit considered by Bonifacio and co-workers@10# and will
be referred to as CARLSC, with the ‘‘SC’’ denoting th
semiclassical limit. Forvqt*1, a quantized description o
the motion is needed. A theory of CARL in which the atom
motion is fully quantized has been given recently by Moo
and Meystre@13#. It will be referred to as CARLQ, when it is
ra

ic

s

n

-
y
d
-

necessary to distinguish between CARLSC and CARL
The theory of the RIR has been developed using a quant
description of the center-of-mass motion; consequently,
RIR and CARLQ theories should produce identical resu
and the RIR and CARLSC theories should produce the sa
results whenvqt!1. It should be noted that, although th
atomic motion in the optical potential is treated classically
CARLSC, the gain in CARLSC results from recoil-induce
processes. This point is discussed in more detail in Sec.

In calculating expectation values of operators that are
agonal in the internal states, one can neglect contributi
from the excited state since the excited-state populatio
assumed to be negligibly small. The CARL equations
derived using the Heisenberg equations of motion while
RIR are derived using a density matrix approach. I now sh
that these methods yield equivalent results, as they mus

A. CARL

To make connection with CARL, one defines a Heise
berg operator, ‘‘bunching parameter,’’B(t)5eiq•R(t). Using
Eqs. ~14!, ~25!, ~21!, and ~29b!, one can write the averag
value of the bunching parameter as@19#
^B~ t !&5^eiq•R„t…&5E dPdP8rgg~P,P8;t !^P8ueiq•RuP& ~31a!

5
1

~2p\!3E dRdPdP8Ag~P,t !Ag* ~P8,t !eiq•Rei ~P2P8!–R/\e2 iEPP8t/\ ~31b!

5E dPAg~P,t !Ag* ~P1\q,t !e2 iEP,uP1\qut/\ ~31c!

5 (
n,n852`

` E dPSn~P,t !Sn8
* ~P1\q,t !rgg@P2n\q,P2~n821!\q;0#e2 iEP,uP1\qut/\ ~31d!

5 (
n52`

`

ei ~2n11!vqtE dPW~P!eiP–qt/MSn~P1n\q,t !Sn11* @P1~n11!\q,t# ~31e!

5
DVe2 idt

x1
r̃eg~ t;b!, ~31f!
for
s

where the brackets denote a quantum-mechanical ave
Therefore, by combining Eqs.~9!, ~28!, ~29!, and~31f!, one
finds

dx2~ t !

dt
52 i

Nd2V2

2\e0
H x2~ t !

D
1

x1eidt

D
^B~ t !&J , ~32!

whereN5N/V is the atomic density. This is one of the bas
CARL equations in the limit of largeD @10#. The remaining
CARL equations, obtained from the Heisenberg equation
motion with the Hamiltonian~30!, are
ge.

of

dB

dt
5 i

q

M
–†P~ t !B~ t !1B~ t !P~ t !] 5 i S q–P~ t !

M
2vqDB~ t !,

~33a!

dP

dt
52 i

\q

D
@x1x2* ~ t !eidtB~ t !2x2~ t !x1* e2 idtB†~ t !#,

~33b!

where the last equality in Eq.~33a! follows from the com-
mutation properties ofP(t) andB(t)5eiq•R„t). These equa-
tions do not form a closed set since the equation
^dB(t)/dt& involves^P(t)B(t)& . One must generate a serie
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of equations for these higher moments or use some app
mation techniques~such as assuming classical motion in t
effective potential! to obtain a solution to the equations. Th
linear dispersion parametera5Nd2V2/2\e0D results in a
shift of the probe field frequency. By settin
x2(t)5x̃2(t)eidt in Eqs.~32! and ~33!, it is easy to see tha
the detuningd enters only in the combinationd1a. Thus
one can redefine the detuningd to include the dispersion
shift and replace Eq.~32! by

dx2~ t !

dt
52 i

Nd2V2x1eidt

2\e0D
^B~ t !&. ~34!

To examine the small signal gain regime, one can so
Eqs.~33! in perturbation theory. To zeroth order in the field

P~ t !5P„0)[P, ~35a!

B~0!~ t !5expH i S q–P

M
2vqD tJ B~0!

5B~0!expH i S q–P

M
1vqD tJ , ~35b!
o

n-

f

xi-

e
,

@B~0!~ t !#†5expH 2 i S q–P

M
1vqD tJ B†~0!

5B†~0!expH 2 i S q–P

M
2vqD tJ , ~35c!

where the last equalities in Eqs.~35b! and~35c! follow from
the commutation properties ofP and B(0)5eiq•R„0)

[eiq•R. Note thatP5P(0) andR5R(0) are normal Schro¨-
dinger operators. Substituting Eqs.~35b! and ~35c! into Eq.
~33b!, one finds, to first order inux1x2u,

P~1!~ t !52 i
\q

D E
0

t

dt8

3S x1x2* ~ t8!ei [ ~q•P!/M1d2vq] t8B~0!

2x2~ t8!x1* e2 i [ ~q–P!/M1d1vq] t8B†~0!
D ,

~36!

and, when this result is substituted in Eq.~33a!, one obtains
B~1!~ t !5
2vqe2 idt

D E
0

t

dt8expF i S q–P

M
1d2vqD ~ t2t8!G E

0

t8
dt9

3S x1x2* ~ t9!ei [ ~q–P!/M1d2vq] t9B~0!ei [ ~q–P!/M1d2vq] t8B~0!

2x2~ t9!x1* e2 i [ ~q–P!/M1d1vq] t9B†~0!ei [ ~q–P!/M1d2vq] t8B~0!
D ~37a!

5
2vq

D E
0

t

dt8ei [ ~q–P!/M2vq] ~ t2t8!E
0

t8
dt9S x1x2* ~ t9!ei [ ~q–P/M1d] ~ t81t9!eivq~ t82t9!@B~0!#2

2x2~ t9!x1* ei [ ~q–P!/M1d1vq] ~ t82t9! D ,

~37b!
n
ap-

ity

ian
where the commutation properties ofB(0) @or B†(0)] andP
and the relationshipB†(0)B(0)51 have been used to g
from Eq. ~37a! to Eq. ~37b!. The bunching parameterB(t)
;B(0)(t)1B(1)(t) can now be averaged with the initial de
sity matrix ~21!. The average of Eq.~35b! for B(0)(t) van-
ishes as does the first term in Eq.~37b! for B(1)(t). On
averaging the remaining term in Eq.~37b! for B(1)(t) with
the initial density matrix~21!, interchanging the order o
integration, and carrying out the integration overt8, one ob-
tains

^B~ t !&;2
2x1* e2 idt

D E dPW~P!

3E
0

t

dt8x2~ t8!ei [ ~q–P!/M1d] ~ t2t8!sin@vq~ t2t8!#.

~38!
I will return to this equation after showing that a
identical equation is reached using a density matrix
proach.

B. RIR

The RIR are usually calculated in the context of a dens
matrix approach. From Eq.~31a!, it follows that

^B~ t !&5E rgg~P,P1\q;t !dP, ~39!

which gives the alternative form for Eq.~34!,

dx2~ t !

dt
52 i

Nd2V2x1eidt

2\e0D E rgg~P,P1\q;t !dP. ~40!

To complete the RIR equations, one uses the Hamilton
~30!, along with Eqs.~11!–~14!, to obtain density matrix
equations
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]rgg~P,P8;t !/]t52 ivPP8rgg~P,P8;t !

2 i
x1* x2~ t !e2 idt

D
@rgg~P1\q,P8;t !

2rgg~P,P82\q;t !#

2 i
x1x2* ~ t !eidt

D
@rgg~P2\q,P8;t !

2rgg~P,P81\q;t !#, ~41!

wherevPP85EPP8 /\. It is easily verified that equations fo
the quantities d^B(t)&/dt5*ṙgg(P,P1\q;t)dP and
d^P(t)&/dt5*Pṙgg(P,P;t)dP, obtained using Eq.~41!, are
identical to Eqs.~33!. Thus the generalized RIR density m
trix equations aretotally equivalentto the corresponding op
erator CARL equations.

To evaluate^B(t)& in the perturbative limit using Eq
~39!, one setsP85P1\q in Eq. ~41! and replaces the densit
matrix elements in the right hand side of that equation
their zeroth order values,

rgg
~0!~P,P8;0!5~2p\!3V21W~P!d~P2P8!, ~42!

to obtain@19#

]rgg
~1!~P,P1\q;t !/]t52 ivPuP1\qurgg

~1!~P,P1\q;t !

2 i
x1* x2~ t !e2 idt

D

3@W~P1\q…2W~P!#. ~43!

This equation is consistent with the RIR picture of Ram
transitions between center-of-mass momentum states di
ing by \q. Integrating Eq.~43! over P and t, and using Eq.
~39!, one reproduces Eq.~38! for ^B(t)&. Since^B(t)&;0 as
vq;0, the probe gain in the RIR and CARL is a reco
induced effect.

Having established that the RIR and CARL formalism
lead to an equivalent set of equations, I now proceed to
tain the RIR and CARL limits of these equations, in t
small signal gain~perturbation theory! limit. Recall that the
RIR limit, as defined in this paper, is one in which th
dx2 /dt depends locally onx2(t). The small signal gain re
gime is limited to those times for whichx2(t)/x2(0)
&e21. It is convenient to combine Eqs.~34! and ~38! into
the single equation

dx2 /dt5 iQvq
2E dPW~P!

3E
0

t

dt8x2~ t8!ei [ ~q–P!/M1d] ~ t2t8!sin@vq~ t2t8!#,

~44!

whereQ is the dimensionless CARL parameter@10# defined
as

Q5
Nd2V2ux1u2

\D2e0vq
2

. ~45!
y

n
r-

b-

C. RIR limit

The RIR limit can be obtained by assuming thatx2(t8) is
slowly varying compared with the other terms in the int
grand of Eq.~44!, solving the resulting equation forx2(t),
and then checking for self-consistency. Ifx2(t8) is slowly
varying compared with the other terms in the integrand
Eq. ~44!, one can evaluatex2(t8) at t85t to arrive at

dx2 /dt5g~ t !x2~ t !, ~46!

where the~complex! gain parameter is

g~ t !5 iQvq
2E dPW~P!E

0

t

dtei [ ~q–P!/M1d] tsin~vqt!.

~47!

It is assumed that the momentum distributionW(P) can be
written as the product of a one-dimensional, symmetric d
tribution Wq(Pq) and a two-dimensional distribution
W'(P') for momentaP' transverse to theq̂ direction. For
the sake of definiteness, I take

Wq~Pq!5
1

ApP0

e2~Pq /P0!2
, ~48!

although the calculations can be carried through for arbitr
distribution functions. Introducing dimensionless integrati
variables x5Pq /P0 and y5qut in Eq. ~47!, where u
5P0 /M is the most probable atomic speed, one can rew
the equation as

g~ t !5 i
Qvq

Ap
S vq

quD E
2`

`

dxe2x2E
0

qut

dyei ~xy1dy/qu!sinS vq

qu
yD .

~49!

The value of the integral depends critically on the ratio

r 5
qP0

Mvq
5

2Mu

\vq
5

qu

vq
. ~50!

1. r@1

If r @1, Eq. ~49! reduces to

g~ t !; i
Qvq

Ap
S vq

quD E
2`

`

dxe2x2E
0

qut

dyS vq

qu
yDei ~xy1dy/qu!

~51a!

5
Qvq

2

Ap
S vq

quDdH E
2`

`

dxe2x2E
0

qut

dy

3ei ~xy1dy/qu!J Y dd ~51b!

5Qvq
2S vq

quDdH E
0

qut

dye2y2/4eidy/quJ Y dd.

~51c!
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One sees that, in general, the exponential buildup of the fi
is not linear with time. However, ifqut@1, the expression
for g(t) reduces to

g5pQvq
3S M

q DdH Wq~Pq5dM /q!

1
i

pE2`

`

dxWq~P0x!P@1/~x1d/qu!#J Y dd,

~52!

where P indicates a principal value, giving a small sig
gain @1#

Re~g!5pQvq
3S M

q DdWq~dM /q!

dd
. ~53!

The gain depends linearly on the atomic density and
pump field intensity. The gain is positive ford,0, negative
~absorption! for d.0, and vanishes atd50. This is a ‘‘single
particle’’ gain in that each atom contributes separately to
gain and there is no threshold condition for gain that depe
on atomic density.

The maximum gain occurs ford'2qu, for which ugu
'Qvq(vq /qu)2. For arbitrary values ofqut, it follows
from Eq. ~51! that the maximum gain cannot exceed th
value. Thus, for arbitrary timest, the RIR gain in the limit
that r @1 is of orderQvq(vq /qu)2. For self-consistency o
the approach, it is necessary thatugu!qu, since it has been
assumed thatx2(t8) is slowly varying with respect to
exp(iqut8) in Eq. ~44!. As a consequence, the RIR limit whe
r @1 is

r 5
qu

vq
@Q1/3, r @1. ~54!

2. r!1

The situation changes whenr !1. In that limit one can
replaceW(P) in Eq. ~47! by d(P) to obtain

g~ t !5 iQvq
2E

0

t

dt8eidtsin~vqt!. ~55!

For both udtu!1 and uvqtu!1, ug(t)u5Qvq
3t2/2, and

x2(t)5x2(0)exp(iQvq
3t3/6), while, for d/vq521, the

gain is g(t)5Qvqt/21 iQ(12e22ivqt)/4 and x2(t)
5x2(0)exp@Qvq

2t2/41 iQvqt/42Q(12e22ivqt)/8#. If ud
6vqut.1, the gain coefficient is of orderQvqt. For self-
consistency, the requirement thatx2(t8) be slowly varying
with respect to the integrand in Eq.~55! translates into the
requirement that*0

t ug(t8)udt8 be small compared with unity
If ud/vqu&1, one arrives at the RIR limits

Qvqt!1, ud6vqut.1, r 5
qu

vq
!1, ~56a!

Q1/2vqt!1, d/vq521, vqt.1, r 5
qu

vq
!1,

~56b!
ld

l

e

e
ds

Q1/3vqt!1, vqt,udtu!1; r 5
qu

vq
!1. ~56c!

There is always a time range over which the RIR limit
valid, irrespective of the value ofQ. SinceQ is proportional
to the atomic density, the RIR limit is valid for arbitraril
long times as the density is reduced. In the RIR limit, t
gain is always proportional to the density.

D. CARL limit

The CARL limit is obtained by assuming that one can
exp@iq–P„t2t8…/M #'1 in Eq. ~44! for times in which the
small signal gain theory is applicable. This assumption
valid for all cases in which the RIR limit isnot valid. In
other words, the CARL limit holds whenud/quu&1 and

Q1/3*r 5
qu

vq
@1 ~57!

or whenud/vqu&1 and

Qvqt*1, ud6vqut.1, Q,1, r 5
qu

vq
!1,

~58a!

Q1/2vqt*1, d/vq521, Q,1, r 5
qu

vq
!1,

~58b!

Q1/3vqt*1, Q@1, r 5
qu

vq
!1. ~58c!

Setting exp@iq–P„t2t8)/M ]'1 and x2(t)5x̃2(t)eidt in
Eq. ~44!, one obtains the CARL equation

dx̃2 /dt52 idx̃21 iQvq
2E

0

t

dt8x̃2~ t8!sin@vq~ t2t8!#,

~59!

which is equivalent to the differential equation

d3x̃2

dt3
52 id

d2x̃2

dt2
2vq

2 dx̃2

dt
1 ivq

2~vqQ2d!x̃2 , ~60!

subject to the initial conditions x̃2(0)5x̃2(0), and
dx̃2(0)/dt52 idx̃2(0), d2x̃2(0)/dt252d2x̃2(0) @corre-
sponding tô B(0)&5d^B(0)&/dt50]. The small signal be-
havior is determined from this equation, which has alrea
been analyzed by Bonifacio and co-workers for CARLS
with neglect of thevq

2 term @10# and by Moore and Meystre
@13# including this term. Gain occurs if one of the roots
the cubic indicial equation,

s31 ids21vq
2s2 ivq

2~vqQ2d!50, ~61!

has a positive real value. The condition for gain is@13#

9~d/vq!2~d/vq!31@31~d/vq!2#3/2,27Q/2. ~62!

If Q!1, gain occurs in the rangeud/vq11u,A2Q
and the gain coefficient is approximately equal
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A2Q2(d/vq11)2vq/2. WhenQ*1, gain occurs ford/vq
>0, which is impossible in the RIR limit. Moreover, in bot
cases the gain depends nonlinearly on the atomic density
there is a threshold condition for all values ofd/vqÞ21. As
such, CARL is a collective effect in the sense that gain d
not occur for atomic densities below a certain critical valu
For d/vq521, which is the resonance condition for Ram
transitions between center-of-mass states having mom
P50 andP5\q, there is gain irrespective of the value ofQ.
For Q@1 and ud/vqu!Q1/3, the gain varies as
Q1/3vqcos(p/6)5(A3/2)Q1/3vq , and the probe field under
goes exponential gain linear in time fort*(Q1/3vq)21. The
CARLSC theory can be used forQ@1, whereas the CARLQ
theory must be used forQ&1.

IV. DEGENERATE PUMP AND PROBE FIELDS, d50

An interesting limiting case is one in whichW(P)
;d(P), and the pump and probe field frequencies are deg
erate,V1'V2[V;d5V22V150 ~recall that the detuning
d has been redefined to include the shift arising from lin
dispersion!. Whend50, the probe gain vanishes identical
in the RIR limit r @1, but grows exponentially for CARLSC
For CARLQ, it follows from Eq.~62! that the probe gain is
exponential provided that

Q.
2

3A3
. ~63!

This qualitative difference between the RIR and CARL lim
its is reason enough to consider thed50 case in some detail
but it is not the only reason. The existence of exponen
gain whend50 is surprising at first glance. It would see
that processes in which a pump photon is absorbed an
probe photon emitted would be exactly canceled by p
cesses in which a probe photon is absorbed and a p
photon emitted, owing to the symmetry of the interacti
whenW(P);d(P). It is the purpose of this section to inve
tigate the origin of exponential gain in CARL whend50.
Calculations are carried out in a perturbative limit, that is,
lowest order in the pump field intensity. As is shown belo
the results are also applicable to a wider range of proble

In perturbation theory, there are five states that enter
calculation, starting from atoms in their ground state hav
P50. The relevant states areug;P50&, ue;P5\k1&,
ue;P5\k2&, ug;P56\q&, having energies 0,\(v
1vk),\(v1vk), and \vq , respectively ~recall that vk
[vk1

'vk2
). It is convenient to relabel these states as

ug;P50&[u0&, ue;P5\k1&[u1&,
~64!

ue;P5\k2&[u21&, ug;P56\q&[u62&.

The energy levels associated with these states are show
Fig. 1. The pump field drives theu0& to 1& and u21& to
u22& transitions while the probe field drives theu0& to
u21& and u1& to u2& transitions. The Hamiltonian for the
system can be obtained by expanding the Hamiltonian~3! in
a momentum-state basis for the subspace~64!. Using the
relationship^Pueik•RuP8&5d(P2P82\k…, one finds
nd

s
.

ta

n-

r

l

a
-
p

,
s.
e

g

in

H5\~v1vk!~ u1&^1u1u21&^21u!

1\vq~ u2&^2u1u22&^22u!

1\$x1e2 iVt~ u1&^0u1u21&^22u!1~adjoint!%

1\$x2~ t !e2 iVt~ u1&^2u1u21&^0u!1~adjoint!%.

~65!

Note that this level scheme could equally well describe
atom in a Stark field, driven by circularly polarized pum
and probe fields. The energy\vq would then correspond to
the Stark shifts of them562 ground-state, Zeeman suble
els.

Since decay is neglected, the calculation is most con
niently carried out using state amplitudes rather than den
matrix elements. No ensemble average is needed here s
we start in an eigenstate of momentum,P50. It is conve-
nient to work in a field interaction representation in whi
the state amplitudesaj (P,t)( j 522,2) are written as

a0~P,t !5@~2p\!3/V#1/2ã0~ t !d~P!, ~66a!

a1~P,t !5@~2p\!3/V#1/2ã1~ t !e2 iVtd~P2\k1!,
~66b!

a21~P,t !5@~2p\!3/V#1/2ã21~ t !e2 iVtd~P2\k2!,
~66c!

a62~P,t !5@~2p\!3/V#1/2ã62~ t !d~P7\q!, ~66d!

with density matrix elements given by

r̃ i , j~ t !5ãi~ t !ã j* ~ t !, ~67a!

FIG. 1. In perturbation theory, the relevant momentum sta
can be represented as an equivalent five-level system, intera
with two fields as shown. The initial momentum distribution
taken to be ad function and the detuning isd50. Stateu0& corre-
sponds toug;P50&, stateu1& to ue;P5\k1&, stateu21& to ue;P
5\k2&, and statesu62& to ug;P56\q&. Although derived for the
recoil problem, the conclusions reached in the text for this le
scheme are applicable to any problem where a similar level sch
is encountered.
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r j , j 8~R,t !5
1

~2p\!3E dPdP8aj~P,t !aj 8
* ~P8,t !ei ~P2P8!–R/\.

~67b!

In Eq. ~8a! for the probe field evolution, one needs the co
ponent of polarizationP2 , varying asei (k2–R2Vt). From Eqs.
~66! and ~67!, it follows that

P2~R,t !5N@p0,21r̃21,0~ t !1p2,1r̃1,2~ t !#ei ~k2–R2Vt !,
~68!

where thep’s are dipole matrix elements. For the lev
scheme corresponding to the states~64!,

p0,215p2,15pge[p* . ~69!

Thus the problem reduces to calculatingr̃21,0(t) and r̃1,2(t)
to orderux1u2x2 .

Before undertaking this calculation, it is useful to obta
an expression for the time evolution of the probe field’s e
ergy densityW25e0uE2u2/2. Using Eqs.~8a!, ~4!, ~ 68!, and
~69!, one finds

dW2 /dt5 iNVp*•e2E2* ~ t !~ r̃21,01 r̃1,2!/21c.c.
~70a!

52 iN\Vx2* ~ t !~ r̃21,01 r̃1,2!1c.c.
~70b!

5N\V@ṙ2,22~ ṙ21,211 ṙ22,22!#.
~70c!

The last line follows from the density matrix equations
motion for the Hamiltonian~65! and can be given an obviou
physical interpretation. Population of stateu2& implies gain
on the probe field, while population in statesu21& or u22&
implies loss for the probe field. The time rate of change
energy density is simply the difference@ ṙ2,22( ṙ21,21

1 ṙ22,22)# multiplied by the product of energy,\V, gained
or lost by the probe field in each elementary process and
atomic density. In the adiabatic limit considered in this p
per, the excited-state population is negligible and one ha

dW2 /dt;N\V~ṙ2,22 ṙ22,22!. ~71!

One might expect thatṙ2,25 ṙ22,22 , owing to the symmetry
of the level scheme, but we will see that this is not the ca

Assuming that the detuning of the fieldsD from the
ground- to excited-state atomic resonance is sufficie
large to adiabatically eliminate the excited states, one u
the Hamiltonian~65! to show that the excited-state amp
tudes are given by

ã1~ t !;
x1~ t !

D
ã0~ t !1

x2~ t !

D
ã2~ t !, ~72a!

ã21~ t !;
x2~ t !

D
ã0~ t !1

x1~ t !

D
ã22~ t !, ~72b!

and that the state amplitudesã0(t),ã62(t) evolve as
-

-

n

he
-

e.

ly
es

dã0~ t !/dt52 ix1* ã1~ t !2 ix2* ~ t !ã21~ t !, ~73a!

dã2~ t !/dt52 ivqã2~ t !2 ix2* ~ t !ã1~ t !, ~73b!

dã22~ t !/dt52 ivqã22~ t !2 ix1* ã21~ t !. ~73c!

It is a straightforward exercise to solve Eqs.~73! in per-
turbation theory to third order in the fields, starting fro
ã0(0)51. One finds

ã0
~0!~ t !51, ~74a!

ã1
~1!~ t !5

x1

D
, ~74b!

ã21
~1! ~ t !5

x2~ t !

D
, ~74c!

ã2
~2!~ t !52 i E

2`

t

dt8
x2* ~ t8!x1

D
e2 ivq~ t2t8!, ~74d!

ã22
~2! ~ t !52 i E

2`

t

dt8
x1* x2~ t8!

D
e2 ivq~ t2t8!, ~74e!

ã0
~2!~ t !52 i E

2`

t

dt8
ux1u21ux2~ t8!u2

D
, ~74f!

ã1
~3!~ t !;

x1

D
ã0

~2!~ t !1
x2~ t !

D
ã2

~2!~ t !, ~74g!

ã21
~3! ~ t !;

x2~ t !

D
ã0

~2!~ t !1
x1

D
ã22

~2! ~ t !, ~74h!

where the superscripts denote the order of the fields.
Consider, first, Eq.~71! for the probe field intensity,

which depends on

d~r2,22r22,22!/dt5d@ uã2
~2!~ t !u22uã22

~2! ~ t !u2#/dt.
~75!

By inspecting Eqs.~74d! and ~74e!, one can understand th
manner in whichuã2

(2)(t)u2 can grow more rapidly than

uã22
(2)(t)u2. Suppose x2(t) acquires a positive, time

dependent phase as a result of the atom-field interaction
this case, the quantityx2* (t8)eivqt8 appearing in the inte-
grand of Eq.~74d! varies more slowly than the quantit
x2(t8)eivqt8 appearing in the integrand of Eq.~74e!. As a
result, stateu2& population builds up more rapidly than tha
of state u22&, leading to probe gain. In other words, th
nonlinear phase modulation of the probe field effectively
vors theu0& to u2& transition over theu0& to u22& transition
if the phase is positive.

It follows from Eq. ~59! with d50 that x2(t)/x2(0);1
1 i (Qvqt3)/6;eiQvqt3/6 for vqt!1. At early times, the
phase is positive, favoring probe gain. Whether or not
field continues to grow depends on the value ofQ. If
Q!1, one can solve Eq.~60! to first order inQ to obtain
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x2~ t !;@eiQvqt2 iQe2 iQvqt/2sin~vqt !#x2~0!. ~76!

For Q!1, the intensity of the probe field remains appro
mately constant. IfQvqt!1, one recovers the RIR limit, in
which the time development of the field is approximate
local, and there is neither absorption nor gain. On the o
hand, forQ*1, the field buildup occurs sufficiently rapidl
to ensure that

~ ṙ2,22 ṙ22,22!522Re@x2* ~ t !~ r̃21,0
~3! 1 r̃1,2

~3!!#

54ReH i
ux1u2x2* ~ t !

D2 E
0

t

dt8x2~ t8!

3sin@vq~ t2t8!#J ~77!

remains positive for allt. In this case, there is exponenti
gain for the probe, linear in time and nonlinear in the atom
density, for timesvqtQ1/3.1. This is the CARL limit.

In summary, the probe gain that occurs ford50 and large
D is clearly not a single particle effect. It is more closel
related to a ‘‘propagation’’ effect in which the phase mod
lation of the probe field produced by the nonlinear atom-fi
interaction drives the probe gain.

V. DISCUSSION

It has been shown that the density-matrix-RIR a
Heisenberg-operator-CARL formalisms lead to equival
equations. The RIR and CARL limits refer simply to diffe
ent regions of parameter space of these equations. F
given experimental situation, one must determine whet
one is in the RIR limit, the CARL limit, or neither limit~as
is most often the case!. The experimental implications of th
RIR and CARL are discussed below, but first I would like
discuss the distinction between the terms ‘‘matter gratin
used in discussions of the RIR and ‘‘atomic bunching’’ us
in discussions of CARL.

The term ‘‘matter grating’’ refers to spatially modulate
atom distributions resulting from a nonlinear atom-field
teraction. The term ‘‘atomic bunching’’ refers to a redist
bution or focusing of atoms in an optical potential. For t
RIR and CARL, these terms are synonymous. If recoil ef-
fects are neglected, that is, if the center-of-mass motio
treated classically from the outset, thetotal atomic densityis
conserved for each velocity subclass of atoms~neglecting
collisions!. A homogeneous atomic density remains homo
neous to all orders in the atom-field interaction. Recoil
fects allow for a modification of the total atomic densit
Whether one calls this ‘‘atomic bunching’’ or ‘‘matter gra
ing’’ production is a matter of personal preference@5#. The
key point is that the modification of the total atomic dens
results entirely from effects related to recoil on the abso
tion, emission, or scattering of radiation. To lowest order
the atom-field interaction, the matter grating or atom
bunching consists of a spatial modulation of the atomic d
sity having period 2p/uk12k2u. With increasing field
strength, higher order spatial harmonics are produced, co
sponding to ‘‘higher order matter gratings’’ or ‘‘focusing
or ‘‘atomic bunching.’’ Of course it is possible to derive a
er
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-
-
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-

e-

effective potential of the form

Heff5H \

D
@ ux1u21ux2~ t !u2#1

\

D
@x1x2* ~ t !ei ~q•R1dt !

1x1* x2~ t !e2 i ~q•R1dt !#J u1&^1u ~78!

without quantization of the center-of-mass motion and
considerclassical motion in this potential. However, sinc
the effective potential is proportional to\, any changes in
the atomic density vanish in the classical limit. This is
contrast to bunching in the free electron laser where the
fective potential does not vanish in the classical limit.

Are there situations where matter gratings are produ
by fields without any contribution from recoil? The answ
to this question is ‘‘yes,’’ provided one considers the mat
gratings associated with individual internal atomic sta
rather than the total atomic density. For example, for an
semble ofstationary, closed, two-level atoms there is a sp
tial modulation in thepopulation differencebetween the ex-
cited and ground states produced by the pump and pr
fields. Scattering of the pump field from this spatially mod
lated population difference leads to a dispersion-sha
probe absorption profile centered at a probe-pump detun
d50 in the limit of large atom-field detuningD. The ampli-
tude of the dispersion profile varies as the square of
pump field intensity and its width is equal to the excited-st
decay rate@15#. It is also possible to have gain profiles wit
a width corresponding to some effective ground-state de
time if one considers open systems in which spontane
emission also plays a role. For example, if the ground-s
consists of two hyperfine states and the fields drive tra
tions between only one of these hyperfine states and an
cited state, then, as a result of spontaneous emission,
hyperfine state sublevel populations can be spatially mo
lated ~although thetotal atomic density—the sum of al
ground- and excited-state populations—remains constan
the absence of recoil!. It is possible to monitor the atomic
gratings in specific ground-state hyperfine levels by us
radiation that couples only the targeted ground-state subl
to an excited state.

Finally, I would like to discuss some experimental imp
cations of the RIR and CARL. To observe the spectral f
tures of the RIR and CARL, it is best to use cold atoms in
collisionless environment. Moreover, to isolate the effects
interest, one must use experiments which involve clos
two-level transitions or signals that depend only on to
atomic-state density. The RIR have already been observe
several experiments involving laser-cooled atoms@5–9#. The
experiments in which evidence for CARL was claime
@20,21# were all carried out under conditions~collisions, ra-
diation trapping, large Doppler widths! which are outside the
CARL limit. The results of these experiments can be e
plained by conventional theories in which recoil is neglec
@22#. For Q.1, the CARL limit is reached forqu/vq
52\q/Mu&Q1/3. For densities of order 1018 atoms/m3, it
is possible to achieve values ofQ1/3 of order 100–1000.
Thus it may be possible to observe CARL for atoms coo
to or somewhat above the sub-Doppler limit of laser coolin
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The linear gain coefficient in this case is of order 107 s21,
which must exceed any cavity loss.

Is it possible to observe the RIR in a thermal vapor us
pump-probe spectroscopy? The linear absorption rate isg1
5(Nd2V2 /\e0)(ge /D2), which implies that the ratio of the
recoil-induced gaing @Eq. ~53!# to the linear absorption rat
is of order (\ux1u2/ge)/Ea , whereEa5mu2/2 is the kinetic
energy of the atoms. For sub-Doppler-cooled atoms, this
tio can be greater than unity, but it is small at room tempe
ture. Still it might be possible to use modulation techniqu
to isolate the RIR contribution to the probe absorption. F
the RIR signal to be larger than the background, dispers
like contribution to the probe absorption that varies
2Apux1u4ge /(D5qu), one requires that the rati
(D2/ux1u2)(\q/Mu)(D/ge) be greater than unity. This ca
be achieved at room temperature for sufficiently largeD/x1 .

Perhaps the best way to observe CARL would be to
an atomic beam, transversely cooled below the recoil lim
The beam~or, alternatively, sub-Doppler-cooled atoms fro
a magneto-optical trap! can be passed through a cavity wi
some transit timeG21. It is not difficult to extend the theory
to allow for transit time effects through an effective dec
rate G for ground-state atoms. For subrecoil-cooled atom
Eq. ~59! is replaced by

dx28/dt5~G2 id!x281 iQvq
2E

0

t

dt8x28~ t8!sin@vq~ t2t8!#,

~79!
hy
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wherex285x2e(G2 id)t, Eq. ~60! by

d3x28

dt3
5~G2 id!

d2x28

dt2
2vq

2
dx28

dt
1 ivq

2~vqQ2d2 iG!x28 ,

~80!

and the indicial equation~61! by

s32~G2 id!s21vq
2s2 ivq

2~vqQ2d2 iG!50. ~81!

With the inclusion of decay, the CARL limit is still given by
Eq. ~58! for Gt!1. For Gt*1, the CARL limit is G
&Q1/3vq if Q@1 and ud/vqu!Q1/3; and G&Q1/2vq if Q
!1 andd/vq521. Decay tends to diminish the gain param
eter whenQ@1, but can actuallyreducethe gain threshold
whenQ,1. For example, ifd50, the threshold condition is
reduced fromQ.2/(3A3) to Q.0 if GÞ0.
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